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Abstract
We study the geometry of projections of von Neumann algebras from two differ-

ent viewpoints.
In the first part, we consider the metric structure of projections, and investigate

surjective isometries between projection lattices of two von Neumann algebras. We
show that such mappings are characterized by means of Jordan ∗-isomorphisms. In
particular, we prove that two von Neumann algebras without type I1 direct sum-
mands are Jordan ∗-isomorphic if and only if their projection lattices are isometric.
Our theorem extends a result for type I factors by G.P. Gehér and P. Šemrl, which
is a generalization of Wigner’s theorem.

In the second part, we consider the lattice structure of projections. Generalizing
von Neumann’s result on type II1 von Neumann algebras, we characterize lattice
isomorphisms between projection lattices of arbitrary von Neumann algebras by
means of ring isomorphisms between the algebras of locally measurable operators.
Moreover, we give a complete description of ring isomorphisms of locally measur-
able operator algebras when the von Neumann algebras are without type II direct
summands.

Acknowledgements
First of all the author deeply appreciates Yasuyuki Kawahigashi, who is the advi-

sor of the author, for invaluable support and continuous encouragement throughout
the author’s six year devoted to the study and research on operator algebras at the
University of Tokyo.

The author was supported by Leading Graduate Course for Frontiers of Math-
ematical Sciences and Physics (FMSP) and JSPS Research Fellowship for Young
Scientists (KAKENHI Grant Number 19J14689), MEXT, Japan.

The author is grateful to Dario Cordero-Erausquin, György Pál Gehér, Cyril
Houdayer, Yusuke Isono, David Kerr, Toshihiko Masuda, Lajos Molnár, Reiji
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ON THE GEOMETRY OF PROJECTIONS OF VON NEUMANN

ALGEBRAS

MICHIYA MORI

1. Introduction

Since the very first work [31] by Murray and von Neumann more than 80 years
ago, the geometry of projections has played the central role in understanding the
structure of von Neumann algebras (rings of operators). For a von Neumann algebra
M , let P(M) denote the projection lattice of M , that is, P(M) := {p ∈ M | p =
p∗ = p2}. In this thesis, we would like to study the geometry of projection lattices.
This thesis is based on two papers [27, 29].

In the first part of the thesis, we investigate the metric structure of projection
lattices. In particular, we consider surjective isometries between projection lattices
of two von Neumann algebras. The study of isometries between operator algebras
has a long history. The first achievement in this field dates back to 1951 by Kadison
[17]. He proved that if φ : A → B is a complex-linear surjective isometry between
two unital C∗-algebras, then φ(1) is a unitary operator in B and the mapping
x 7→ φ(1)−1φ(x), x ∈ A is a Jordan ∗-isomorphism. (A linear bijection J : A → B
between two C∗-algebras is called a Jordan ∗-isomorphism if it satisfies J(x∗) =
J(x)∗ and J(xy + yx) = J(x)J(y) + J(y)J(x) for any x, y ∈ A.) On the other
hand, recall that the celebrated Mazur–Ulam theorem asserts that every surjective
isometry between two Banach spaces is affine. Also, Mankiewicz’s generalization
[22] of this theorem states that every surjective isometry between open connected
subsets of Banach spaces is affine. This gives rise to a question which asks whether
an analogous result holds for isometries between substructures of operator algebras.
In recent years, there have been several great developments in such a study. Hatori
and Molnár proved that every surjective isometry between unitary groups of two
von Neumann algebras extends uniquely to a real-linear surjective isometry [16].
Tanaka applied this theorem to consider Tingley’s problem for finite von Neumann
algebras [44]. Tingley’s problem asks whether every surjective isometry between
unit spheres of two Banach spaces admits a real-linear extension. Stimulated by
Tanaka’s research, Tingley’s problem began to be considered in various settings of
operator algebras. See [26], [37] and [30] for latest progresses in such a study.

Since projection lattices play very important roles in the theory of von Neumann
algebras, it is natural to ask whether a result similar to Hatori and Molnár’s theorem
holds for isometries between projection lattices. Here we give an observation which
seems to imply an affirmative answer to this question. Let M be a von Neumann
algebra. The symbol U(M) means the unitary group of M , that is, U(M) := {u ∈
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GEOMETRY OF PROJECTIONS 3

M | u∗u = 1 = uu∗}. Consider two projections p1 := diag(1, 0), p2 := diag(0, 1) ∈
P(M2(M)). Then we have{

p ∈ P(M2(M))

∣∣∣∣‖p− p1‖ =
1√
2

= ‖p− p2‖
}

=

{
1

2

(
1 u
u∗ 1

)∣∣∣∣u ∈ U(M)

}
.

This set is isometric to U(M)/2 = {u/2 | u ∈ U(M)}. By the Hatori–Molnár
theorem, this set contains much information about M .

It is well known that the distance between two distinct connected components
in the projection lattice of a von Neumann algebra is always 1. Thus, in order to
consider surjective isometries between projection lattices of von Neumann algebras,
it suffices to consider isometries between connected components. In this thesis, a
connected component in P(M) which contains more than one element is called a
Grassmann space in M . We know that every Jordan ∗-isomorphism between two
von Neumann algebras restricts to isometries between Grassmann spaces. Another
example of an isometry between Grassmann spaces on M can be obtained by the
mapping p 7→ p⊥ (:= 1− p). In the first part of the thesis, we show that every sur-
jective isometry between Grassmann spaces can be decomposed to such mappings
(Theorem 3.1).

As for the case M = B(H), the research of isometries between Grassmann spaces
is motivated by Wigner’s unitary-antiunitary theorem. Wigner’s theorem plays an
important role in the mathematical foundation of quantum mechanics. Let P1(H)
stand for the collection of rank 1 projections on a complex Hilbert space H. Note
that P1(H) is a Grassmann space in B(H). Wigner’s theorem shows that every
surjective isometry from P1(H) onto itself extends to a Jordan ∗-automorphism on
B(H). See Introduction of [3]. After several attempts (e.g. [3], [12]) to generalize
this result, Gehér and Šemrl recently gave a complete description of surjective
isometries between two Grassmann spaces in B(H) [13]. They made use of the
idea of geodesics between two projections, which is also essential in our proof of
Theorem 3.1. See also [42], [10], [36] and [25], [39], in which mappings between
projection lattices with an assumption which is different from ours are studied.

In Section 3, we give the proof of Theorem 3.1. Throughout the proof, we depend
on the idea by Gehér and Šemrl for B(H) in [13], but we need more discussions
in order to consider general von Neumann algebras. Our strategy is as follows.
We see that we may assume every projection in the Grassmann spaces is finite or
properly infinite, and the mapping preserves orthogonality in both directions. By
the Hatori–Molnár theorem combined with the idea about M2(M) as above, we can
construct a Jordan ∗-isomorphism between small subspaces. Using that, we extend
the given mapping to a bijection between whole projection lattices which preserves
orthogonality in both directions. Finally, we make use of Theorem 1.4 below due
to Dye [6] to complete the proof.

In Section 4, by means of Theorem 3.1, we consider surjective isometries between
projection lattices. We show that two von Neumann algebras without type I1

direct summands are Jordan ∗-isomorphic if and only if their projection lattices are
isometric (Theorem 4.1). We also consider concrete cases when two von Neumann
algebras are factors.

In the second part of the thesis, we study the lattice structure of projection
lattices. We consider the following question: What is the general form of lattice
isomorphisms between projection lattices of von Neumann algebras?
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There are several important results related to this question. Let us first think
about finite dimensional factors. The case M = N = Mn(C) for n = 1, 2 is
not interesting at all. Indeed, if n = 1, then P(Mn(C)) is {0, 1}, and a lattice
automorphism of it is the identity mapping. If n = 2, then a bijection Φ on
P(Mn(C)) is a lattice automorphism if and only if Φ(0) = 0 and Φ(1) = 1. If
M = N = Mn(C) for 3 ≤ n < ∞, then the fundamental theorem of projective
geometry gives an answer to our question. Recall that a function f : X → Y
between complex vector spaces is said to be semilinear if it is additive and there
exists a ring homomorphism σ : C → C satisfying f(cx) = σ(c)f(x) for all c ∈ C
and x ∈ X.

Theorem 1.1 (Fundamental theorem of projective geometry). Let 3 ≤ n < ∞.
Suppose that Φ: P(Mn(C)) → P(Mn(C)) is a lattice automorphism. Then there
exists a semilinear bijection f : Cn → Cn such that Φ(pξ) = pf(ξ) for every ξ ∈ Cn,
where pξ denotes the projection from Cn onto Cξ for a vector ξ ∈ Cn.

In the case of type I∞ factors, we can make use of a result below by Fillmore
and Longstaff in 1984. Recall that a projection p ∈ P(B(H)) can be identified with
its range pH, which is a closed subspace of H.

Theorem 1.2 ([8, Theorem 1]). Let X and Y be infinite dimensional complex
normed spaces. Let C(X) (resp. C(Y )) denote the lattice of all closed subspaces
of X (resp. Y ), ordered by inclusion. Suppose that Φ: C(X) → C(Y ) is a lattice
isomorphism. Then there exists a bicontinuous linear or conjugate-linear bijection
f : X → Y such that Φ(C) = f(C) for any C ∈ C(X).

See also the classical result [19, Theorem 1], in which Kakutani and Mackey
studied orthocomplementation on the lattice P(B(H)).

For type I factors, we may observe a correspondence between lattices and
rings. Let H be a Hilbert space with dimH ≥ 3. For any lattice automor-
phism Φ: P(B(H)) → P(B(H)), take a mapping f : H → H as above. It is a
semilinear bijection if dimH <∞; a linear or conjugate-linear bounded bijection if
dimH =∞. Hence we may construct a ring automorphism Ψ: B(H)→ B(H) such
that Φ(l(x)) = l(Ψ(x)) for every x ∈ B(H) (namely, Ψ(x) := f ◦ x ◦ f−1), where
l(x) denotes the left support projection of x. It is easy to see that the converse
also holds. That is, any ring automorphism Ψ: B(H)→ B(H) determines a lattice
automorphism Φ of P(B(H)) such that Φ(l(x)) = l(Ψ(x)) for every x ∈ B(H).

We next consider finite von Neumann algebras. In 1930’s, motivated by the
geometry of projection lattices of type II1 factors, von Neumann produced the
beautiful theory on the correspondence between complemented modular lattices
and regular rings. One of his achievements [34, Part II, Theorem 4.2], applied to
the case of arbitrary type II1 von Neumann algebras, reads as follows.

Theorem 1.3 (von Neumann). Let M and N be von Neumann algebras of type
II1. Suppose that Φ: P(M) → P(N) is a lattice isomorphism. Then there exists
a unique ring isomorphism Ψ: S(M) → S(N) between the algebras of measurable
operators such that Φ(l(x)) = l(Ψ(x)) for any x ∈ S(M).

See Section 5 for the definition of undefined terms and see also Section 8 for
further details about von Neumann’s theory.

In the general setting of von Neumann algebras, with an additional assumption,
Dye obtained the following result in 1955.
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Theorem 1.4 ([6, Corollary of Theorem 1], see also [7, Theorem 1]). Let M
and N be von Neumann algebras without type I2 direct summands. Suppose that
Φ: P(M)→ P(N) is a lattice isomorphism with

pq = 0 ⇐⇒ Φ(p)Φ(q) = 0

for any p, q ∈ P(M). Then there exists a real ∗-isomorphism Ψ: M → N that
extends Φ.

Each of the above results implies that lattice isomorphisms between projection
lattices are closely related to ring isomorphisms. See also McAsey’s survey [24]
which discusses projection lattice isomorphisms in various settings. It is natural to
imagine that we can give a similar result for arbitrary lattice isomorphisms in the
general setting of von Neumann algebras. The following theorem realizes it.

