Ï¢Íí»ö¹à
8·î 2Æü¡¡´üËö»î¸³ºÎÅÀ¹Öɾ
ÌäÂ꣱¤«¤éÌäÂꣳ¤Þ¤Ç¤ÎºÇ½ªÅª¤ÊÅú¤È¤è¤¯¤ß¤é¤ì¤¿´Ö°ã¤¤¤Ê¤É¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤Þ¤¹¡£¤³¤³¤Ç¤Ï¥ë¡¼¥È£²¤ò 21/2 ¤Èɽµ¤·¤Þ¤¹¡£
ÌäÂ꣱¡¡ 1/y2
ÌäÂêʸ¤Ë ¡Ö x, y ¤Î¼°¤È¤·¤Æ¡¢¤Ê¤ë¤Ù¤¯´Êñ¤Ê·Á¤ÇÅú¤¨¤è ¡× ¤È¤¢¤ë¤Î¤Ç¡¢¤³¤ì°Ê³°¤ÎÅú¤Ï¤¹¤Ù¤ÆÉÔÀµ²ò¤Ç¤¹¡£ÌäÂ꤬²ò¤±¤ÆÅú¤¬½Ð¤¿¤é¡¢ÌäÂêʸ¤ò¤â¤¦°ìÅ٤褯ÆÉ¤ó¤Ç¡¢¼«Ê¬¤Î½Ð¤·¤¿Åú¤¬ÌäÂê¤ÎÍ×·ï¤òËþ¤¿¤·¤Æ¤¤¤ë¤«¤É¤¦¤«³Îǧ¤·¤Þ¤·¤ç¤¦¡£
¤Ê¤ª¡¢¸À¤¦¤Þ¤Ç¤â¤¢¤ê¤Þ¤»¤ó¤¬¡¢¤¿¤È¤¨Åú¤¬¤¢¤Ã¤Æ¤¤¤Æ¤â¡¢¤½¤ì¤Ë»ê¤ë·×»»¤Ë¸í¤ê¤¬¤¢¤ë¾ì¹ç¤Ë¤ÏÉÔÀµ²ò¤ÈȽÄꤷ¤Þ¤¹¡£¤Þ¤¿¡¢¤½¤Î¤è¤¦¤ÊÅú°Æ¤È¤ÎÀ°¹çÀ¤«¤é¡¢·×»»¤ÎÅÓÃæ·Ð²á¤Î¾Êά¤¬¿Ó¤À¤·¤¤Åú°Æ¤Ë¤Ä¤¤¤Æ¤Ï¡¢ÉÔÀµ²ò¤ÈȽÄꤹ¤ë¾ì¹ç¤¬¤¢¤ê¤Þ¤¹¡£
ÌäÂꣲ¡¡(1)¡¡2¦Ð¡¡(2)¡¡8 log (1¡Ü21/2)
Èùʬ·Á¼° ¦Ø ¤ÏÊÄ·Á¼°¤Ç¤Ï¤Ê¤¤¤Î¤Ç¡¢¥°¥ê¡¼¥ó¤Î¸ø¼°¤Ë¤è¤ê (1) ¤È (2) ¤ÎÅú¤¬°ìÃפ¹¤ë¤È¤Ï¸À¤¨¤Þ¤»¤ó¡£ÄêµÁÄ̤ê¤ËÀþÀÑʬ¤ò·×»»¤·¤Þ¤·¤ç¤¦¡£
ÌäÂꣳ¡¡(x, y)¡á(1, 0), (¡Ý1, 0) ¤Î¤È¤ºÇ¾®ÃÍ 1
