Monthly Seminar on Arithmetic of Automorphic Forms
Seminar information archive ~10/31|Next seminar|Future seminars 11/01~
| Date, time & place | Saturday 13:30 - 16:00 123Room #123 (Graduate School of Math. Sci. Bldg.) | 
|---|
2009/11/14
13:30-16:00   Room #117   (Graduate School of Math. Sci. Bldg.)
岡崎武生 (京都大学) 13:30-14:30
On weak endoscopic lift (117号室)
Derivations and Automorphisms on the noncommutative algebra of power series.
					岡崎武生 (京都大学) 13:30-14:30
On weak endoscopic lift (117号室)
[ Abstract ]
rank 2のsymplectic 群の保型表現$\\pi$の spinor L-関数(4次)が殆どの素点で楕円保型形式のL-関数の積になっているものをweak ndoscopic liftと呼びます. $\\pi$がtemperedならば, 全てのweak endoscopic liftはrank 4のtheta関数(theta lift)でかける事がBrooks Roberts氏により知られています.
本公演では, このtheta liftの明示的な構成法やその周辺に関する話題(Siegel 三次多様体など)についてお話したいと思います.
井原健太郎 (POSTEC) 15:00-16:00rank 2のsymplectic 群の保型表現$\\pi$の spinor L-関数(4次)が殆どの素点で楕円保型形式のL-関数の積になっているものをweak ndoscopic liftと呼びます. $\\pi$がtemperedならば, 全てのweak endoscopic liftはrank 4のtheta関数(theta lift)でかける事がBrooks Roberts氏により知られています.
本公演では, このtheta liftの明示的な構成法やその周辺に関する話題(Siegel 三次多様体など)についてお話したいと思います.
Derivations and Automorphisms on the noncommutative algebra of power series.
[ Abstract ]
We discuss a relationship between a class of derivations and a class of automorphisms on the noncommutative algebra of formal power series in two variables. Each class relates bijectively by exponential and logarithm maps. In this talk we define a specific class of derivations, which generates a noncommutaive Lie algebra whose defining relations are related to a classical Witt algebra. The main claim is the explicit description of the
automorphisms which are corresponding to the derivations via exponential map.
We discuss a relationship between a class of derivations and a class of automorphisms on the noncommutative algebra of formal power series in two variables. Each class relates bijectively by exponential and logarithm maps. In this talk we define a specific class of derivations, which generates a noncommutaive Lie algebra whose defining relations are related to a classical Witt algebra. The main claim is the explicit description of the
automorphisms which are corresponding to the derivations via exponential map.


 Text only print
Text only print Full screen print
Full screen print