Theorem A. Let M and N be two von Neumann algebras. Suppose that M does
not admit type I1 nor I2 direct summands, and that Φ: P(M)→ P(N) is a lattice
isomorphism. Then there exists a unique ring isomorphism Ψ: LS(M) → LS(N)
such that Φ(l(x)) = l(Ψ(x)) for all x ∈ LS(M).

Here, LS(M) and LS(N) mean the algebras of locally measurable operators
of M and N , respectively (see Section 5.2). We remark that the converse of
Theorem A can be verified without difficulty. Namely, any ring isomorphism
Ψ: LS(M) → LS(N) determines a unique lattice isomorphism Φ: P(M) → P(N)
such that Φ(l(x)) = l(Ψ(x)) for all x ∈ LS(M) (Proposition 6.1). Therefore, The-
orem A naturally gives rise to the following

Question. Let M , N be von Neumann algebras. What is the general form of ring
isomorphisms from LS(M) onto LS(N)?

We may answer this question for finite type I von Neumann algebras using ring
isomorphisms of their centers (Proposition 7.2). Moreover, we obtain

Theorem B. Let M,N be von Neumann algebras of type I∞ or III. If
Ψ: LS(M)→ LS(N) is a ring isomorphism, then there exist a real ∗-isomorphism
ψ : M → N (which extends to a real ∗-isomorphism from LS(M) onto LS(N)) and
an invertible element y ∈ LS(N) such that Ψ(x) = yψ(x)y−1, x ∈ LS(M).

In Section 5, we introduce some tools we use later. Section 6 is devoted to the
proof of Theorem A. The proof is based on the combination of von Neumann’s
strategy in [34, Part II, Chapter IV] and a binary relation on the projection lattice
which we call LS-orthogonality. After that we give a proof of Dye’s theorem as an
application of Theorem A. We consider Question in Section 7, and prove Theorem
B. This thesis ends with comparison of our result with von Neumann’s theory and
several suggestions of further research directions (Section 8).

Notation Throughout the thesis, we use standard terminology and basic prop-
erties concerning the geometry of projection lattices. See for example [18, Chapter
6] or [43, Chapter V.1]. Let M ⊂ B(H) be a von Neumann algebra. We use the
symbol ∼ to mean the Murray–von Neumann equivalence relation on P(M). That
is, for p, q ∈ P(M), p ∼ q means that there exists a partial isometry v ∈ M such
that p = vv∗ and q = v∗v. In addition, we write p ≺ q when there exists a partial
isometry v ∈ M such that vv∗ = p and v∗v ≤ q. As usual, for p, q ∈ P(M), p ⊥ q
means that p and q are orthogonal. That is, pq = qp = 0, or equivalently, pH ⊥ qH
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in the Hilbert space H. We use the symbol p⊥ := 1− p for p ∈ P(M). The symbol
Z(M) = {x ∈M | xy = yx for all y ∈M} means the center of M , and z(p) denotes
the central support of p for a projection p ∈ P(M).

2. Basic tool: Halmos’s two projection theorem

In order to play with projection lattices, it is useful to look at the relative position
of a pair of projections. For it, we make use of Halmos’s two projection theorem
[15] (see also [4]) from the viewpoint of von Neumann algebra theory. Here we
recapitulate the argument in [27, Lemma 2.2]. (A similar argument can be found
in, for example, [43, pp. 306–308].)

Let M ⊂ B(H) be a von Neumann algebra and p, q ∈ P(M). Put

e1 = p− p ∧ q − p ∧ q⊥, e2 = p⊥ − p⊥ ∧ q − p⊥ ∧ q⊥,
and x := e1(q − p ∧ q − p⊥ ∧ q)e2. By an elementary calculation, we see that
the left and right support projections of x are e1 and e2, respectively. By polar
decomposition, we may take a partial isometry v = vp,q ∈M such that x = v|x| =
|x∗|v, vv∗ = e1 and v∗v = e2.

We can identify each y ∈ (e1 + e2)M(e1 + e2) with

(
e1ye1 e1yv

∗

vye1 vyv∗

)
∈

M2(e1Me1). Then q − p ∧ q − p⊥ ∧ q (≤ e1 + e2) is identified with(
e1(q − p ∧ q − p⊥ ∧ q)e1 e1(q − p ∧ q − p⊥ ∧ q)v∗
v(q − p ∧ q − p⊥ ∧ q)e1 v(q − p ∧ q − p⊥ ∧ q)v∗

)
=

(
e1(q − p ∧ q − p⊥ ∧ q)e1 |x∗|

|x∗| v(q − p ∧ q − p⊥ ∧ q)v∗
)
∈M2(e1Me1).

Put a := (e1(q−p∧q−p⊥∧q)e1)1/2 and b := (v(q−p∧q−p⊥∧q)v∗)1/2, which are

positive injective operators in Mp,q := e1Me1. Since

(
a2 |x∗|
|x∗| b2

)
is a projection,

some calculations show that a, b and |x∗| commute, a2 + b2 = e1 and |x∗| = ab.

Thus q − p ∧ q − p⊥ ∧ q corresponds to

(
a2 ab
ba b2

)
.

Therefore, we may decompose p and q in the following manner:

p = 1⊕ 0⊕ 1⊕ 0⊕
(

1 0
0 0

)
, q = 0⊕ 1⊕ 1⊕ 0⊕

(
a2 ab
ab b2

)
,

where H is decomposed as H = (p∧ q⊥)H ⊕ (p⊥ ∧ q)H ⊕ (p∧ q)H ⊕ (p⊥ ∧ q⊥)H ⊕
(e1 + e2)H, and a and b are positive injective operators in Mp,q (= e1Me1) such
that a2 + b2 = 1Mp,q

.
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Part 1. Isometries between projection lattices of von Neumann algebras

3. Isometries between Grassmann spaces

Let M be a von Neumann algebra. Let P be a Grassmann space in M . That
is, P is a connected component in P(M) with more than one element. Let p ∈ P.
It is an elementary exercise to show that a projection q ∈ P(M) belongs to P
if and only if p is unitarily equivalent to q in M . Thus the pair (z(p), z(p⊥))
of central projections does not depend on the choice of p ∈ P. In this thesis, a
Grassmann space P in M is said to be proper if z(p) = 1 = z(p⊥) for every p ∈ P.
Fix a projection p0 ∈ P. The mapping p 7→ pz(p0)z(p⊥0 ) determines a bijection
from P onto a proper Grassmann space in the von Neumann algebra Mz(p0)z(p⊥0 ).
Therefore, in order to consider surjective isometries between Grassmann spaces, we
may assume that these Grassmann spaces are proper.

The main theorem of this section is the following one:

Theorem 3.1. Let M,N be von Neumann algebras and P ⊂M , Q ⊂ N be proper
Grassmann spaces. Suppose T : P → Q is a surjective isometry. Then there exist a
Jordan ∗-isomorphism J : M → N and a central projection r ∈ P(N) which satisfy

T (p) = J(p)r + J(p⊥)r⊥, p ∈ P.

We construct this section to some extent along the lines of the paper [13] by
Gehér and Šemrl. For two projections p, q ∈ P(M), we write p M q if there exists
a central projection r ∈ M such that pr ⊥ qr and p⊥r⊥ ⊥ q⊥r⊥. Note that this
relation is a generalization of the relation which is written as “∼” in the paper [13].
(We save the symbol ∼ for the Murray–von Neumann equivalence.)

Proposition 3.2. Let M ⊂ B(H) be a von Neumann algebra, P be a Grassmann
space in M and p, q ∈ P with ‖p − q‖ = 1. Then we have p M q if and only if the
following holds.

Condition Set m(p, q) := {e ∈ P | ‖e − p‖ = ‖e − q‖ = 1/
√

2}. Then m(p, q) is
not empty, and for every p0 ∈ m(p, q), there exists a unique path γ : [0, π/2] → P
which satisfies

γ(0) = p, γ(π/2) = q, γ(π/4) = p0

and

‖γ(θ1)− γ(θ2)‖ = sin|θ1 − θ2|
for all θ1, θ2 ∈ [0, π/2].

Proof. The discussion in the paper [13] can be applied almost verbatim, so we give
only a sketch of the proof.

Suppose p M q. It suffices to consider the case p ⊥ q. Fix a partial isometry v ∈
M which satisfies vv∗ = p and v∗v = q. We can identify x ∈ (p+ q)M(p+ q)(⊂M)

with

(
pxp pxv∗

vxp vxv∗

)
∈M2(pMp). Then, it follows

m(p, q) =

{
1

2

(
1 u
u∗ 1

)∣∣∣∣u ∈ U(pMp)

}
⊂ (p+ q)M(p+ q) ⊂M.

Let u ∈ U(pMp) and put e :=
1

2

(
1 u
u∗ 1

)
∈ m(p, q). Then the same discussion as

in [13, Lemma 2.5] shows that, the only path γ : [0, π/2] → P as in Condition is
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given by

γ(θ) =

(
cos2 θ u cos θ sin θ

u∗ cos θ sin θ sin2 θ

)
, θ ∈ [0, π/2].

Suppose p and q satisfy Condition. We decompose p and q by means of Halmos’s
two projection theorem:

H = (p ∧ q⊥)H ⊕ (p⊥ ∧ q)H ⊕ (p ∧ q)H ⊕ (p⊥ ∧ q⊥)H ⊕ e1H ⊕ e2H,

p =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , q =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 a2 ab
0 0 0 0 ba b2

 .

Since m(p, q) 6= 0, by the same discussion as in [13, Lemma 2.4], there exists
a partial isometry v ∈ M which satisfies vv∗ = p ∧ q⊥ and v∗v = p⊥ ∧ q. If
p ∧ q⊥ = 0, then the condition ‖p − q‖ = 1 implies ‖b‖ = 1. As [13, Lemma 2.9],
there exists a projection p0 ∈ m(p, q) which admits more than one path with the
property as in Condition. We can also show by [13, Lemmas 2.8 and 2.9] that the
following does not happen: p ∧ q⊥ 6= 0 and e1 6= 0. Thus we have p ∧ q⊥ 6= 0 and
0 = e1 (∼ e2). Then p and q commutes. If there exist subprojections 0 6= p1 ≤ p∧ q
and q1 ≤ p⊥ ∧ q⊥ in M which satisfy p1 ∼ q1, then we can easily construct more
than one path for the projection p0 = (p∧ q⊥+ v+ v∗+ p⊥ ∧ q)/2 + p∧ q ∈ m(p, q),
which contradicts Condition. Hence there exists a central projection r ∈ M with
p ∧ q ≤ r⊥ and p⊥ ∧ q⊥ ≤ r. It follows pr ⊥ qr and p⊥r⊥ ⊥ q⊥r⊥. �

We begin the proof of Theorem 3.1. Let P ⊂ M and Q ⊂ N be proper Grass-
mann spaces and suppose T : P → Q is a surjective isometry. The preceding
proposition implies that, for p, q ∈ P, p M q if and only if T (p) M T (q).

By the comparison theorem, there exists a central projection r0 ∈ P(M) which
satisfies pr0 ≺ p⊥r0 and pr⊥0 � p⊥r⊥0 for some (and thus every) p ∈ P. We say
that a mapping between Grassmann spaces (or between von Neumann algebras)
is typical if it can be written as in the equation in the statement of Theorem 3.1.
Since the composition of two typical mappings is also typical, in order to show
Theorem 3.1, we may and do assume that p ≺ p⊥ for every p ∈ P and q ≺ q⊥ for
every q ∈ Q.

Our next task is to decompose T into two mappings. We need preliminaries.

Lemma 3.3. Let P ⊂M be a proper Grassmann space in a von Neumann algebra
M ⊂ B(H) with p ≺ p⊥ for every p ∈ P.

(a) If e, f ∈ P and e M f , then m(e, f) is isometric to U(eMe)/2 (= {u/2 | u ∈
U(eMe)}).

(b) Suppose p1, p2 ∈ P satisfy ‖p1 − p2‖ < 1. Then there exist projections e, f ∈ P
such that e M f and p1, p2 ∈ m(e, f).