¤³¤ÎÌäÂê¤Î¾ì¹ç¤Ë¤Ï¡¢ÊýÄø¼° £æ (x, y)¡á0 ¤Ë¤è¤Ã¤ÆÄê¤Þ¤ë¶ÊÀþ¤ÏÊ¿Ì̤ÎÊĽ¸¹ç¤Ç¤¹¤¬¡¢Í³¦¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£¤·¤«¤·¡¢³ÆÀµ¿ô R ¤ËÂФ·¤Æ £æ (x, y)¡á0 ¤«¤Ä £ç (x, y) ¡å R ¤ÇÄê¤Þ¤ë½¸¹ç¤Ïͳ¦¤ÊÊĽ¸¹ç¤È¤Ê¤ê¡¢R ¤¬½½Ê¬¤ËÂ礤±¤ì¤Ð¶õ¤Ç¤Ê¤¤¤Î¤Ç¡¢£ç (x, y) ¤ÏºÇ¾®Ãͤò»ý¤Á¡¢ºÇ¾®Ãͤò¼è¤ëÅÀ¤ÏÆÃ°ÛÅÀ¤Þ¤¿¤ÏÄäαÅÀ¤È¤Ê¤ê¤Þ¤¹¡£¤³¤Î¤³¤È¤ËÃí°Õ¤·¤Æ¡¢ÆÃ°ÛÅÀ¤ò³Îǧ¤·¤¿¤¦¤¨¤Ç̤Äê¾è¿ôË¡¤òŬÍѤ·¤Þ¤¹¡£·ëÏÀ¤È¤·¤Æ¤ÏÆÃ°ÛÅÀ¤Ï¤Ê¤¯¡¢¥é¥°¥é¥ó¥¸¥å´Ø¿ô £Æ ¤Ë¤Ä¤¤¤Æ¡¢¤¿¤È¤¨¤Ð £Æx¡á0 ¤È £Æy ¡á0 ¤«¤é ¦Ë ¤ò¾Ãµî¤·¤¿¼°¤ò·×»»¤¹¤ë¤È x¡áy ¤Þ¤¿¤Ï y¡á0 ¤Þ¤¿¤Ï x¡Üy¡á0 ¤¬ÆÀ¤é¤ì¤Þ¤¹¡£¤½¤ì¤¾¤ì¶ãÌ£¤·¤Æ £ç (x, y) ¤ÎÃͤòµá¤á¤ë¤È¡¢x¡áy ¤Î¤È¤¤Ï 21/2 ¤È¤Ê¤ê¡¢y¡á0 ¤Î¤È¤¤Ï 1 ¤È¤Ê¤ê¤Þ¤¹¡£¤Þ¤¿ x¡Üy¡á0 ¤È¤Ê¤ëÅÀ¤Ï £æ (x, y)=0 ¾å¤Ë¤Ï¤Ê¤¯¡¢ÉÔŬ¤Ç¤¹¡£°Ê¾å¤«¤éºÇ¾®ÃÍ¤Ï 1 ¤Ç¤¢¤ë¤³¤È¤¬¤ï¤«¤ê¤Þ¤¹¡£
