Infinite Analysis Seminar Tokyo

Seminar information archive ~11/07Next seminarFuture seminars 11/08~

Date, time & place Saturday 13:30 - 16:00 117Room #117 (Graduate School of Math. Sci. Bldg.)

2007/01/27

13:30-16:00   Room #117 (Graduate School of Math. Sci. Bldg.)
清水 寧 (立命館理工物理) 13:30-14:30
マイクロクラスターの特異なダイナミクス
[ Abstract ]
数十個から数千個の原子からなる有限多体系であるマイクロクラスターは、表面原子と内部の原子という異なる環境にある構成原子からなる空間的に不均一な系である。これが原因となり、マイクロクラスターは静的な面においても動的な面においても結晶やアモルファスのバルクとは大きく異なる特異な振る舞いを見せることが知られている。その一例として、神戸大学保田らの実験グループにより確認されているナノ金属マイクロクラスター内における構成原子の非常に速い拡散現象(急速合金化)を取り上げ、このダイナミクスに関する我々の数値シミュレーションに基づく結果を紹介する。得られたいくつかの数値結果の解釈を通じ、「動的に維持されている物質」としてのマイクロクラスターの一側面を示す。
山田 大輔 (東大数理) 15:00-16:00
例外型アフィンリー環$D_4^{(3)}$に付随するキリロフ・レシェティヒン加群の結晶基底に関する話題
[ Abstract ]
可解格子模型の1点関数を計算するために、Kang-柏原-Misra-三輪-中島-中屋敷らにより、``完全結晶"という概念が導入された。これはアフィンリー環$\\mathfrak{g}$の量子展開代数$U'_q(\\mathfrak{g})$に付随する結晶基底の中で、非常に良い性質をもつものである。完全結晶の存在性は、幾つかの場合に証明されたが、その後の研究の中で新たに発見され続けている。ところが、任意の既約な有限次元$U'_q(\\mathfrak{g})$-加群が必ずしも結晶基底をもつとは限らない。そこで次の問題を考えたい。

問題:「結晶基底をもつ既約な有限次元$U'_q(\\mathfrak{g})$-加群を全て見つけよ。」

この問題にアプローチするために、キリロフ・レシェティヒン加群$W_s^{(r)}$ (以下略してKR加群)を研究したい。これはアフィンリー環のディンキン図形の頂点$0$を除く頂点の番号$r$と、任意の正整数$s$の組によってパラメトライズされる。KR加群に関して、``フェルミ型公式''に起源をもつ以下の予想がある。尚, 現在までにこの予想の反例は見つかっていない。

予想:「KR加群$W_s^{(r)}$は結晶基底をもつ。
さらに$s$が$t_r:=max(1,2/(\\alpha_r \\vert \\alpha_r))$の倍数ならば、KR加群$W_s^{(r)}$の結晶基底$B^{r,s}$は、レベル$s/t_r$の完全結晶である。ただし, $(\\cdot \\vert \\cdot)$はウェイト格子上の標準線形形式。」

我々は, 例外型アフィンリー環$D_4^{(3)}$のKR加群$W_s^{(1)}$と$W_1^{(2)}$について、上の予想が正しいことを示した。その応用として、超離散可積分系の重要な例である「箱玉系」を構成し、そこに現れるソリトンの散乱則を表現論的に記述した。

前回の講演では、$U'_q(D_4^{(3)})$-加群の結晶基底に関する組合せ論的な部分を話した。今回の講演ではその表現論的な部分を解説する。