Proof. (a) It suffices to consider two cases: e ⊥ f or e⊥ ⊥ f⊥. In the former case,
there exists a partial isometry v ∈ M such that vv∗ = e and v∗v = f . It follows
m(e, f) = {(e+ uv + v∗u∗ + f)/2 | u ∈ U(eMe)}, which is isometric to U(eMe)/2.
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In the latter case, we similarly obtain that m(e, f) is isometric to U(e⊥Me⊥)/2. In
addition, we have e ≺ e⊥ ≤ f ∼ e, thus U(e⊥Me⊥) is isometric to U(eMe).

(b) By Halmos’s theorem applied to the pair (p, q) = (p1, p2), we can consider p1

and p2 as

p1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , p2 =


1 0 0 0
0 0 0 0
0 0 a2 ab
0 0 ba b2


through the decomposition H = (p ∧ q)H ⊕ (p⊥ ∧ q⊥)H ⊕ e1H ⊕ e2H. By the
comparison theorem, we may assume p ∧ q ≺ p⊥ ∧ q⊥ or p⊥ ∧ q⊥ ≺ p ∧ q. In the
former case, take a partial isometry v ∈ M with vv∗ = p ∧ q and v∗v ≤ p⊥ ∧ q⊥.
Put

e :=
1

2


1 v 0 0
v∗ v∗v 0 0
0 0 1 i
0 0 −i 1

 , f :=
1

2


1 −v 0 0
−v∗ v∗v 0 0

0 0 1 −i
0 0 i 1

 .

Then it is not difficult to see e ⊥ f and p1, p2 ∈ m(e, f). The latter case can be
proved similarly. �

In addition, we recall Hatori and Molnár’s theorem. We remark that every
Jordan ∗-isomorphism between von Neumann algebras decomposes to the direct
sum of a ∗-isomorphism and a ∗-antiisomorphism [18, Exercise 10.5.26].

Theorem 3.4 (Hatori and Molnár, [16, Corollary 3]). Let M and N be von Neu-
mann algebras. Suppose that τ : U(M) → U(N) is a surjective isometry. Then
there exist a central projection e ∈ P(N) and a Jordan ∗-isomorphism j : M → N
which satisfy τ(u) = τ(1)(j(u)e+ j(u)∗e⊥), u ∈ U(M).

We return to the proof of Theorem 3.1. There exists a unique central projection
r1 ∈ P(M) which satisfies pr1 is a finite projection and pr⊥1 is a properly infinite
projection in M for every p ∈ P. We define Pfin := {pr1 | p ∈ P} and Pinfin :=
{pr⊥1 | p ∈ P}. Note that, if r1 6= 0 (resp. r1 6= 1), Pfin (resp. Pinfin) is a proper
Grassmann space in Mr1 (resp. Mr⊥1 ) and every projection in Pfin (resp. Pinfin) is
a finite (resp. properly infinite) projection.

Lemma 3.5. There exist surjective isometries Tfin : Pfin → Qfin and Tinfin : Pinfin →
Qinfin which are uniquely determined by the equation

T (p) = Tfin(pr1) + Tinfin(pr⊥1 ), p ∈ P.

Proof. Take the central projection r2 ∈ P(N) such that Qfin = {qr2 | q ∈ Q} and
Qinfin = {qr⊥2 | q ∈ Q}. Let p1, p2 ∈ P. What we have to show are the following:

(a) If p1r1 = p2r1, then T (p1)r2 = T (p2)r2.
(b) If p1r

⊥
1 = p2r

⊥
1 , then T (p1)r⊥2 = T (p2)r⊥2 .

We show (a) and (b) at the same time. Since every Grassmann space is path-
connected, it suffices to show them in the case ‖p1−p2‖ < 1. In this case, take pro-
jections e, f as in the proof of the preceding lemma. It follows e M f , p1, p2 ∈ m(e, f)
and thus T (e) M T (f), T (p1), T (p2) ∈ m(T (e), T (f)). Then T restricts to a bijec-
tion from m(e, f) onto m(T (e), T (f)). By (a) of the preceding lemma, it determines
a surjective isometry T1 from U(eMe) onto U(T (e)NT (e)). Then we can apply the
theorem due to Hatori and Molnár. By the fact that every Jordan ∗-isomorphism
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between two von Neumann algebras preserves finite (properly infinite) projections,
it follows that T1 is decomposed to the direct sum of two surjective isometries
T2 : U(r1eMe) → U(r2T (e)NT (e)) and T3 : U(r⊥1 eMe) → U(r⊥2 T (e)NT (e)). Now
it is easy to see that (a) and (b) hold. �

We say P is finite if every p ∈ P is finite, and P is properly infinite if every
p ∈ P is properly infinite. By the preceding lemma, what we have to do is to prove
Theorem 3.1 in the case both P and Q are finite, or both P and Q are properly
infinite.

First we consider the case P and Q are finite. Thus the setting is as follows:
Let P ⊂ M and Q ⊂ N be finite proper Grassmann spaces. Assume p ≺ p⊥ for
every p ∈ P and q ≺ q⊥ for every q ∈ Q. Suppose that T : P → Q is a surjective
isometry.

A key to the proof is the following lemma.

Lemma 3.6. In the above setting, suppose p1, p2 ∈ P are mutually orthogonal ele-
ments. By our assumption, we have T (p1) ⊥ T (p2). Then, T restricts to a bijection
T0 : {p ∈ P | p ≤ p1 + p2} → {q ∈ Q | q ≤ T (p1) + T (p2)}. Moreover, T0 extends to
a typical mapping from (p1 +p2)M(p1 +p2) onto (T (p1)+T (p2))N(T (p1)+T (p2)).

Proof. Since p1 ∼ p2, using the way as before, we can identify: p1 =

(
1 0
0 0

)
,

p2 =

(
0 0
0 1

)
and

m(p1, p2) =

{
1

2

(
1 u
u∗ 1

)∣∣∣∣u ∈ U(p1Mp1)

}
⊂M2(p1Mp1) = (p1 + p2)M(p1 + p2) ⊂M.

Similarly, we identify (T (p1) +T (p2))N(T (p1) +T (p2)) with M2(T (p1)NT (p1)).
We may assume

T

(
1

2

(
1 1
1 1

))
=

1

2

(
1 1
1 1

)
.

Consider the restriction of T to m(p1, p2) and define a surjective isometry
τ : U(p1Mp1)→ U(T (p1)NT (p1)) by

T

(
1

2

(
1 u
u∗ 1

))
=

1

2

(
1 τ(u)

τ(u)∗ 1

)
, u ∈ U(p1Mp1).

By the theorem due to Hatori and Molnár, there exist central projections
r1, r2, r3, r4 ∈ P(p1Mp1) and r′1, r

′
2, r
′
3, r
′
4 ∈ P(T (p1)NT (p1)) which satisfy

r1 + r2 + r3 + r4 = p1, r′1 + r′2 + r′3 + r′4 = T (p1)

and a ∗-isomorphism ϕ1 : Mr1 → Nr′1, a ∗-antiisomorphism ϕ2 : Mr2 →
Nr′2, a conjugate-linear ∗-isomorphism ϕ3 : Mr3 → Nr′3, a conjugate-linear ∗-
antiisomorphism ϕ4 : Mr4 → Nr′4 such that τ(u) = ϕ1(ur1) +ϕ2(ur2) +ϕ3(ur3) +

ϕ4(ur4), u ∈ U(p1Mp1). We define a typical mapping T̃ from M2(p1Mp1) onto
M2(T (p1)NT (p1)) by

T̃

(
x y
z w

)
:=

(
ϕ1(xr1) ϕ1(yr1)
ϕ1(zr1) ϕ1(wr1)

)
+

(
r′2 − ϕ2(wr2) ϕ2(yr2)
ϕ2(zr2) r′2 − ϕ2(xr2)

)
+

(
ϕ3(xr3) ϕ3(yr3)
ϕ3(zr3) ϕ3(wr3)

)∗
+

(
r′4 − ϕ4(wr4) ϕ4(yr4)
ϕ4(zr4) r′4 − ϕ4(xr4)

)∗
,
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x, y, z, w ∈ p1Mp1. We show that this is an extension of T0.
Let p be an element in P with the property p ≤ p1 + p2. By the finiteness of P,

there exist positive elements a, b ∈ p1Mp1 and a unitary w ∈ U(p1Mp1) with the
property

a2 + b2 = p1, p =

(
a2 abw
w∗ba w∗b2w

)
.

Then p is an element of

m := m

(
1

2

(
1 iw
−iw∗ 1

)
,

1

2

(
1 −iw
iw∗ 1

))
,

so it follows T (p) ≤ T (p1) + T (p2). We have to show that the mapping Φ from

{p ∈ P | p ≤ p1 + p2} onto itself which is defined by Φ(p) = T̃−1 ◦ T (p) is the
identity mapping. We already know that the projections(

1 0
0 0

)
,

(
0 0
0 1

)
and

1

2

(
1 u
u∗ 1

)
, u ∈ U(p1Mp1)

are all fixed under Φ.
It follows Φ restricts to a bijection from m (as above) onto itself. It suffices

to show that Φ restricts to the identity mapping on m. The self-adjoint unitary

U :=
1√
2

(
1 iw
−iw∗ −1

)
gives rise to an isometry Ad(U) on M2(p1Mp1). Then m

is isometric to

Ad(U)m =
1√
2

(
1 iw
−iw∗ −1

)
m

(
1

2

(
1 iw
−iw∗ 1

)
,

1

2

(
1 −iw
iw∗ 1

))
1√
2

(
1 iw
−iw∗ −1

)
= m

((
1 0
0 0

)
,

(
0 0
0 1

))
=

{
1

2

(
1 v
v∗ 1

)∣∣∣∣v ∈ U(p1Mp1)

}
.

Our task is to show that the mapping Ad(U) ◦ Φ ◦ Ad(U) is equal to the identity

mapping on

{
1

2

(
1 v
v∗ 1

)∣∣∣∣v ∈ U(p1Mp1)

}
. We have

Ad(U)

(
1 0
0 0

)
=

1

2

(
1 iw
−iw∗ 1

)
and

Ad(U)

(
1

2

(
1 u
u∗ 1

))
=

1

4

(
2− iuw∗ + iwu∗ −u− wu∗w
−u∗ − w∗uw∗ 2− iu∗w + iw∗u

)
for every u ∈ U(p1Mp1). In particular, for every self-adjoint unitary a ∈ U(p1Mp1),
we have

Ad(U)

(
1

2

(
1 −aw

−w∗a 1

))
=

1

2

(
1 aw
w∗a 1

)
.

Therefore, if v = iw or v = aw for some self-adjoint unitary a, then

Ad(U) ◦ Φ ◦Ad(U)

(
1

2

(
1 v
v∗ 1

))
=

1

2

(
1 v
v∗ 1

)
.

By the Hatori–Molnár theorem, the same equation holds for every v ∈ U(p1Mp1).
�

In fact, we may assume that the above typical mapping is always a Jordan
∗-isomorphism. We explain this.

First, take central projections ra, rb, rc ∈ P(M) with ra + rb + rc = 1 such that
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• rap is an abelian projection for every p ∈ P,
• rbp ∼ rbp⊥ for every p ∈ P, and
• rcpMp does not admit a type I1 direct summand for every p ∈ P, and
z(1− p1 − p2)rc = rc for arbitrary p1, p2 ∈ P with p1 ⊥ p2.

Fix p1, p2 ∈ P with p1 ⊥ p2. Since rap is an abelian projection, we can take T̃ as in
the above proof so that it is a Jordan ∗-homomorphism on ra(p1 + p2)M(p1 + p2).