¤È¤³¤í¤Ç y¡á0 ¤Î¤È¤¤Î±ïÉÕ¤ Hessian ¤ÎÃͤÏÉé¤Ç¤¹¤Î¤Ç¡¢¤³¤Î¾ì¹ç¤Ï¶Ë¾®¤Ë¤Ê¤ë¤³¤È¤¬¤ï¤«¤ê¤Þ¤¹¡£°ìÊý¡¢»ö¼Â¤È¤·¤Æ x¡áy ¤Î¤È¤¤Ï¶ËÂç¤Ç¤â¶Ë¾®¤Ç¤â¤¢¤ê¤Þ¤»¤ó¤¬¡¢±ïÉÕ¤ Hessian ¤ÎÃͤ¬ 0 ¤Ç¤¢¤ë¤¿¤á¤Ë¶ËÃÍȽÄ꤬¤Ç¤¤Þ¤»¤ó¡£¤Ä¤Þ¤ê¡¢±ïÉÕ¤ Hessian ¤ÎÃͤ¬ 0 ¤Î¤È¤¡¢¤½¤¦¤À¤«¤é¤È¤¤¤Ã¤Æ¶ËÂç¤Ç¤Ê¤¤¤È¤â¶Ë¾®¤Ç¤Ê¤¤¤È¤â¸À¤¨¤Þ¤»¤ó¡£½¾¤Ã¤Æ¡¢¤³¤ÎÌäÂê¤Î¾ì¹ç¤Ë¤Ï¡¢±ïÉÕ¤ Hessian ¤ÎÃͤ«¤é¤¿¤À¤Á¤ËºÇ¾®Ãͤò·èÄꤹ¤ë¤³¤È¤Ï¤Ç¤¤º¡¢¤µ¤é¤Ë¾Ü¤·¤¤¹Í»¡¤¬É¬Íפˤʤê¤Þ¤¹¡£¤½¤ì¤è¤ê¤Ï £ç (x, y) ¤ÎÃͤò·×»»¤·¤ÆÂ礤µ¤òÈæ³Ó¤¹¤ë¤Û¤¦¤¬¤Ï¤ë¤«¤Ë´Êñ¤Ç¤¹¡£
ÌäÂꣴ
Ìä (1) ¤Ç¤Ï¡¢¼ÂºÝ¤Ë·×»»¤·¤Æ³Îǧ¤¹¤ë¤³¤È¤¬ÌäÂê¤Î¼ñ»Ý¤Ê¤Î¤Ç¡¢·×»»¤ÎÅÓÃæ·Ð²á¤ò¾Êά¤·¤Æ¤Ï¤¤¤±¤Þ¤»¤ó¡£¤¤Á¤ó¤È·×»»¤·¤Æ³Îǧ¤·¤¿¤³¤È¤¬Ê¸Ì̤«¤éÆÉ¤ß¼è¤ì¤Ê¤¤¾ì¹ç¤Ë¤Ï¡¢¸øÊ¿À¤Î´ÑÅÀ¤«¤é¡¢²ò¤±¤Æ¤¤¤Ê¤¤¤â¤Î¤È¤ß¤Ê¤·¤Þ¤¹¡£
Åú°Æ¤Ë¡ÖÂê°Õ¤Ï¼¨¤µ¤ì¤¿¡×¤È½ñ¤¯¤Î¤Ï¡¢¸ÀÍդλȤ¤Êý¤ò¸í¤Ã¤Æ¤¤¤ë¤¦¤¨¤Ë¡¢¤¤¤«¤Ë¤â¼õ¸³¿ô³Ø¤ËÆÇ¤µ¤ì¤Æ¤¤¤ë´¶¤¸¤¬¤·¤Þ¤¹¡£Âç³ØÀ¸¤Ë¤â¤Ê¤Ã¤Æ¡ÖÂê°Õ¤Ï¼¨¤µ¤ì¤¿¡×¤Ê¤É¤È½ñ¤¯¤Î¤ÏÃѤº¤«¤·¤¤¤Î¤Ç¤ä¤á¤Þ¤·¤ç¤¦¡£
¹ÖµÁ¿Ê¹Ô¡Ê²Æ³Ø´ü¡Ë
¹ÖµÁ¤Î¿Ê¹Ô¤Ë¤è¤ê¡¢Åö½é¤ÎͽÄê¤òÊѹ¹¤·¤Þ¤·¤¿¡£
Ãí°Õ»ö¹à
Ãٹ︷¶Ø¡¦»ä¸ì¸·¶Ø¤Ç¤¹¡£
