Support theorem for mild solutions of SDE's in Hilbert spaces

J. Math. Sci. Univ. Tokyo
Vol. 11 (2004), No. 3, Page 245--311.

Nakayama, Toshiyuki
Support theorem for mild solutions of SDE's in Hilbert spaces
[Full Article (PDF)] [MathSciNet Review (HTML)] [MathSciNet Review (PDF)]


Abstract:
A support theorem is proven for the mild solution of the stochastic differential equation in a Hilbert space of the form: $$ dX(t)=AX(t)dt+b(X(t))dt +\sigma(X(t))dB(t). $$ It is driven by a Hilbert space-valued Wiener process $B$, with the infinitesimal generator $A$ of a ($C_0$)-semigroup.

Mathematics Subject Classification (1991): 60E99, 60H15.
Mathematical Reviews Number: MR2097527

Received: 2003-12-22