We show that T̃ is a Jordan ∗-homomorphism on rc(p1 + p2)M(p1 + p2). By the
condition of rc, we can take a projection e ∈ P(M) such that e ≤ rcp2, rcz(e) =
rc = rcz(p2 − e) and e ≺ (1 − p1 − p2). Consider the restriction of T to the

subset S = {p ∈ P | p ≤ p1 + e}. Note that T is equal to T̃ on this subset. Put
S1 := {p ∈ P | p ⊥ (p1 + e)}. It follows S = {p ∈ P | p ⊥ S1}. Since T preserves

orthogonality, we have T̃ (S) = T (S) = {q ∈ Q | q ⊥ T (S1)}. If T̃ is not a Jordan
∗-homomorphism on rc(p1 + p2)M(p1 + p2), then T̃ (S) cannot be written as above.

Hence T̃ is a Jordan ∗-homomorphism on rc(p1 + p2)M(p1 + p2).
Note that rb(p1 +p2) = rb. We can take a typical mapping ψ : rbM → rbM with

the property that T̃ ◦ψ : rbM → N is a Jordan ∗-homomorphism. Define the typical
mapping Ψ: M → M by Ψ(x) := ψ(rbx) + (ra + rc)x, x ∈ M . By the assumption
concerning rb, we have Ψ(P) = P. Considering the composition T ◦ Ψ instead of

T , we may assume T̃ is a Jordan ∗-isomorphism.
Let p3, p4 ∈ P satisfy p3 ⊥ p4. There exists p5 ∈ P such that p1 ⊥ p5 and

p3 ≤ p1 + p5. Note that rb(p1 + p5) = rb. Considering the restriction of T to the
set {p ∈ P | p ≤ (ra + rc)p1 + rb} and using the same discussion as above, we see
that the restriction of T to the subset {p ∈ P | p ≤ p1 + p5} extends to a Jordan ∗-
isomorphism from (p1 +p5)M(p1 +p5) onto (T (p1)+T (p5))N(T (p1)+T (p5)). Since
p3 ≤ p1+p5, considering the restriction of T to the set {p ∈ P | p ≤ (ra+rc)p3+rb},
we also see that the restriction of T to the subset {p ∈ P | p ≤ p3 + p4} extends to
a Jordan ∗-isomorphism from (p3 + p4)M(p3 + p4) onto (T (p3) + T (p4))N(T (p3) +
T (p4)).

Recall that a bijection F from P(M) onto P(N) is called an orthoisomorphism
when it satisfies pq = 0 if and only if F (p)F (q) = 0, for p, q ∈ P(M).

We show that, under the above assumptions, the mapping T extends uniquely
to an orthoisomorphism from P(M) onto P(N).

First, we extend T to a mapping T1 from {e ∈ P(M) | e ≤ p for some p ∈ P} to
{f ∈ P(N) | f ≤ q for some q ∈ Q} by

T1(e) :=
∧
{T (p) | p ∈ P, e ≤ p}.

We show that T1 is a bijection which preserves orthogonality in both directions.
Fix e. Take some p0 ∈ P with e ≤ p0 and f ∈ P(M) with e ∼ f ≤ p⊥0 . We prove
T1(e) = T (p0) − T (p0)T ((p0 − e) + f). Suppose p1 ∈ P satisfies e ≤ p1. There
exists a projection p2 ∈ P with the property p2 ⊥ p0 and f, p1 ≤ p0 + p2. Then
T restricts to a bijection T0 : {p ∈ P | p ≤ p0 + p2} → {q ∈ Q | q ≤ T (p0) +
T (p2)} and T0 extends to a Jordan ∗-isomorphism J0 from (p0 + p2)M(p0 + p2)
onto (T (p0) +T (p2))N(T (p0) +T (p2)). Hence we obtain T (p1) = J0(p1) ≥ J0(e) =
J0(p0) − J0(p0)J0((p0 − e) + f) = T (p0) − T (p0)T ((p0 − e) + f) for any p1 ∈ P
with e ≤ p1 and thus T1(e) ≥ T (p0) − T (p0)T ((p0 − e) + f). In addition, we have
T (p0)−T (p0)T ((p0−e)+f) = J0(e) = J0(p0)J0((p2−f)+e) = T (p0)T ((p2−f)+e) ≥
T1(e). It follows T1(e) = T (p0)− T (p0)T ((p0 − e) + f).
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Let p3, p4 ∈ P be mutually commuting projections. Put e = p3p4, p0 = p3, take
some f ∈ P(M) so that e ∼ f ≤ 1−p3∨p4 and put p2 = (p4−e)+f . Then the above
discussion shows that T1(p3p4) = T1(e) = T (p0)T ((p2−f)+e) = T (p3)T (p4). Thus
T1 is determined uniquely by the condition T1(p3p4) = T (p3)T (p4) for an arbitrary
pair of mutually commuting projections p3, p4 ∈ P. It follows T1 is a bijection
with its inverse T−1

1 : {f ∈ P(N) | f ≤ q for some q ∈ Q} → {e ∈ P(M) | e ≤
p for some p ∈ P} which is defined by T−1

1 (f) :=
∧
{q | q ∈ Q, f ≤ q}. Since T

preserves orthogonality in both directions, so does T1.
We define a mapping T2 : P(M)→ P(N) by

T2(p) :=
∨
{T1(e) | e ≤ p, e ≤ p0 for some p0 ∈ P}

=
∧
{T1(e)⊥ | e ⊥ p, e ≤ p0 for some p0 ∈ P}.

It follows T2 is an orthoisomorphism which extends T .

Lastly, we rely on the following proposition by the author in his master’s thesis,
which slightly extends Theorem 1.4 by Dye.

Proposition 3.7 ([26, Proposition 5.2]). Let M and N be two von Neumann alge-
bras. Suppose T : P(M)→ P(N) is an orthoisomorphism which preserves the dis-
tances between maximal abelian projections in the type I2 direct summands. Then
there exists a Jordan ∗-isomorphism from M onto N which extends T .

Since our assumption shows that T2 restricts to a surjective isometry between the
classes of maximal abelian projections in the type I2 direct summands, T2 extends
to a Jordan ∗-isomorphism from M onto N . This completes the proof of Theorem
3.1 when P and Q are finite.

Next we consider the case both P and Q are properly infinite. Thus the setting
is as follows: Let P ⊂ M and Q ⊂ N be properly infinite proper Grassmann
spaces. Assume p ≺ p⊥ for every p ∈ P and q ≺ q⊥ for every q ∈ Q. Suppose that
T : P → Q is a surjective isometry.

The first step is to show that we may assume T preserves orthogonality in both
directions. As in [13], for two projections p1, p2 ∈ P, we write p1]p2 when p1 ⊥ p2

and p1 ≺ (1− p1 − p2).

Since P is properly infinite, we can take mutually orthogonal projections
p1, p2, p3 ∈ P. We have p1 M p2, p2 M p3, p3 M p1, thus T (p1) M T (p2),
T (p2) M T (p3), T (p3) M T (p1). It follows there exists a central projec-
tion r ∈ P(M) such that T (p1)r, T (p2)r, T (p3)r are mutually orthogonal and
T (p1)⊥r⊥, T (p2)⊥r⊥, T (p3)⊥r⊥ are mutually orthogonal. Composing T with the
typical mapping q 7→ qr+ q⊥r⊥ on Q, we may assume that T (p1), T (p2), T (p3) are
mutually orthogonal.

Under this assumption, we show that, for any projections p, p0 ∈ P, we have
p]p0 if and only if T (p)]T (p0). Suppose p]p0. We have p ∼ p1, p0 ∼ p2. Since
P is properly infinite, we obtain (1 − p − p0) ∼ ((1 − p − p0) + p + p0) = 1 and
similarly (1− p1− p2) ∼ 1, thus (1− p− p0) ∼ (1− p1− p2). Therefore there exists
a unitary u ∈ U(M) which satisfies upu∗ = p1 and up0u

∗ = p2. By the functional
calculus on M , there exists a self-adjoint operator a ∈Msa with u = eia. We show
T (eitape−ita)]T (eitap0e

−ita) for every t ∈ [0, 1]. It suffices to show T (p)]T (p0) when



14 M. MORI

‖p− p1‖ < 1/2 and ‖p0 − p2‖ < 1/2. In that case, we have

‖(1− T (p)− T (p0))− (1− T (p1)− T (p2))‖
≤‖T (p1)− T (p)‖+ ‖T (p2)− T (p0)‖ = ‖p1 − p‖+ ‖p2 − p0‖ < 1.

Combine this inequality with T (p) M T (p0) to obtain T (p) ⊥ T (p0). Moreover, we
can apply the generalization of Halmos’s theorem to the two projections 1−T (p)−
T (p0) and 1 − T (p1) − T (p2) to obtain (1 − T (p) − T (p0)) ∼ (1 − T (p1) − T (p2)).
Thus we have T (p)]T (p1).

We have shown that T preserves the relation ] in both directions. It is easy to see
that for p1, p2 ∈ P, we have p1 ≤ p2 if and only if {p ∈ P | p]p1} ⊃ {p ∈ P | p]p2}.
Thus we obtain p1 ≤ p2 if and only if T (p1) ≤ T (p2).

Let p1, p2 ∈ P satisfy p1 ∨ p2 ∈ P. Since p1 ∨ p2 is the minimal projection in P
which majorizes both p1 and p2, we have T (p1 ∨ p2) = T (p1) ∨ T (p2). Similarly, if
p1, p2 ∈ P satisfy p1 ∧ p2 ∈ P, then T (p1 ∧ p2) = T (p1) ∧ T (p2).

Let p1, p2 ∈ P satisfy p1 ⊥ p2. Since P is properly infinite, there exist mu-
tually orthogonal subprojections p11, p12 ∈ P of p1 which satisfy p1 = p11 + p12.
Since p11]p2 and p12]p2, we have T (p11)]T (p2) and T (p12)]T (p2). Hence we ob-
tain T (p2) ⊥ (T (p11) ∨ T (p12)) = T (p11 ∨ p12) = T (p1). Therefore, T preserves
orthogonality in both directions.

We show a version of Lemma 3.6.

Lemma 3.8. Under the above assumptions, suppose p1, p2 ∈ P are mutually or-
thogonal. Then, T restricts to a bijection T0 : {p ∈ P | p ≤ p1 + p2} → {q ∈ Q | q ≤
T (p1) + T (p2)}. Moreover, T0 extends (uniquely) to a Jordan ∗-isomorphism from
(p1 + p2)M(p1 + p2) onto (T (p1) + T (p2))N(T (p1) + T (p2)).

Proof. Using the same notations and discussions as in the proof of Lemma 3.6,

we can construct a typical mapping T̃ from (p1 + p2)M(p1 + p2) onto (T (p1) +
T (p2))N(T (p1) + T (p2)). Take projections p, p̃1, p̃2 ∈ P such that p ≤ p1, p ∼
(p1− p) and p̃1 ≤ p̃2 ≤ p2, p̃1 ∼ (p̃2− p̃1) ∼ (p2− p̃2). By the same discussion as in

Lemma 3.6, we see that T (p+ p̃1) = T̃ (p+ p̃1) and T (p+ p̃2) = T̃ (p+ p̃2). It follows

T̃ (p+ p̃1) ≤ T̃ (p+ p̃2), which shows that T̃ is actually a Jordan ∗-isomorphism.

We show T (p) = T̃ (p) for every p ∈ P with p ≤ p1 +p2. Since p ∼ p1 =

(
1 0
0 0

)
,

there exist x, y ∈ p1Mp1 which satisfy

x∗x+ y∗y = p1, p =

(
xx∗ xy∗

yx∗ yy∗

)
.