¼ø¶ÈÃæ¤Î·ÈÂÓÅÅÏᦥ¹¥Þ¡¼¥È¥Õ¥©¥ó¡¦¥Ñ¥½¥³¥óÅù¤Î»ÈÍѤò¶Ø»ß¤·¤Þ¤¹¡£
¼ø¶ÈÆâÍÆ¤Ë´Ø¤ï¤ë¼ÁÌä¤Ï¼ø¶ÈÃæ¤Ë¤ª´ê¤¤¤·¤Þ¤¹¡£¼ø¶ÈÆâÍÆ¤ÇÍý²ò¤Ç¤¤Ê¤¤ÅÀ¤¬¤¢¤ì¤Ð¡¢¤½¤Î¾ì¤Ç¼ê¤ò¤¢¤²¤ÆÂ礤ÊÀ¼¤Ç¼ÁÌ䤷¤Æ¤¯¤À¤µ¤¤¡£ ÈĽñ¤Î½ñ¤¸í¤ê¤Ëµ¤¤¬ÉÕ¤¤¤¿¤é¡¢¤½¤Î¾ì¤Ç¤¹¤°¤Ë»ØÅ¦¤·¤Æ¤¯¤À¤µ¤¤¡£
Âç¿Í¿ô¤ËÂФ¹¤ë¥ì¥Ý¡¼¥ÈÅù¤ÎÊֵѤò¡¢¸Ä¿Í¤Î¥×¥é¥¤¥Ð¥·¡¼¤ËÇÛθ¤·¤Ä¤Ä¡¢º®Íð¤Ê¤¯Â®¤ä¤«¤Ë¹Ô¤¦¤¿¤á¤Ë¡¢Ì¾Á°¤ò¸Æ¤Ð¤ì¤¿¤é¡¢Â礤¯¼ê¤òµó¤²¤Æ¡¢Â礤ÊÀ¼¤Ç¡Ø¤Ï¤¤¡Ù¤ÈÊÖ»ö¤·¤Æ¥¢¥Ô¡¼¥ë¤·¤Æ¤¯¤À¤µ¤¤¡£
Äó½Ðʪ¤Î̾Á°¤Ë¤Ïɬ¤º¤Õ¤ê¤¬¤Ê¤ò¿¶¤Ã¤Æ¤¯¤À¤µ¤¤¡£
¤³¤Î¼ø¶È¤Ï£²Ç¯Íý²ÊÀ¸¸þ¤±¤ÎÈùʬÀÑʬ³ØÂ³ÏÀ¤Î¹ÖµÁ¤Ç¤¹¡£ ʸ²ÊÀ¸¤âÍú½¤¤Ç¤¤Þ¤¹¡£ Íý²ÊÀ¸¤Ë¤Ä¤¤¤Æ¤Ï¥¯¥é¥¹»ØÄê¤Ë¤è¤êÍý²Ê I Îà33ÁÈ¡Á39ÁȤ¬ÂоݤȤʤê¤Þ¤¹¡£
¥·¥é¥Ð¥¹¤Ë½ñ¤«¤ì¤¿¼ø¶È¤ÎÌÜɸ¡¢³µÍפϼ¡¤ÎÄ̤ê¤Ç¤¹¡£
¿ô³Ø I ¤Ç³Ø¤ó¤À¿ÊÑ¿ô¤ÎÈùÀÑʬ¤ÎÊä¤Ȥ·¤Æ£²ÊÑ¿ô¤Î¥Ù¥¯¥È¥ëÃÍ´Ø¿ô¤ò¼è¤ê¾å¤²¡¤¤½¤Î¼è¤ê°·¤¤ÊýË¡¤È´ö²¿³ØÅª¡¦ÊªÍýŪ°ÕÌ£¤ò³Ø¤Ö¡¥£³ÊÑ¿ô¤¢¤ë¤¤¤Ï¤è¤ê¿¤¯¤ÎÊÑ¿ô¤ò°·¤¦ÊýË¡¤Ë¤Ä¤¤¤Æ¤Ï¡¤¿ôÍý²Ê³Ø III ¤Ç³Ø½¬¤¹¤ë¡¥¿ô³Ø¤äʪÍý¤Ê¤É¿ô³Ø¤òËܳÊŪ¤Ë»È¤¦Ê¬Ì¤¢¤ë¤¤¤ÏÅż§µ¤³Ø¡¦Î®ÂΤò°·¤¦Ê¬Ìî¤Ë¾Íè¿Ê¤à¾ì¹ç¤Ï¡¤¿ôÍý²Ê³Ø III ¤òÊ»¤»¤ÆÍú½¤¤·¤Æ¤ª¤¯¤³¤È¤¬Ë¾¤Þ¤·¤¤¡¥
