Papers
- [1] Tingley's problem through the facial structure of operator algebras.
- J. Math. Anal. Appl. 466 (2018), no. 2, 1281--1298. doi:10.1016/j.jmaa.2018.06.050, arXiv:1712.09192, master's thesis.
- [2] (with N. Ozawa) Mankiewicz's theorem and the Mazur--Ulam property for C*-algebras.
- Studia Math. 250 (2020), 265--281. doi:10.4064/sm180727-14-11, arXiv:1804.10674.
- [3] Isometries between projection lattices of von Neumann algebras.
- J. Funct. Anal. 276 (2019), no. 11, 3511--3528. doi:10.1016/j.jfa.2018.10.011, arXiv:1805.04660.
- [4] Order Isomorphisms of Operator Intervals in von Neumann Algebras.
- Integral Equations Operator Theory 91 (2019), no. 2, Art. 11, 26 pp. doi:10.1007/s00020-019-2510-x, arXiv:1811.01647.
- [5] On 2-local nonlinear surjective isometries on normed spaces and C*-algebras.
- Proc. Amer. Math. Soc. 148 (2020), No. 6, 2477--2485. doi:10.1090/proc/14949,
arXiv:1907.02172.
- [6] (with P. Šemrl) Continuous coexistency preservers on effect algebras.
- J. Phys. A 54 (2021), no. 1, 015303. doi:10.1088/1751-8121/abcb44, arXiv:1911.09490.
- [7] (with P. Šemrl) Loewner's theorem for maps on operator domains.
- Canad. J. Math. 75 (2023), no. 3, 912--944 (2024 CMS G. de B. Robinson Award). doi:10.4153/S0008414X22000219, arXiv:2006.04488.
- [8] Lattice isomorphisms between projection lattices of von Neumann algebras.
- Forum Math. Sigma 8 (2020), e49. doi:10.1017/fms.2020.53, arXiv:2006.08959.
- [9] (with G.P. Gehér) The structure of maps on the space of all quantum pure states that preserve a fixed quantum angle.
- Int. Math. Res. Not. IMRN 2022, no. 16, 12003--12029. doi:10.1093/imrn/rnab040, arXiv:2102.05780.
- [10] On regular *-algebras of bounded linear operators: A new approach towards a theory of noncommutative Boolean algebras.
- Tohoku Math. J. (2) 75 (2023), no. 3, 423--463. doi:10.2748/tmj.20220316, arXiv:2107.05806.
- [11] Ring isomorphisms of type II_∞ locally measurable operator algebras.
- Bull. Lond. Math. Soc. 55 (2023), no. 5, 2525--2538. doi:10.1112/blms.12880, arXiv:2206.00875.
- [12] (with P. Šemrl) Nonexpansive and noncontractive mappings on the set of quantum pure states.
- Accepted for publication in Proc. Roy. Soc. Edinburgh Sect. A, doi:10.1017/prm.2023.133, arXiv:2305.05123.
- [13] On the distance from a matrix to nilpotents.
- Linear Algebra Appl. 679 (2023), 99--103. doi:10.1016/j.laa.2023.09.011, arXiv:2307.04463.
- [14] On the Scottish Book Problem 155 by Mazur and Sternbach.
- C.R. Math. Acad. Sci. Paris. 362 (2024), 813--816. doi:10.5802/crmath.572, arXiv:2308.03339.
- [15] On the shape of correlation matrices for unitaries.
- Math. Scand. 130 (2024), no. 2, 359--363. doi:10.7146/math.scand.a-142800, arXiv:2308.03345.
- [16] (with S. Oi) Multiplicatively spectrum-preserving maps on C*-algebras.
- Accepted for publication in J. Operator Theory, arXiv:2404.04563.
- [17] (with M. Izumi) Determination of the distance from a projection to nilpotents.
- Preprint, arXiv:2406.09234.
- [18] (with P. Šemrl) Optimal version of the fundamental theorem of chronogeometry.
- Preprint, arXiv:2406.18874.
Others
- [i] Preserver problems and isometries of operator algebras (JAPANESE).
- RIMS Kôkyûroku
No.2125, 11--27.
- [ii] On the geometry of projections of von Neumann algebras.
- My Ph.D. thesis, based on [3] and [8]. pdf.
BACK