Let x = v|x|, y = w|y| be polar decompositions. By the spectral theorem, we may
assume that the spectrum σ(|x|) of |x| is a finite set. Thus |x| =

∑n
k=1 λkek for some

0 = λ1 < λ2 < · · · < λn = 1 and mutually orthogonal projections ek ∈ P(p1Mp1)
such that

∑n
k=1 ek = p1. (Projections e1 and en may be 0.) We have |y| =∑n

k=1

√
1− λ2

kek. Since p1 is properly infinite, there exist subprojections fk ≤
ek in P(p1Mp1), k = 1, . . . , n, which satisfy the following property:

∑n
k=1 fk ∼∑n

k=1(ek−fk) ∼ p1, and partial isometries v
∑n
k=2 fk, w

∑n−1
k=1 fk, v

∑n
k=2(ek−fk)

and w
∑n−1
k=1(ek − fk) admit unitary extensions v0, w0, v1 and w1 ∈ U(p1Mp1),
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respectively. We show that the projection

p0 :=

(
v(
∑n
k=1 λkfk)2v∗ v(

∑n
k=1 λkfk)(

∑n
k=1

√
1− λ2

kfk)w∗

w(
∑n
k=1

√
1− λ2

kfk)(
∑n
k=1 λkfk)v∗ w(

∑n
k=1

√
1− λ2

kfk)2w∗

)
=

(
v0(
∑n
k=1 λkfk)2v∗0 v0(

∑n
k=1 λkfk)(

∑n
k=1

√
1− λ2

kfk)w∗0
w0(
∑n
k=1

√
1− λ2

kfk)(
∑n
k=1 λkfk)v∗0 w0(

∑n
k=1

√
1− λ2

kfk)2w∗0

)
in P satisfies T (p0) = T̃ (p0). Consider the projection

p0 +

(
v0(
∑n
k=1(ek − fk))v∗0 0

0 0

)
=

(
v0((

∑n
k=1 λkfk)2 +

∑n
k=1(ek − fk))v∗0 v0(

∑n
k=1 λkfk)(

∑n
k=1

√
1− λ2

kfk)w∗0
w0(
∑n
k=1

√
1− λ2

kfk)(
∑n
k=1 λkfk)v∗0 w0(

∑n
k=1

√
1− λ2

kfk)2w∗0

)
=

(
a2 abv0w

∗
0

w0v
∗
0ba w0v

∗
0b

2v0w
∗
0

)
,

where a := v0(
∑n
k=1 λkfk +

∑n
k=1(ek − fk))v∗0 and b := v0(

∑n
k=1

√
1− λ2

kfk)v∗0 . It
follows a, b ≥ 0, a2 + b2 = p0. By the same discussion as in Lemma 3.6, we obtain

T

(
p0 +

(
v0(
∑n
k=1(ek − fk))v∗0 0

0 0

))
= T̃

(
p0 +

(
v0(
∑n
k=1(ek − fk))v∗0 0

0 0

))
Similarly, we obtain

T

(
p0 +

(
0 0
0 w0(

∑n
k=1(ek − fk))w∗0

))
= T̃

(
p0 +

(
0 0
0 w0(

∑n
k=1(ek − fk))w∗0

))
.

Since(
p0 +

(
v0(
∑n
k=1(ek − fk))v∗0 0

0 0

))
∧
(
p0 +

(
0 0
0 w0(

∑n
k=1(ek − fk))w∗0

))
= p0,

we have T (p0) = T̃ (p0). Similarly, we have T (p− p0) = T̃ (p− p0). Finally, we have

T (p) = T (p0) ∨ T (p− p0) = T̃ (p0) ∨ T̃ (p− p0) = T̃ (p). �

A discussion which is similar to (or simpler than) that in finite cases shows that
it is possible to extend T to an orthoisomorphism from P(M) onto P(N). By Dye’s
theorem, T extends to a Jordan ∗-isomorphism from M onto N . �

4. Isometries between projection lattices

In this section, we write M ∼= N when two von Neumann algebras M and N are
Jordan ∗-isomorphic.

Theorem 4.1. Let M,N be von Neumann algebras without type I1 direct sum-
mands. Then M and N are Jordan ∗-isomorphic if and only if P(M) and P(N)
are isometric.

Suppose T : P(M) → P(N) is a surjective isometry. Since M does not admit
a type I1 direct summand, there exists a projection p ∈ P(M) which satisfies
z(p) = z(p⊥) = 1. Take the (proper) Grassmann space P in M which contains p.
Then T (P) is a proper Grassmann space in Nz(T (p))z(T (p)⊥). By Theorem 3.1,
it follows that M is Jordan ∗-isomorphic to Nz(T (p))z(T (p)⊥), which is a direct
summand of N . Similarly, N is Jordan ∗-isomorphic to a direct summand of M .
Therefore, it suffices to show the following lemma.



16 M. MORI

Lemma 4.2. Let M,N be von Neumann algebras. Suppose that M is Jordan ∗-
isomorphic to a direct summand of N , and N is Jordan ∗-isomorphic to a direct
summand of M . Then M is Jordan ∗-isomorphic to N .

Proof. There exist central projections p ∈ P(M) and q ∈ P(N) such that M , N
are Jordan ∗-isomorphic to Nq,Mp, respectively. It follows

M = Mp⊕Mp⊥ ∼= N ⊕Mp⊥ = Nq ⊕Nq⊥ ⊕Mp⊥ ∼= M ⊕Nq⊥ ⊕Mp⊥.

Take a Jordan ∗-isomorphism Φ: M ⊕ Nq⊥ ⊕ Mp⊥ → M . We define i : M →
M ⊕ Nq⊥ ⊕ Mp⊥ by i(x) := x ⊕ 0 ⊕ 0, x ∈ M . Put p0 := Φ(0 ⊕ q⊥ ⊕ p⊥)
and pn := (Φ ◦ i)n(p0), n ∈ N. Then {pn}n≥0 is an orthogonal family of central
projections in M and Mpn ∼= Nq⊥⊕Mp⊥ ∼= Mp0, n ≥ 0. Put p∞ := ∨n≥0 pn. We
have

M = Mp⊥∞ ⊕Mp∞

∼= Mp⊥∞ ⊕Mp0 ⊗ `∞

∼= Mp⊥∞ ⊕Mp0 ⊗ `∞ ⊕Mp0 ⊗ `∞

∼= M ⊕Mp0 ⊗ `∞.

Similarly, we obtain N ∼= N ⊕Mp0 ⊗ `∞. Lastly, we have

M ⊕Mp0 ⊗ `∞ ∼= Nq ⊕ (Nq⊥ ⊕Mp⊥)⊗ `∞

∼= Nq ⊕Nq⊥ ⊕ (Nq⊥ ⊕Mp⊥)⊗ `∞

= N ⊕Mp0 ⊗ `∞.

�

If in the above theorem we drop the condition concerning type I1 summand, then
we can find a counterexample. Indeed, any bijection between P(L∞([0, 1])) and
P(L∞([0, 1])⊕C) is isometric, but L∞([0, 1]) and L∞([0, 1])⊕C are not isomorphic.

Theorem 3.1 also gives a complete description of surjective isometries between
projection lattices of two von Neumann algebras. However, to give such a de-
scription in concrete situations is a complicated work. In the rest of this part, we
consider factor cases.

Let M , N be countably decomposable factors and suppose T : P(M) → P(N)
is a surjective isometry. Then Theorem 3.1 implies that M and N are Jordan ∗-
isomorphic, and thus M and N are ∗-isomorphic or ∗-antiisomorphic. We assume
M = N . Note that only two points 0 and 1 are isolated in P(M), and thus T
restricts to a bijection on {0, 1}.

First we consider type I factors. Let H be a separable complex Hilbert space. For
n ∈ N = {1, 2, . . .}, the symbol Pn(H) denotes the collection of rank n projections
in B(H), and we put Pn(H) := {p⊥ | p ∈ Pn(H)}. The symbol P∞(H) denotes the
set of projections in B(H) whose range and kernel are both infinite dimensional.

Example 4.3. If M = B(H) is a type IN factor with N ∈ N, then Grassmann
spaces of M are Pn(H), n = 1, 2, . . . , N − 1. In this case, there exists a mapping σ
from {1, 2, . . . , N − 1} to {1,−1} which satisfies the following conditions:

• For n = 1, . . . , N − 1, σ(n)σ(N − n) = 1.
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• If σ(n) = 1, the mapping T restricts to a bijection Tn from Pn(H)
onto itself. Moreover, Tn extends uniquely to a ∗-automorphism or a ∗-
antiautomorphism on B(H).
• If σ(n) = −1, the mapping T restricts to a bijection Tn from Pn(H) onto
PN−n(H). Moreover, the mapping p 7→ 1 − Tn(p), p ∈ Pn(H) extends
uniquely to a ∗-automorphism or a ∗-antiautomorphism on B(H).

Example 4.4. If M = B(H) is a type I∞ factor, then Grassmann spaces of M
are Pn(H), Pn(H), n ∈ N and P∞(H). In this case, T restricts to a bijection
T∞ from P∞(H) onto itself. Thus T∞ extends uniquely to a ∗-automorphism or a
∗-antiautomorphism, or the mapping p 7→ 1− T∞(p), p ∈ P∞(H) extends uniquely
to a ∗-automorphism or a ∗-antiautomorphism on B(H). In addition, there exists
a unique mapping σ from N to {1,−1} which satisfies the following conditions:

• If σ(n) = 1, the mapping T restricts to a bijection Tn from Pn(H) onto
itself, and T also restricts to a bijection Tn from Pn(H) onto itself. Each
mapping extends uniquely to a ∗-automorphism or a ∗-antiautomorphism
on B(H).

• If σ(n) = −1, the mapping T restricts to a bijection Tn from Pn(H) onto
Pn(H), and T also restricts to a bijection Tn from Pn(H) onto Pn(H).
Thus the mappings 1 − Tn and 1 − Tn extend to a ∗-automorphism or a
∗-antiautomorphism on B(H).

Note that, for every ∗-automorphism (resp. ∗-antiautomorphism) Φ on B(H),
there exists a unitary (resp. antiunitary) u on H which satisfies Φ(x) = uxu∗ (resp.
Φ(x) = ux∗u∗), x ∈ B(H). Thus we see that our result actually generalizes the
theorem due to Gehér and Šemrl [13, Theorem 1.2].

Example 4.5. If M is a type II1 factor with a normal tracial state τ , then Grass-
mann spaces of M are Pλ(M) := {p ∈ P(M) | τ(p) = λ}, 0 < λ < 1. In this
case, we can use the fact that every Jordan ∗-automorphism on a tracial factor
preserves the trace. It follows there exists a unique mapping σ : (0, 1) → {1,−1}
which satisfies the following conditions:

• For λ ∈ (0, 1), σ(λ)σ(1− λ) = 1.
• If σ(λ) = 1, the mapping T restricts to a bijection Tλ from Pλ(M)

onto itself. Moreover, Tλ extends uniquely to a ∗-automorphism or a ∗-
antiautomorphism on M .

• If σ(λ) = −1, the mapping T restricts to a bijection Tλ from Pλ(M) onto
P1−λ(M). Moreover, the mapping p 7→ 1 − Tλ(p), p ∈ Pλ(M) extends
uniquely to a ∗-automorphism or a ∗-antiautomorphism on M .

Example 4.6. If M is a type II∞ factor with a normal semifinite faithful tracial
weight τ , then Grassmann spaces of M are P(λ,1) := {p ∈ P(M) | τ(p) = λ},
P(λ,−1) := {p⊥ | p ∈ P(λ,1)}, 0 < λ < ∞, and P∞ = {p ∈ P(M) | τ(p) = ∞ =

τ(p⊥)}.
This case is the most complicated. First, T restricts to a bijection T∞ from P∞

onto itself, and T∞ or 1−T∞ extends to a ∗-automorphism or a ∗-antiautomorphism
on M . In order to consider the other Grassmann spaces, we need to take the
following multiplicative group into account:

F := {λ ∈ (0,∞) | pMp ∼= qMq for some p ∈ P(1,1), q ∈ P(λ,1)}
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(Note that the symbol ∼= means that two algebras are Jordan ∗-isomorphic. cf. The
fundamental group of the II1 factor pMp is a subgroup of F .)