¤³¤Î¹ÖµÁ¤Ï¡¢²ÐÍËÆü¤Î £²¸Â¡Ê£±£°¡§£´£°¡Á£±£²¡§£±£°¡Ë¤Ë¶µÍܳØÉô£µ£³£²¶µ¼¼¤Ç¹Ô¤¤¤Þ¤¹¡£
¤³¤Î¹ÖµÁ¤Ï¿ôÍý²Ê³Øµ¤Î¥·¥é¥Ð¥¹¤Î¼ø¶È·×²è ¡Ê²¼¤ËžºÜ¡Ë ¤Ë´ð¤Å¤¤¤Æ¹Ô¤¤¤Þ¤¹¡£
¤³¤Î¹ÖµÁ¤Î»²¹Í½ñ¤È¤·¤Æ¼¡¤Î½ñÀÒ¤ò¤¢¤²¤Æ¤ª¤¤Þ¤¹¡£
¾®ÎÓ¾¼¼·¡Ö³ ÈùʬÀÑʬÆÉËÜ — ¿ÊÑ¿ô — ¡×¾Ø²Ú˼
¾®ÂôůÌé¡Ö¶ÊÀþ ´ö²¿³Ø¤Î¾®·Â¡×ÇÝÉ÷´Û
¤³¤Î¹ÖµÁ¤ÎÀ®ÀӤϴüËö»î¸³¤Ë¤è¤Ã¤ÆÈ½Äꤷ¤Þ¤¹¡£¹ÖµÁ¤Î¤Ê¤«¤Ç¹Ô¤¦¾®¥Æ¥¹¥È¤ä¥ì¥Ý¡¼¥È¤Ê¤É¤Ï½ã¿è¤Ë¶µ°éÌÜŪ¤Ç¹Ô¤¦¤â¤Î¤Ç¤¹¤Î¤Ç¡¢¤½¤ÎÅÀ¿ô¡¦É¾²Á¤ÏÀ®ÀӤˤϱƶÁ¤·¤Þ¤»¤ó¡£
¼ø¶È·×²è
¿ôÍý²Ê³Ø I ¤Î¥·¥é¥Ð¥¹¤Ë½ñ¤«¤ì¤¿¼ø¶È·×²è¤òžºÜ¤·¤Þ¤¹¤Î¤Ç¡¢»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¹ÖµÁÆâÍÆ¤Ï¤ª¤ª¤à¤Í°Ê²¼¤ÎÄ̤ê¤Ç¤¢¤ë¤¬¡¤Ã´Åö¶µ°÷¤Ë¤è¤Ã¤ÆÆâÍÆ¤Ë¿¾¯¤ÎÊѲ½¤¬¤¢¤ë¡¥
±¢´Ø¿ôÄêÍý¤ÈµÕ´Ø¿ôÄêÍý¡§´Ø·¸¼°f(x,y)=0¤Ë¤è¤Ã¤Æ·ë¤Ð¤ì¤¿£²¤Ä¤ÎÊÑ¿ôx,y¤¬¤¢¤Ã¤¿¤È¤¡¤y¤òx¤Î´Ø¿ô¡Ê´Ø¿ôf¤Ë¤è¤Ã¤ÆÉ½¤µ¤ì¤ë±¢´Ø¿ô¡Ë¤È¤·¤ÆÉ½¤»¤ë¤¿¤á¤Î¾ò·ï¤ò¹Í»¡¤¹¤ë¡¥¤Þ¤¿ÊÑ¿ôÊÑ´¹¤È¤½¤Î±þÍѤˤĤ¤¤Æ³Ø¤Ö¡¥
