Monthly Seminar on Arithmetic of Automorphic Forms
Seminar information archive ~09/18|Next seminar|Future seminars 09/19~
Date, time & place | Saturday 13:30 - 16:00 123Room #123 (Graduate School of Math. Sci. Bldg.) |
---|
2009/11/14
13:30-16:00 Room #117 (Graduate School of Math. Sci. Bldg.)
岡崎武生 (京都大学) 13:30-14:30
On weak endoscopic lift (117号室)
Derivations and Automorphisms on the noncommutative algebra of power series.
岡崎武生 (京都大学) 13:30-14:30
On weak endoscopic lift (117号室)
[ Abstract ]
rank 2のsymplectic 群の保型表現$\\pi$の spinor L-関数(4次)が殆どの素点で楕円保型形式のL-関数の積になっているものをweak ndoscopic liftと呼びます. $\\pi$がtemperedならば, 全てのweak endoscopic liftはrank 4のtheta関数(theta lift)でかける事がBrooks Roberts氏により知られています.
本公演では, このtheta liftの明示的な構成法やその周辺に関する話題(Siegel 三次多様体など)についてお話したいと思います.
井原健太郎 (POSTEC) 15:00-16:00rank 2のsymplectic 群の保型表現$\\pi$の spinor L-関数(4次)が殆どの素点で楕円保型形式のL-関数の積になっているものをweak ndoscopic liftと呼びます. $\\pi$がtemperedならば, 全てのweak endoscopic liftはrank 4のtheta関数(theta lift)でかける事がBrooks Roberts氏により知られています.
本公演では, このtheta liftの明示的な構成法やその周辺に関する話題(Siegel 三次多様体など)についてお話したいと思います.
Derivations and Automorphisms on the noncommutative algebra of power series.
[ Abstract ]
We discuss a relationship between a class of derivations and a class of automorphisms on the noncommutative algebra of formal power series in two variables. Each class relates bijectively by exponential and logarithm maps. In this talk we define a specific class of derivations, which generates a noncommutaive Lie algebra whose defining relations are related to a classical Witt algebra. The main claim is the explicit description of the
automorphisms which are corresponding to the derivations via exponential map.
We discuss a relationship between a class of derivations and a class of automorphisms on the noncommutative algebra of formal power series in two variables. Each class relates bijectively by exponential and logarithm maps. In this talk we define a specific class of derivations, which generates a noncommutaive Lie algebra whose defining relations are related to a classical Witt algebra. The main claim is the explicit description of the
automorphisms which are corresponding to the derivations via exponential map.