There exists a bijection f from (0,∞) × {1,−1} onto itself which satisfies the
following condition: Let (λ, s), (µ, t) ∈ (0,∞) × {1,−1} satisfy f(λ, s) = (µ, t).
Then

• λ/µ ∈ F .
• The mapping T restricts to a bijection T(λ,s) from P(λ,s) onto P(µ,t).
• If st = 1, then T(λ,s) extends uniquely to a ∗-automorphism or a ∗-

antiautomorphism on M .
• If st = −1, the mapping p 7→ 1 − T(λ,s)(p), p ∈ P(λ,s) extends uniquely to

a ∗-automorphism or a ∗-antiautomorphism on M .

Example 4.7. If M is a type III factor, then the unique Grassmann space of M is
P := P(M) \ {0, 1}. It follows that the restriction T0 of T on P is described as one
and only one of the following four options: it extends uniquely to a ∗-automorphism
or a ∗-antiautomorphism, or the mapping p 7→ 1 − T0(p), p ∈ P extends uniquely
to a ∗-automorphism or a ∗-antiautomorphism.



GEOMETRY OF PROJECTIONS 19

Part 2. Lattice isomorphisms between projection lattices of von
Neumann algebras

5. Preliminaries

Let M be a von Neumann algebra. For n ∈ N = {1, 2, . . .}, we say that M has
order n if there exists a collection p1, . . . , pn of mutually orthogonal projections in
M such that p1 ∼ p2 ∼ · · · ∼ pn and

∑n
k=1 pk = 1. It is well known that every

von Neumann algebra without finite type I direct summands has order n for any
n ∈ N [18, Lemma 6.5.6]. In particular, such an algebra has order 3. It follows that
every von Neumann algebra M without type I1 and I2 direct summands can be
decomposed into the (`∞-)direct sum of von Neumann algebras Mn, 3 ≤ n < ∞,
such that Mn has order n for every n. If M has order n ∈ N, then M can be
identified with the algebra Mn(M̂) of n × n matrices with entries in some von

Neumann algebra M̂ .

5.1. Various isomorphisms of von Neumann algebras. For ∗-algebras A and
B, a (not necessarily linear) bijection ψ : A→ B is called

• a semigroup isomorphism if it is multiplicative,
• a ring isomorphism if it is additive and multiplicative,
• a real algebra isomorphism if it is a real-linear ring isomorphism,
• an algebra isomorphism if it is a complex-linear ring isomorphism,
• a real ∗-isomorphism if it is a real algebra isomorphism and satisfies ψ(x∗) =
ψ(x)∗ for any x ∈ A,

• a ∗-isomorphism if it is a complex-linear real ∗-isomorphism, and
• a conjugate-linear ∗-isomorphism if it is a conjugate-linear real ∗-

isomorphism.

Lemma 5.1. Let M and N be von Neumann algebras. Suppose that ψ : M → N
is a bijection.

(1) If M is without type I1 direct summands and ψ is a semigroup isomorphism,
then ψ is a ring isomorphism.

(2) If M does not admit a finite dimensional ideal and ψ is a ring isomorphism,
then ψ is a real algebra isomorphism.

(3) If ψ is a real algebra isomorphism, then there exist a real ∗-isomorphism
ψ0 : M → N and an invertible element y ∈ N such that ψ(x) = yψ0(x)y−1

for any x ∈M .
(4) If ψ is a real ∗-isomorphism, then there exist central projections p ∈M q ∈

N , a ∗-isomorphism ψ1 : Mp→ Nq, and a conjugate-linear ∗-isomorphism
ψ2 : Mp⊥ → Nq⊥ such that ψ(x) = ψ1(xp) + ψ2(xp⊥) for any x ∈M .

Proof. Each item is easily obtained by known results.
(1) We may take a projection p ∈ P(M) such that both of the central supports

of p and 1− p are equal to 1. It is easy to see that the following hold: (a) If x ∈M
satisfies xM = {0}, then x = 0; (b) If x ∈ M satisfies pMx = {0}, then x = 0; (c)
If x ∈M satisfies pxpMp⊥ = {0}, then pxp = 0. Hence we may apply Martindale’s
theorem [23, Theorem] to obtain the desired conclusion.

The item (2) is a consequence of Kaplansky’s result [20, Theorem].
We prove (3) and (4) at the same time. Let ψ : M → N be a real algebra

isomorphism. We know that ψ(i)2 = ψ(i2) = ψ(−1) = −1 and that ψ(i) is central
in N . It follows that ψ(i) = qi − q⊥i for some central projection q of N . Put
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p := ψ−1(q), which is a central projection of M . If ψ is a real ∗-isomorphism,
then ψ restricted to Mp is a ∗-isomorphism from Mp onto Nq, and ψ restricted
to Mp⊥ is a conjugate-linear ∗-isomorphism from Mp⊥ onto Nq⊥, hence the proof
of (4) is complete. If ψ is merely a real algebra isomorphism, then ψ restricted
to Mp is an algebra isomorphism from Mp onto Nq, and ψ restricted to Mp⊥

determines an algebra isomorphism from Mp⊥ onto Nq⊥, where Nq⊥ means the
complex conjugation of the von Neumann algebra Nq⊥. See e.g. [38, Section 2.3]
for the definition of complex conjugation of von Neumann algebras. Lastly, we may
use the result on the general form of algebra isomorphisms between von Neumann
algebras ([35, Theorem I], see also [9] and [40, Section 4.1]) to obtain the desired
conclusion. �

5.2. The algebra of locally measurable operators. Let M ⊂ B(H) be a von
Neumann algebra. In this part, the algebra LS(M) of locally measurable operators
with respect to M , which we briefly describe below, plays a crucial role.

A densely defined closed operator x on H is said to be affiliated with M (and
we write xηM) if yx ⊂ xy for any y ∈ M ′, where M ′ := {y ∈ B(H) | ay =
ya for any a ∈ M} denotes the commutant of M . An operator xηM is said to
be measurable with respect to M if the spectral projection χ(c,∞)(|x|) ∈ P(M) is
a finite projection in M for some real number c > 0. An operator xηM is said
to be locally measurable with respect to M if there exists an increasing sequence
{pn}n≥1 of central projections in M such that pn ↗ 1 and xpn is measurable with
respect to M for any n. We write S(M) (resp. LS(M)) to mean the collection of all
measurable (resp. locally measurable) operators with respect to M . If x, y ∈ S(M)
(resp. LS(M)), then x∗ and the closures of xy, x+ y are in S(M) (resp. LS(M)).
Using this fact, we can consider S(M) and LS(M) as ∗-algebras that contain M .
In what follows, we abbreviate the symbol of the closure of an unbounded operator
unless it is confusing. We remark that LS(M) = M holds if and only if M is the
direct sum of finite number of type I and III factors. We also remark that if M is
finite then LS(M) = S(M) is the collection of all affiliated operators. See [45] and
[41] for more details of (locally) measurable operators.

The following lemma and its proof by the author are taken from [28, Subsection
2.2].

Lemma 5.2. Let M be a von Neumann algebra and a ∈ M+. Take the central
projections pi ∈ P(Z(M)), i = I, II, III, which are determined by the condition that
pI + pII + pIII = 1 and either pi = 0 or Mpi is of type i, i = I, II, III. Then the
following three conditions are equivalent.

(1) The operator a is invertible in the algebra LS(M).
(2) There exists no element b ∈ M+ \ {0} with the following property: If x ∈ M+

satisfies x ≤ a and x ≤ b, then x = 0.
(3) There exists a sequence {qn}n≥1 ⊂ P(Z(M)) of central projections in M such

that
∑
n≥1 qn = 1, aqn(pI + pIII) is invertible in Mqn(pI + pIII), and aqnpII is

an invertible element in S(MqnpII), n ≥ 1.

For the proof we need an additional lemma.

Lemma 5.3. Let M be a von Neumann algebra and p ∈ M be a finite projec-
tion. Suppose that an increasing sequence {pn}n≥1 of projections in M satisfies∨
n≥1 pn � p. Then there exists an increasing sequence {p̃n}n≥1 of projections in

M such that p̃n ≤ pn and
∨
n≥1 p̃n ∼ p.
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Proof. For n ≥ 1, take the maximal central projection en ∈ P(Z(M)) that satisfies
pnen � pen. Then {en}n≥1 is an increasing sequence and pne

⊥
n ≺ pe⊥n . Put

e :=
∨
n≥1 en. Take a sequence {qn}n≥1 ⊂ P(M) such that pe1 ∼ q1 ≤ p1e1 and

p(en − en−1) ∼ qn ≤ pn(en − en−1) for n ≥ 2. Put p̃n :=
∑n
k=1 qk + pne

⊥ (≤ pn).
Then {p̃n}n≥1 is an increasing sequence and satisfies

∨
n≥1 p̃ne ∼ pe. The sequence

{p̃ne⊥}n≥1 is an increasing sequence and satisfies p̃ne
⊥ ≺ pe⊥, n ≥ 1. Take a

projection p̂1 ∈ P(M) such that p̃1e
⊥ ∼ p̂1 ≤ pe⊥. By finiteness of pe⊥, we

can take a sequence {p̂n}n≥2 of projections in M such that {p̂n}n≥1 is mutually
orthogonal and (p̃n − p̃n−1)e⊥ ∼ p̂n ≤ pe⊥, n ≥ 2. Then

∨
n≥1 p̃ne

⊥ ∼
∑
n≥1 p̂n ≤

pe⊥. Since
∨
n≥1 p̃ne

⊥ =
∨
n≥1 pne

⊥ � pe⊥, we have
∨
n≥1 p̃ne

⊥ ∼ pe⊥, and thus∨
n≥1 p̃n ∼ p. �

Proof of Lemma 5.2. (3) ⇒ (1) We can take bn ∈ S(Mqn) such that bnaqn = qn
for each n ≥ 1. Then the sum

∑
n≥1 bn is the inverse of a in LS(M).

(1)⇒ (2) Take the inverse a−1 ∈ LS(M) of a and its positive square root a−1/2 ∈
LS(M). The mapping x 7→ a−1/2xa−1/2 is an order isomorphism from M+ onto
{x ∈ LS(M) | 0 ≤ x ≤ ca−1 for some positive real number c} and a is mapped to
1. We define a function f : [0,∞) → R by f(t) := min{t, 1}, t ∈ [0,∞). For every
0 6= b ∈ LS(M) with 0 ≤ b ≤ ca−1, c > 0 real, the element (0 6=) x := f(b) ∈ M+

satisfies both x ≤ b and x ≤ 1. Thus the condition (2) holds.
(2) ⇒ (3) If we decompose M into a direct sum, it suffices to consider each

direct summand. First we consider the cases of type I or III. It suffices to show
that

∧
n≥1 z(χ[0,1/n)(a)) = 0. Assume r :=

∧
n≥1 z(χ[0,1/n)(a)) 6= 0. Considering

the pair (Mr, ar) instead of (M,a), we may assume
∧
n≥1 z(χ[0,1/n)(a)) = 1. Take

a normal (tracial) state τ on Z(M). We may also assume supp(τ) = 1 ∈ P(Z(M)).
By our assumptions, we may take a strictly decreasing sequence {cn}n≥1 of positive
real numbers that satisfies c1 > ‖a‖, cn → 0 (n → 0) and τ(z(χ[cn+1,cn)(a))) ≥
1 − 3−n, n ≥ 1. Then τ(

∧
n≥1 z(χ[cn+1,cn)(a))) ≥ 1 −

∑
n≥1 3−n > 0 and thus∧

n≥1 z(χ[cn+1,cn)(a)) 6= 0. We may assume
∧
n≥1 z(χ[cn+1,cn)(a)) = 1.