Ê¿Ì̶ÊÀþ¤Î´ö²¿¡§£±¤Ç³Ø½¬¤·¤¿¤³¤È¤Ë´ð¤Å¤¡¤ÊýÄø¼°f(x,y)=0¤¬Äê¤á¤ë¶ÊÀþ¤Î¥Ñ¥é¥á¡¼¥¿É½¼¨¡¤ÀÜ¥Ù¥¯¥È¥ë¤ÈË¡¥Ù¥¯¥È¥ë¡¤¶ÊΨ¡¤¸ÌĹ¤Ê¤É¤Îµá¤áÊý¤ò¹Í¤¨¤ë¡¥
Ê¿Ì̾å¤Î¥Ù¥¯¥È¥ë¾ì¤ÈÀþÀÑʬ¡§¥Ù¥¯¥È¥ë¾ì¤Î³µÇ°¤òÀâÌÀ¤·¡¤´Ø¿ô¤¬Äê¤á¤ë¸ûÇÛ¥Ù¥¯¥È¥ë¾ì¤Ê¤É¤Î´ðËÜŪÎã¤È¤½¤Î°ÕÌ£¤ò¹Í¤¨¤ë¡¥¤Þ¤¿Ê¿Ì̤Υ٥¯¥È¥ë¾ì¡Ê¤Þ¤¿¤Ï¥Ù¥¯¥È¥ë¾ì¤ËÂбþ¤¹¤ëÈùʬ£±·Á¼°¡Ë¤Î¶ÊÀþ¾å¤ÎÀÑʬ¡ÊÀþÀÑʬ¡Ë¤òÄ´¤Ù¤ë¡¥
¾ò·ïÉÕ¤ºÇÂçºÇ¾®ÌäÂê¡§f(x,y)=0¤È¤¤¤¦¹´Â«¾ò·ï¤ò¼õ¤±¤Æ¤¤¤ëÊÑ¿ôx,y¤Î´Ø¿ôg(x,y)¤Ë¤Ä¤¤¤Æ¡¤¤½¤Î¶ËÂ硦¶Ë¾®¤òµá¤á¤ë¥é¥°¥é¥ó¥¸¥å¤Î̤Äê¾è¿ôË¡¤ò³Ø¤Ó¡¤´ö²¿³ØÅª°ÕÌ£¤ò¹Í»¡¤¹¤ë¡¥
ÌÌÀÑʬ¡§¶õ´ÖÆâ¤Î¶ÊÌ̤ò£²¤Ä¤Î¥Ñ¥é¥á¡¼¥¿¤Ë¤è¤Ã¤ÆÉ½¤·¡¤¶ÊÌ̾å¤ÎÀÑʬ¤Ë¤è¤Ã¤ÆÌÌÀѤʤɤòɽ¤¹¤³¤È¤ò³Ø¤Ö¡¥½ÅÀÑʬ¤Ë´Ø¤¹¤ëÊÑ¿ôÊÑ´¹¸ø¼°¤ò´°Á´¤Ë¥Þ¥¹¥¿¡¼¤¹¤ë¤³¤È¤¬½ÅÍפǤ¢¤ë¡¥
¥°¥ê¡¼¥ó¤ÎÄêÍý¤È¥¬¥¦¥¹¤ÎÄêÍý¡§Ê¿Ì̤ÎÃæ¤ÎÊĶÊÀþ¾å¤Ç¤ÎÀþÀÑʬ¤ò¶ÊÀþ¤¬°Ï¤àÎΰè¤Ç¤ÎÌÌÀÑʬ¤Ëµ¢Ã夹¤ë¥°¥ê¡¼¥ó¤ÎÄêÍý¤È¥¬¥¦¥¹¤ÎÄêÍý¤ò³Ø¤Ó¡¤Ê¿ÌÌ¥Ù¥¯¥È¥ë¾ì¤Î²óž¤Èȯ»¶¤Î°ÕÌ£¤ò¹Í»¡¤¹¤ë¡¥
