Real analysis

[318] T. Kobayashi and M. Pevzner, Inversion of Rankin-Cohen operators via holographic transform, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 5, 2131-2190, arXiv: 1812.09733.
full info ]
[277] T. Kobayashi, Conformal symmetry breaking on differential forms and some applications, Geometric Methods in Physics XXXVI workshop 2017 (P. Kielanowski, A. Odzijewicz, and E. Previato, eds.), Trends in Mathematics, Birkhäuser, Cham, 2019, pp. 289-308, DOI: 10.1007/978-3-030-01156-7_32. arXiv: 1712.09212.
[ full info ]
[276] T. Kobayashi and A. Leontiev, Double Gegenbauer expansion of |s- t|α, Integral Transforms and Special Functions, 30 (7) (2019) , pp.512-525. Published online: 26 Mar 2019. DOI: 10.1080/10652469.2019.1585433. arXiv: 1902.08064.
[ full info ]
[271] T. Kobayashi, Residue formula for regular symmetry breaking operators, Contemporary Mathematics, vol. 714, pp. 175-193, Amer. Math.Soc., 2018, arXiv: 1709.05035. 10.1090/conm/714/14380.
full info ]
[268] T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Mathematics, vol. 2234, Springer, 2018. xv+342 pages, ISBN: 978-981-13-2900-5, eBook: 978-981-13-2901-2. arXiv: 1801.00158.
full info ]
[228] T. Kobayashi, A. Nilsson, and F. Sato, Maximal semigroup symmetry and discrete Riesz transforms, Journal of the Australian Mathematical Society 100 (2016), issue 2, 216-240, Published Online, 14 December 2015. DOI: 10.1017/S144678871500049X.
[ full info ]
[213] T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, vol. 238, Memoirs of American Mathematical Society, no. 1126, 2015, Published electronically May 12, 2015. 118 pp. arXiv: 1310.3213. ISBN: 978-1-4704-1922-6. DOI: 10.1090/memo/1126.
full info ]
[197] T. Kobayashi and B. Speh, Intertwining operators and the restriction of representations of rank one orthogonal groups, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 89-94, DOI: 10.1016/j.crma.2013.11.018.
[ full info ]
[194] T. Kobayashi, Special functions in minimal representations, Perspectives in Representation Theory in honor of Igor Frenkel on his 60th birthday (Pavel Etingof, Miikhail Khovanov, and Alistair Savage, eds.), Comtemporary Mathematics, vol. 610, Amer. Math. Soc., Providence, RI, 2014, pp. 253-266, DOI: 10.1090/conm/610/12103. arXiv:1301.5505.
[ full info ]
[166] J. Hilgert, T. Kobayashi, J. Möllers, and B. Ørsted, Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups, Journal of Functional Analysis 263 (2012), 3492-3563. DOI: 10.1016/j.jfa.2012.08.026. arXiv:1203.5462.
full info ]
[163] S. Ben Saïd, T. Kobayashi, and B. Ørsted, Laguerre semigroup and Dunkl operators, Compositio Mathematica 148 (2012), 1265-1336, DOI: 10.1112/S0010437X11007445. arXiv:0907.3749 [math.RT].
[ full info ]
[152] T. Kobayashi and J. Möllers, An integral formula for L2-eigenfunctions of a fourth order Bessel-type differential operator, Integral Transforms and Special Functions 22 (2011), no. 7, 521-531, (published online first, on 27 January 2011), DOI: 10.1080/10652469.2010.533270. arXiv:1003.2699 [math.CA].
[ full info ]
[149] J. Hilgert, T. Kobayashi, G. Mano, and J. Möllers, Orthogonal polynomials associated to a certain fourth order differential equation, Ramanujan Journal 26 (2011), 295-310, DOI: 10.1007/s11139-011-9338-6. arXiv:0907.2612 [math.CA].
[ full info ]
