Visible actions, multiplicity-free representations

[P] T. Kobayashi and M. Pevzner, Inversion of rankin-cohen operators via holographic transform, preprint. 52 pages. arXiv: 1812.09733.
full info ]
[279] T. Kobayashi, Recent advances in branching laws of representations [hyogen no bunki-soku no saikin no shinten], Sugaku 71 (2019), no. 4, 388-416 (Japanese).
full info ]
[278] F. Kassel and T. Kobayashi, Invariant differential operators on spherical homogeneous spaces with overgroups, Journal of Lie Theory 29 (2019), 663-754, arXiv: 1810.02803.
full info ]
[269] T. Kobayashi and S. Nasrin, Geometry of coadjoint orbits and multiplicity-one branching laws for symmetric pairs, Algebras and Representation Theory 21 (2018), no. 5, 1023-1036, Special Issue: Representation Theory at the Crossroads of Modern Mathematics - Special volume in honor of Alexandre Kirillov. DOI: 10.1007/s10468-018-9810-8.
full info ]
[227] T. Kobayashi and M. Pevzner, Differential symmetry breaking operators. II. Rankin-Cohen operators for symmetric pairs, Selecta Mathematica (N.S.) 22 (2016), no. 2, 847-911, Published OnLine 14 December 2015. 65 pages. DOI: 10.1007/s00029-015-0208-8. arXiv:1301.2111. [old title of the preprint version: Rankin-Cohen operators for symmetric pairs].
[ full info ]
[226] T. Kobayashi and M. Pevzner, Differential symmetry breaking operators. I. General theory and F-method., Selecta Mathematica (N.S.) 22 (2016), no. 2, 801-845, Published OnLine 11 December 2015. 45 pages. DOI: 10.1007/s00029-015-0207-9. arXiv:1301.2111. [old title of the preprint version: Rankin-Cohen operators for symmetric pairs]. [ DOI | full info | arXiv | IHES-preprint | preprint version(pdf) ]
[219] T. Kobayashi, B. Ørsted, P. Somberg, and V. Souček, Branching laws for Verma modules and applications in parabolic geometry. I, Advances in Mathematics 285, 1796-1852, DOI:10.1016/j.aim.2015.08.020. arXiv:1305.6040.
full info ]
[176] T. Kobayashi, Propagation of multiplicity-free property for holomorphic vector bundles, Lie Groups: Structure, Actions, and Representations (In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday) (A. Huckleberry, I. Penkov, and G. Zuckerman, eds.), Progress in Mathematics, vol. 306, 2013, pp. 113-140, ISBN: 978-1-4614-7192-9. DOI:10.1007/978-1-4614-7193-6_6. arXiv:math/0607004.
full info ]
[154] T. Kobayashi, Branching problems of Zuckerman derived functor modules, Representation Theory and Mathematical Physics (in honor of Gregg Zuckerman) (Jeffrey Adams, Bong Lian, and Siddhartha Sahi, eds.), Contemporary Mathematics, vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 23-40, ISBN: 9780821852460, arXiv:1104.4399.
full info ]
[104] T. Kobayashi, A generalized Cartan decomposition for the double coset space (U(n1)~U(n2)~U(n3))\U(n)/(U(p)~U(q)), Journal of Mathematical Society of Japan, 59 (2007), no. 3, 669-691. math.RT/0607006.
[ full info ]
[103] T. Kobayashi, Visible actions on symmetric spaces, Transformation Groups 12 (2007), no. 4, 671-694, math.DG/0607005.
[ full info ]
[101] T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation Theory and Automorphic Forms, Progr. Math., vol. 255, Birkhäuser, 2007, pp. 45-109, math.RT/0607002.
full info ]
[99] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Proceedings of The 53rd Geometry Symposium (edited by Kenji Fukaya), 2006, pp. 119-133 (in Japanese).
[ full info ]
[98] T. Kobayashi, Introduction to visible actions on complex manifolds and multiplicity-free representations, Surikaiseki Kokyuroku, RIMS 1502 (2006), 82-95, Developments of Cartan Geometry and Related Mathematical Problems (edited by T. Morimoto).
[ full info ]
[93] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Proceedings of Symposium on Representation Theory 2005, held at Kakegawa, November 15-18, 2005 (S. Aoki, S. Kato, and H. Oda, eds.), pp. 33-66.
[ full info ]
[86] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41 (2005), 497-549, special issue commemorating the fortieth anniversary of the founding of RIMS.
[ full info ]
[81] T. Kobayashi, Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity, Acta Appl. Math. 81 (2004), 129-146.
[ full info ]
[78] T. Kobayashi, Multiplicity one theorem on branching laws and geometry of complex manifolds, Surikaiseki Kokyuroku, RIMS 1348 (2003), 1-9 (in Japanese), Expansion of Lie Theory and New Advances (organized by S. Ariki).
[ full info ]
[76] T. Kobayashi and S. Nasrin, Multiplicity one theorem in the orbit method, Amer. Math. Soc. Transl., Advances in the Mathematical Sciences, Series 2 210 (2003), 161-169, Special volume in memory of Professor F. Karpelevic.
[ full info ]
[61] T. Kobayashi, Branching laws of unitary highest weight modules with respect to semisimple symmetric pairs, Tangunsbericht, Representation Theory and Complex Analysis 18 (2000), 15-16.
[ full info ]
[59] T. Kobayashi, Multiplicity-free restrictions of unitary highest weight modules for reductive symmetric pairs, preprint UTMS 2000-1.
[ full info ]
[43] T. Kobayashi, Multiplicity free theorem in branching problems of unitary highest weight modules, Proceedings of Representation Theory held at Saga, Kyushu, 1997 (K. Mimachi, ed.), 1997, pp. 9-17.
[ full info ]

Top Home

Updated: 26 October 2019

© Toshiyuki Kobayashi