²áµî¤ÎÏ¢Íí»ö¹à
6·î17Æü¡¡ÌäÂê 2.4 ¤Î²òÅú¤ÎÄûÀµ
ÌäÂê 2.4 ¤Î²òÅú¤Ë¤¢¤ë±ïÉÕ¤ Hesse ¹ÔÎó¤Î (2, 2) À®Ê¬¤È (3, 3) À®Ê¬¤¬ -6 ¤Ë¤Ê¤Ã¤Æ¤¤¤Þ¤¹¤¬¡¢Àµ¤·¤¯¤Ï -10 ¤Ç¤·¤¿¡£½¾¤Ã¤Æ - det B = -567/4 ¤È¤Ê¤ê¤Þ¤¹¡£
»ØÅ¦¤·¤Æ¤¯¤ì¤¿³ØÀ¸¤µ¤ó¡¢¤É¤¦¤â¤¢¤ê¤¬¤È¤¦¡£
7·î 2Æü¡¡¶³¦¤Ë´Ø¤¹¤ëÃí°Õ
½ÄÀþÎΰè¤Ç¥°¥ê¡¼¥ó¤ÎÄêÍý¤¬À®Î©¤¹¤ë¤¿¤á¤Ë¤Ï¡¢½ÄÀþÎΰè¤Î¾å²¼¤Î¶³¦¤òɽ¤ï¤¹´Ø¿ô¤¬Ï¢Â³¤Ç¤¢¤ì¤Ð½½Ê¬¤Ç¡¢¤½¤ì¤é¤¬Èùʬ²Äǽ¤Ç¤¢¤ëɬÍפϤ¢¤ê¤Þ¤»¤ó¡£²£ÀþÎΰè¤Ë¤Ä¤¤¤Æ¤âƱÍͤǤ¹¡£¤¿¤À¤·¡¢½ÄÀþÎΰè¤Ç¤â²£ÀþÎΰè¤Ç¤â¤Ê¤¤°ìÈ̤ÎÎΰè¤Ë´Ø¤·¤Æ¤Ï¡¢¶³¦¤¬¶ÊÀþ¤¬Ï¢Â³¤Ê¥Ñ¥é¥á¡¼¥¿É½¼¨¤ò»ý¤Ä¤È¤¤¤¦²¾Äê¤Ç¤ÏÉÔ½½Ê¬¤Ê¤Î¤Ç¡¢ÏäÎή¤ì¤È¤·¤Æ¡¢Á´ÂΤòÄ̤¸¤Æ¶³¦¤Ï¶èʬŪ¤Ë C1µé¤Î¶ÊÀþ¤Ç¤¢¤ë¤È²¾Äꤷ¤Þ¤·¤¿¡£
7·î 8Æü¡¡ÌäÂꣳ²òÅú¤ÎÄûÀµ
ÌäÂê3.5¤ÎʬÊì¤Ë¥ß¥¹¤¬¤¢¤ê¤Þ¤·¤¿¤Î¤Ç¡¢¼¡¤ÎÄ̤êÄûÀµ¤·¤Æ¤¯¤À¤µ¤¤¡£
x4 + y4 + 2x2y + 2xy2 + x2 + y2
→
x4 + y4 - 2x2y - 2xy2 + x2 + y2
¤Ê¤ª¡¢Ê¬»Ò¤Î·×»»¤Ç¤Ï¡¢ÊýÄø¼° x3 - 3xy + y3 = 0 ¤òÍѤ¤¤Æ¼¡¿ô¤ò²¼¤²¤Þ¤¹¡£