If M is of type I, we can take an abelian projection pn ≤ χ[cn+1,cn)(a) with
z(pn) = 1 for each n ≥ 1. If M is of type III, by the assumption that Z(M) has
a normal faithful state, we can take a countably decomposable projection pn ≤
χ[cn+1,cn)(a) with z(pn) = 1 for each n ≥ 1. In both cases, {pn}n≥1 is a family
of mutually orthogonal equivalent nonzero projections. We consider the operator
ã :=

∑
n≥1 cnpn+c1(1−

∑
n≥1 pn). We have a ≤

∑
n≥1 cnχ[cn+1,cn)(a) ≤ ã, so ã also

satisfies the condition (2). We can identify
∑
n≥1 cnpn ∈ (

∑
n≥1 pn)M(

∑
n≥1 pn)

with (
∑
n≥1 cnen) ⊗ p1 ∈ B(`2) ⊗ p1Mp1, where en is the projection onto n-th

coordinate of `2 = `2(N), N = {1, 2, . . .}. Put T :=
∑
n≥1 cnen ∈ B(`2). Since cn →

0 as n→∞, the positive operator T 1/2 ∈ B(`2) is not invertible. Thus there exists
a vector ξ ∈ `2 \T 1/2`2. Take the projection e ∈ B(`2) whose range is Cξ. It is easy
to see that, if x ∈ B(`2)+ satisfies x ≤ T and x ≤ e, then x = 0. Take the projection
p ∈ (

∑
n≥1 pn)M(

∑
n≥1 pn) that corresponds to e ⊗ p1 ∈ B(`2) ⊗ p1Mp1. By [18,

Proposition 11.2.24], there exists a family {Φi : B(`2)⊗ p1Mp1 → B(`2)⊗Cp1}i∈I
of normal conditional expectations with the property that if x ∈ (B(`2)⊗p1Mp1)+

satisfies Φi(x) = 0 for every i ∈ I, then x = 0. Suppose that x ∈M+ satisfies both
x ≤ ã and x ≤ p. It follows that x ∈ (

∑
n≥1 pn)M(

∑
n≥1 pn) and Φi(x) ≤ T ⊗ p1,
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Φi(x) ≤ e ⊗ p1 in B(`2) ⊗ Cp1 for every i ∈ I. Thus we have Φi(x) = 0 for every
i ∈ I and hence x = 0. We obtain a contradiction.

Next we consider the case where M is of type II. For a projection p ∈ P(M),
we take the central projection zinfin(p) ∈ P(Z(M)) that is defined as the maximal
projection in {z ∈ P(Z(M)) | pz is properly infinite, z ≤ z(p)}. It suffices to show
that

∧
n≥1 zinfin(χ[0,1/n)(a)) = 0. Hence we assume that

∧
n≥1 zinfin(χ[0,1/n)(a)) =

1. Take a normal semifinite faithful tracial weight τ on M with τ(1) ≥ 1 and
a (finite) projection p ∈ M with τ(p) = 1. It follows that χ[0,1/n)(a) � p for
every n ≥ 1. By Lemma 5.3, there exist a strictly decreasing sequence {cn}n≥1

of positive real numbers and a sequence {pn}n≥1 of projections in M such that
c1 > ‖a‖, cn → 0 (n → ∞), pn ≤ χ[cn+1,cn)(a), pn ≺ p and τ(pn) ≥ 1 − 3−n,
n ≥ 1. Take a projection p̃n ∈ P(M) such that pn ∼ p̃n ≤ p, n ≥ 1. Put
p̃ :=

∧
n≥1 p̃n. Then τ(p̃) = τ(

∧
n≥1 p̃n) ≥ 1 −

∑
n≥1 3−n > 0. Hence p̃ 6= 0.

Take a projection p̂n ∈ P(M) such that p̂n ≤ pn and p̂n ∼ p̃, for n ≥ 1. Then
{p̂n}n≥1 is a family of mutually orthogonal equivalent nonzero projections. Put
ã :=

∑
n≥1 cnp̂n + c1(1 −

∑
n≥1 p̂n) (≥ a). By a discussion similar to that in the

preceding paragraph, we can obtain a contradiction. �

For x ∈ LS(M), let l(x) ∈ P(M) denote the left support of x. That is, l(x) :=∧
{p ∈ P(M) | px = x}. Similarly, we write r(x) :=

∧
{p ∈ P(M) | x = xp}.

Then l(x) = χ(0,∞)(|x∗|) and r(x) = χ(0,∞)(|x|) hold. We remark that, for x, y ∈
LS(M), we have xy = 0 if and only if r(x)l(y) = 0. Indeed, if r(x)l(y) = 0,
then xy = xr(x)l(y)y = 0. If xy = 0, then we have |x||y∗| = 0, which implies
χ(ε,∞)(|x|)χ(ε,∞)(|y∗|) = 0 for every ε > 0. Take the limit ε → 0 in the strong
operator topology to obtain r(x)l(y) = 0.

5.3. Center-valued norm. Let M be a von Neumann algebra of type I or III and
x ∈ LS(M). Then there exists a unique minimal element |||x||| ∈ LS(Z(M))+ (⊂
LS(M)) with |x| ≤ |||x|||. The mapping |||·||| : LS(M) → LS(Z(M))+ is called the
center-valued norm. Remark that if M is a factor, then Z(M) can be identified
with C and we have |||x||| = ‖x‖ ∈ R for every x ∈M . Be cautious of the fact that
we cannot take such a mapping for a type II von Neumann algebra. That’s why we
will need to exclude type II cases in the proof of Theorem B.

As is expected, the center-valued norm possesses e.g. the following properties:
For any x, y ∈ LS(M) and a ∈ LS(Z(M)), we have (i) |||x||| = 0 =⇒ x = 0. (ii)
|||x+ y||| ≤ |||x|||+ |||y|||. (iii) |||a||| = |a|. (iv) |||ax||| = |a||||x|||. (v) |||xy||| ≤ |||x||||||y|||.
See for example [1, Section 2] and references therein for further information about
the center-valued norm.

6. Lattice isomorphisms of projection lattices

Part of this section heavily depends on von Neumann’s argument in [34, Part II,
Chapter IV]. The aim of this section is to give a proof of

Theorem A. Let M and N be two von Neumann algebras. Suppose that M does
not admit type I1 nor I2 direct summands, and that Φ: P(M)→ P(N) is a lattice
isomorphism. Then there exists a unique ring isomorphism Ψ: LS(M) → LS(N)
such that Φ(l(x)) = l(Ψ(x)) for all x ∈ LS(M).

Before its proof, we consider the converse of Theorem A.
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Proposition 6.1. Let M and N be von Neumann algebras. Suppose that
Ψ: LS(M) → LS(N) is a ring isomorphism. Then there exists a unique lattice
isomorphism Φ: P(M)→ P(N) such that Φ(l(x)) = l(Ψ(x)) for any x ∈ LS(M).

Proof. It is easy to see that Ψ(0) = 0. Let x, y ∈ LS(M) satisfy l(x) ≤ l(y). Then
we have {z ∈ LS(M) | zx 6= 0} ⊂ {z ∈ LS(M) | zy 6= 0} and hence {z ∈ LS(N) |
zΨ(x) 6= 0} ⊂ {z ∈ LS(N) | zΨ(y) 6= 0}, which in turn leads to l(Ψ(x)) ≤ l(Ψ(y)).
We obtain l(x) ≤ l(y) ⇐⇒ l(Ψ(x)) ≤ l(Ψ(y)) for any x, y ∈ LS(M). Therefore,
the mapping Φ: P(M)→ P(N) defined by Φ(p) = l(Ψ(p)), p ∈ P(M), satisfies the
desired condition. �

Remark 6.2. The same proof is valid even if we replace a ring isomorphism with a
semigroup isomorphism. However, Martindale’s result [23] implies that a semigroup
isomorphism Ψ: LS(M) → LS(N) is automatically a ring isomorphism if M is
without type I1 direct summands.

We begin the proof of Theorem A. Let us first check the uniqueness of Ψ.

Lemma 6.3. Let M be a von Neumann algebra without type I1 direct summands.
For any x ∈ M , there exists a subset F ⊂ M with #F ≤ 9,

∑
y∈F y = x, and

the following property: For any y ∈ F , there exists a pair p, q ∈ P(M) of mutually
orthogonal projections such that p ∼ q and either pyp = y or pyq = y.

Proof. It suffices to consider the case where M has fixed order 2 ≤ n < ∞. Then
we may identify M with Mn(M̂) for some von Neumann algebra M̂ . We may

write x ∈ M as x = (xij)1≤i,j≤n ∈ Mn(M̂). It is easy to see that we can take
integers n0 := 0 ≤ n1 ≤ n2 ≤ n =: n3 such that n1, n2 − n1, n3 − n2 ≤ n/2. For

1 ≤ k, l ≤ 3, define xkl = (xklij )1≤i,j≤n ∈ Mn(M̂) by xklij = xij if nk−1 + 1 ≤ i ≤ nk
and nl−1 + 1 ≤ j ≤ nl, and xklij = 0 otherwise. (Here, we are decomposing x into

3× 3 blocks.) Then the nine operators xkl, 1 ≤ k, l ≤ 3, (some of which may be 0)
satisfy the desired condition. �

Lemma 6.4. Let M be a von Neumann algebra without type I1 direct summands.
Suppose that Ψ: LS(M) → LS(M) is a ring isomorphism with l(Ψ(x)) = l(x) for
all x ∈ LS(M). Then Ψ is the identity mapping on LS(M).

Proof. Let p ∈ P(M). We prove Ψ(p) = p. Since pp⊥ = 0, we have Ψ(p)Ψ(p⊥) = 0,
which implies 0 = r(Ψ(p))l(Ψ(p⊥)) = r(Ψ(p))p⊥. We obtain r(Ψ(p)) ≤ p. We also
have the equation Ψ(p)2 = Ψ(p2) = Ψ(p). Hence we obtain (p − Ψ(p))Ψ(p) = 0,
which implies 0 = (p−Ψ(p))l(Ψ(p)) = (p−Ψ(p))p and p−Ψ(p) = 0.

In what follows, let p, q ∈ P(M) be mutually orthogonal mutually Murray–von
Neumann equivalent projections. We next prove that Ψ(x) = x if x ∈ M (⊂
LS(M)) satisfies pxq = x. By additivity, we may assume ‖x‖ ≤ 1/2. Then there
exists a projection e ∈ P(M) such that e ≤ p + q, peq = x. Indeed, let x =
v|x| = |x∗|v be the polar decomposition. Take an operator a ∈ (pMp)+ such that
‖a‖ ≤ π/4 and |x∗| = sin a cos a = (sin 2a)/2. Then

e := cos2 a+ v∗(sin a cos a) + (sin a cos a)v + v∗(sin2 a)v

satisfies this property. We obtain Ψ(x) = Ψ(peq) = Ψ(p)Ψ(e)Ψ(q) = peq = x.
Suppose that x ∈ M satisfies pxp = x. Take a partial isometry v ∈ M such

that vv∗ = p and v∗v = q. Then we have p(xv)q = xv and qv∗p = v∗. Hence
Ψ(x) = Ψ(xvv∗) = Ψ(xv)Ψ(v∗) = xvv∗ = x.
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By the additivity of Ψ and the preceding lemma, we see that Ψ fixes every
element in M . Let x ∈ LS(M) and let x = v|x| be its polar decomposition. It is
clear that Ψ(1) = 1. Since v, (|x|+ 1)−1 ∈M , we obtain

Ψ(x) = Ψ(v|x|) = Ψ(v)Ψ(|x|)
= v(Ψ(|x|+ 1)− 1) = v(Ψ((|x|+ 1)−1)−1 − 1)

= v((|x|+ 1)− 1) = v|x| = x

�

Hence we obtain the uniqueness of Ψ in Theorem A. Indeed, if two ring isomor-
phisms Ψ,Ψ′ : LS(M) → LS(N) satisfies l(Ψ(x)) = l(Ψ′(x)) for all x ∈ LS(M),
then we have l(Ψ−1 ◦Ψ′(x)) = l(x) for all x ∈ LS(M), hence the preceding lemma
implies Ψ−1 ◦Ψ′(x) = x for all x ∈ LS(M).

We introduce a binary relation on P(M), which is a key to the proof of Theorem
A. Let p, q ∈ P(M) be two projections with p∧ q = 0. By Section 2, we decompose
p and q:

(6.1) p = 1⊕ 0⊕ 0⊕
(

1 0
0 0

)
, q = 0⊕ 1⊕ 0⊕

(
a2 ab
ab b2

)
.

