Tuesday Seminar of Analysis
Seminar information archive ~03/19|Next seminar|Future seminars 03/20~
Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |
2008/11/25
16:30-18:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Ovidiu Calin (Eastern Michigan University)
Heat kernels for subelliptic operators
Ovidiu Calin (Eastern Michigan University)
Heat kernels for subelliptic operators
[ Abstract ]
Subelliptic operators are differential operators with missing
directions. Their behavior is very different than the behavior or
elliptic operators. Among the most well known subelliptic operators
are the Grusin operator, the Heisenberg operator, and the Kolmogorov
operator. There are several methods of finding the heat kernels of
subelliptic operators. The heat kernels of subelliptic operators are
usually represented in integral form, but in the case of the
Kolmogorov operator we shall show that the heat kernel is of function
type. We shall spend some time on other subelliptic operators too.
Subelliptic operators are differential operators with missing
directions. Their behavior is very different than the behavior or
elliptic operators. Among the most well known subelliptic operators
are the Grusin operator, the Heisenberg operator, and the Kolmogorov
operator. There are several methods of finding the heat kernels of
subelliptic operators. The heat kernels of subelliptic operators are
usually represented in integral form, but in the case of the
Kolmogorov operator we shall show that the heat kernel is of function
type. We shall spend some time on other subelliptic operators too.