[148] J. Hilgert, T. Kobayashi, G. Mano, and J. Möllers, Special functions associated to a certain fourth order differential equation, Ramanujan Journal 26 (2011), no.1, 1-34. (published online August 31, 2011). DOI: 10.1007/s11139-011-9315-0. arXiv:0907.2608 [math.CA].
[ full info ]
[147] J.-L. Clerc, T. Kobayashi, B. Ørsted, and M. Pevzner, Generalized Bernstein-Reznikov integrals, Mathematische Annalen 349 (2011), no. 2, 395-431, (published online first, on 4 May 2010). DOI: 10.1007/s00208-010-0516-4. arXiv:0906.2874 [math.CA].
[ full info ]
[132] S. Ben Saïd, T. Kobayashi, and B. Ørsted, Generalized Fourier transforms Fk,a, C. R. Math. Acad. Sci. Paris 347 (2009), 1119-1124, (published online first, on 21 August 2009).
[ full info ]
[127] T. Kobayashi, B. Ørsted, M. Pevzner, and A. Unterberger, Composition formulas in the Weyl calculus, J. Funct. Anal. 257 (2009), 948-991.
[ full info ]
[125] T. Kobayashi and A. Nilsson, Indefinite higher Riesz transforms, Arkiv för Matematik 47 (2009), 331-344, (published online first, on 3 March 2008).
[ full info ]
[116] T. Kobayashi and A. Nilsson, Group invariance and Lp-bounded operators, Math. Z. (2007), 29 pp. (published online first, on 22 November 2007).
[ full info ]
[92] T. Kobayashi and A. Nilsson, Invariant multipliers and O(p,q)-action, Proceedings of Symposium on Representation Theory 2005, held at Kakegawa, November 15-18, 2005 (S. Aoki, S. Kato, and H. Oda, eds.), pp. 10-21.
[ full info ]
[79] T. Kobayashi and A. Nilsson, Characterizing multipliers by relative invariance, Surikaiseki Kokyuroku, RIMS 1348 (2003), 10-22, Expansion of Lie Theory and New Advances (organized by S. Ariki).
[ full info ]
[32] T. Kobayashi, Integral geometry for submanifolds and Plancherel formulas of complex homogeneous manifolds, Proceedings on the Symposium on Representation Theory at Toyama (November 16-19, 1994), 1994, pp. 16-25 (in Japanese).
[ full info ]
[28] T. Kobayashi, Bounded domains and the zero sets of Fourier transforms, 75 Years of Radon Transforms (S. Gindikin and P. Michor, eds.), International Press, Hongkong, 1994, pp. 223-239, Conference Proceedings and Lecture Notes in Mathematical Physics, IV.
[ full info ]
[24] T. Kobayashi, Perturbations of domains in the Pompeiu problem, Comm. Anal. Geom. 1 (1993), 29-55.
[ full info ]
[20] T. Kobayashi, Convex domains and Fourier transform on spaces of constant curvature, Lecture Notes of the UNESCO-CIMPA School on ''Invariant differential operators on Lie groups and homogeneous spaces'', at WuHan University in P. R. China, 1991 (P. Torasso, ed.), 112 pp.
[ full info ]
[10] T. Kobayashi, How can we VIEW from silhouettes?, Sugaku Seminar 9 (1989), Nippon Hyoronsha, 82-87 (in Japanese), reproduced in ''Gendai Sugaku no Ayumi 4''.
[ full info ]
[8] T. Kobayashi, Asymptotic behaviours of the null variety for a convex domain in a non-positively curved space form, Jour. Fac. Sci. Univ. Tokyo 36 (1989), no. 3, 389-478.
[ full info ]
[2] T. Kobayashi, The null variety of the Fourier transform of the characteristic function of a convex domain, Master Dissertation I, the University of Tokyo, 1987, 98 pp.
[ full info ]
[1] T. Kobayashi, The null variety of the Fourier-Laplace transform of the characteristic function of a bounded domain, Seminar Reports of Unitary Representation 6 (1986), 1-18 (in Japanese), at the annual conference on unitary representation theory at Toba (organized by K. Kumahara).
[ full info ]

Top Home

Updated: 4 May 2021

© Toshiyuki Kobayashi