Seminar on Geometric Complex Analysis

Seminar information archive ~11/18Next seminarFuture seminars 11/19~

Date, time & place Monday 10:30 - 12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama, Ryosuke Nomura

Next seminar

2017/11/20

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Yasufumi Nitta (Tokyo Institute of Technology)
Relative GIT stabilities of toric Fano manifolds in low dimensions
[ Abstract ]
In 2000, Mabuchi extended the notion of Kaehler-Einstein metrics to Fano manifolds with non-vanishing Futaki invariant. Such a metric is called generalized Kaehler-Einstein metric or Mabuchi metric in the literature. Recently this metrics were rediscovered by Yao in the story of Donaldson's infinite dimensional moment map picture. Moreover, he introduced (uniform) relative Ding stability for toric Fano manifolds and showed that the existence of generalized Kaehler-Einstein metrics is equivalent to its uniform relative Ding stability. This equivalence is in the context of the Yau-Tian-Donaldson conjecture. In this talk, we focus on uniform relative Ding stability of toric Fano manifolds. More precisely, we determine all the uniformly relatively Ding stable toric Fano 3- and 4-folds as well as unstable ones. This talk is based on a joint work with Shunsuke Saito and Naoto Yotsutani.