We say that p is LS-orthogonal to q if the operator b ∈ Mp,q is invertible in
LS(Mp,q).

Lemma 6.5. Let M be a von Neumann algebra and p, q ∈ P(M). Suppose that p
is LS-orthogonal to q. Then there exists an invertible element S = Sp,q ∈ LS(M)
such that S(p ∨ q)⊥ = (p ∨ q)⊥S = (p ∨ q)⊥, Sp = p and l(SqS−1) = p ∨ q − p.

Proof. Put S := 1 ⊕ 1 ⊕ 1 ⊕
(

1 −ab−1

0 b−1

)
with respect to the decomposition as

above. Then S is an element in LS(M) with inverse S−1 = 1⊕ 1⊕ 1⊕
(

1 a
0 b

)
. It

is easy to see that

S(p ∨ q)⊥ = (p ∨ q)⊥S = (p ∨ q)⊥ = 0⊕ 0⊕ 1⊕
(

0 0
0 0

)
.

We also have

Sp = 1⊕ 0⊕ 0⊕
(

1 0
0 0

)
= p

and

l(SqS−1) = l

(
0⊕ 1⊕ 0⊕

(
0 0
a 1

))
= 0⊕ 1⊕ 0⊕

(
0 0
0 1

)
= p ∨ q − p.

�

Lemma 6.6. Let M be a von Neumann algebra and p, q ∈ P(M) be two projections
with p ∧ q = 0. Then the following are equivalent.

(1) The projection p is LS-orthogonal to q.
(2) There exists a lattice automorphism Φ of P(M) such that Φ(p) ⊥ Φ(q).
(3) If a projection p0 ∈ P(M) satisfies p0 ≤ p and p0 ∨ q = p ∨ q, then p0 = p.
(4) The projection q is LS-orthogonal to p.
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Proof. (1) ⇒ (2) Take S ∈ LS(M) as in the preceding lemma and let Φ be the
unique lattice isomorphism such that Φ(l(x)) = l(SxS−1), x ∈ LS(X).

(2)⇒ (3) Clear.
(3)⇒ (1) We use the decomposition (6.1). By Lemma 5.2, if (1) does not hold,

then there exists an element d ∈ Mp,q+ \ {0} such that {x ∈ Mp,q+ | x ≤ b, x ≤
d} = {0}. Take the nonzero spectral projection p1 := χ(‖d‖/2,‖d‖](d) ∈ P(Mp,q). It
follows that

(6.2) {x ∈Mp,q+ | x ≤ b, x ≤ p1} = {0}.

Indeed, if x ∈Mp,q+ satisfies x ≤ b and x ≤ p1, take a positive real number c with
c ≤ 1 and c ≤ ‖d‖/2, then cx ≤ cb ≤ b and cx ≤ cp1 ≤ d, hence cx = 0 and we

obtain x = 0. Put p0 := 1⊕0⊕0⊕
(

1− p1 0
0 0

)
∈ P(M). Then p0 ≤ p and p0 6= p.

We prove that p0∨q = p∨q, or equivalently,

(
1− p1 0

0 0

)
∨
(
a2 ab
ab b2

)
= 1M2(Mp,q),

which is in turn equivalent to

(6.3)

(
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

)
= 0M2(Mp,q).

We have (
1 0
0 0

)((
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

))(
1 0
0 0

)
≤
(

1 0
0 0

)(
p1 0
0 1

)(
1 0
0 0

)
=

(
p1 0
0 0

)
and (

1 0
0 0

)((
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

))(
1 0
0 0

)
≤
(

1 0
0 0

)(
b2 −ab
−ab a2

)(
1 0
0 0

)
=

(
b2 0
0 0

)
.

Since the square root mapping preserves the order of positive operators, (6.2) im-
plies that the square root of the operator(

1 0
0 0

)((
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

))(
1 0
0 0

)
is equal to 0. Hence(

1 0
0 0

)((
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

))(
1 0
0 0

)
= 0,

or equivalently,

(
p1 0
0 1

)
∧
(
b2 −ab
−ab a2

)
≤
(

0 0
0 1

)
holds. However, we know(

0 0
0 1

)
∧
(
b2 −ab
−ab a2

)
= 0, so we finally obtain (6.3).

Exchanging the roles of p and q, we also obtain (2)⇔ (4). �

Let us recall the setting of Theorem A: Let M , N be von Neumann algebras.
Suppose that M is without type I1 and I2 direct summands and Φ: P(M)→ P(N)
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is a lattice isomorphism. By the preceding lemma, we see that Φ preserves LS-
orthogonality in both directions, that is, for any p, q ∈ P(M), p and q are LS-
orthogonal if and only if Φ(p) and Φ(q) are LS-orthogonal.

In what follows, we show the existence of Ψ as in the statement of Theorem A
in the case M has order 3. Thus M can be identified with M3(M̂) for some von

Neumann algebra M̂ . Put

eM1 :=

1 0 0
0 0 0
0 0 0

 , eM2 :=

0 0 0
0 1 0
0 0 0

 , eM3 :=

0 0 0
0 0 0
0 0 1

 ∈ P(M3(M̂)).

Put e1 := Φ(eM1 ), e2 := Φ(eM2 ), e3 := Φ(eM3 ). We know that e1 ∨ e2

is LS-orthogonal to e3, and e1 is LS-orthogonal to e2. In addition, we know
e1 ∨ e2 ∨ e3 = 1. Take Se1∨e2,e3 and Se1,e2 as in the statement of Lemma 6.5.
Consider the lattice automorphism ϕ : P(N) → P(N) determined by the condi-
tion ϕ(l(x)) = l(Se1,e2Se1∨e2,e3xS

−1
e1∨e2,e3S

−1
e1,e2) (= l(Se1,e2Se1∨e2,e3x)), x ∈ LS(N).

Then a moment’s calculation shows that ϕ(e1), ϕ(e2), ϕ(e3) are mutually orthogonal
and ϕ(e1) + ϕ(e2) + ϕ(e3) = 1N .

Lemma 6.7. We have ϕ(e1) ∼ ϕ(e2) ∼ ϕ(e3) in N .

Proof. Section 2 implies: For p, q ∈ P(N), if p ∨ q = 1 and p ∧ q = 0, then p⊥ ∼ q.
Since ϕ ◦ Φ is a lattice isomorphism, we obtain

ϕ(e1) = ϕ ◦ Φ(eM1 ) ∼

ϕ ◦ Φ

1

2

1 1 0
1 1 0
0 0 2

⊥ ∼ ϕ ◦ Φ(eM2 ) = ϕ(e2).

Similarly, we obtain ϕ(e1) ∼ ϕ(e3). �

It suffices to consider ϕ ◦Φ instead of Φ. Hence we may identify N with M3(N̂)

for some von Neumann algebra N̂ , and we may assume Φ(eM1 ) = eN1 , Φ(eM2 ) = eN2
and Φ(eM3 ) = eN3 , where

eN1 :=

1 0 0
0 0 0
0 0 0

 , eN2 :=

0 0 0
0 1 0
0 0 0

 , eN3 :=

0 0 0
0 0 0
0 0 1

 ∈ P(M3(N̂)).

Let x ∈ LS(M̂). Suppose that M̂ ⊂ B(K). Viewing x as a closed operator, we
see that the collection 

 ξ
xξ
0

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx


is a closed subspace in K⊕K⊕K. Take the projection P12[x] ∈ P(B(K⊕K⊕K))
onto this subspace. Then we have

(6.4) P12[x] =

 (1 + x∗x)−1 (1 + x∗x)−1x∗ 0
x(1 + x∗x)−1 x(1 + x∗x)−1x∗ 0

0 0 0
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and hence P12[x] ∈ P(M3(M̂)). Similarly, let P13[x], P23[x] ∈ P(M3(M̂)) denote
the projections onto

 ξ
0
xξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx

 ,


 0
ξ
xξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx

 ,

respectively.

Lemma 6.8. Let Q ∈ P(M3(M̂)). Then the following conditions are equivalent:

(1) There exists an x ∈ LS(M̂) such that Q = P12[x].
(2) Q ∨ eM2 = eM1 ∨ eM2 , and Q is LS-orthogonal to eM2 .

Proof. (1)⇒ (2) Let Q = P12[x]. Since (1 +x∗x)−1 is a positive injective operator,
we have Q∨ eM2 = eM1 ∨ eM2 by (6.4). Let x = v|x| be the polar decomposition. By
(6.4), we have

Q = P12[x] =

 (1 + |x|2)−1 (1 + |x|2)−1|x|v∗ 0
v|x|(1 + |x|2)−1 v|x|(1 + |x|2)−1|x|v∗ 0

0 0 0

 .

Hence we have

Q ∧ eM2 ≤

0 0 0
0 v|x|(1 + |x|2)−1|x|v∗ 0
0 0 0

 .

Since 1−v|x|(1+|x|2)−1|x|v∗ is a positive injective operator, we see that Q∧eM2 = 0.
As in (6.1), we may decompose eM2 and Q in the following form:

eM2 = 1⊕ 0⊕ 0⊕
(

1 0
0 0

)
, Q = 0⊕ 1⊕ 0⊕

(
a2 ab
ab b2

)
.

We also have

eM1 = 0⊕ 1⊕ 0⊕
(

0 0
0 1

)
with respect to the same decomposition. Recall that (1 + x∗x)−1 is invertible in

LS(M̂), or equivalently, eM1 QeM1 is invertible in LS(eM1 MeM1 ). This means that

0⊕ 1⊕ 0⊕
(

0 0
0 b2

)
is invertible in LS(eM1 MeM1 ), which in particular implies the invertibility of b in
LS(MeM2 ,Q).

(2)⇒ (1) As in (6.1), we may decompose eM2 and Q in the following form:

eM2 = 1⊕ 0⊕ 0⊕
(

1 0
0 0

)
, Q = 0⊕ 1⊕ 0⊕

(
a2 ab
ab b2

)
.

Note that b is invertible as a locally measurable operator. It follows that

eM1 = 0⊕ 1⊕ 0⊕
(

0 0
0 1

)
.

Consider the partial isometry

w = 0⊕ 1⊕ 0⊕
(

0 0
a b

)
.
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We have ww∗ = eM1 and w∗w = Q. Moreover, eM1 weM1 is a positive invertible ele-
ment in LS(eM1 MeM1 ). Thus a moment’s reflection shows that there exist w1, w2 ∈

M̂ such that w1 ≥ 0, w1 is invertible in LS(M̂) and w =

w1 w2 0
0 0 0
0 0 0

 ∈M3(M̂).

(Here w1 corresponds to eM1 weM1 .) Put x = w∗2w
−1
1 . Since ww∗ = eM1 , we obtain

w2
1 + w2w

∗
2 = 1M̂ . Hence

1 + x∗x = 1 + w−1
1 w2w

∗
2w
−1
1 = 1 + w−1

1 (1− w2
1)w−1

1 = w−2
1 .

It follows by (6.4) that

P12[x] =

 (1 + x∗x)−1 (1 + x∗x)−1x∗ 0
x(1 + x∗x)−1 x(1 + x∗x)−1x∗ 0

0 0 0

 =

 w2
1 w1w2 0

w∗2w1 w∗2w2 0
0 0 0

 = w∗w = Q.

�

Corollary 6.9. Let k ∈ {12, 13, 23}. There exists a bijection ψk : LS(M̂)→ LS(N̂)

such that Φ(Pk[x]) = Pk[ψk(x)]. Moreover, x ∈ LS(M̂) is invertible in LS(M̂) if

and only if ψk(x) is invertible in LS(N̂)

Proof. Since Φ is a lattice isomorphism with Φ(eM1 ) = eN1 and Φ(eM2 ) = eN2 , the

first half of the case k = 12 follows from the preceding lemma. For x ∈ LS(M̂), let

P21[x] ∈ P(M3(M̂)) denote the projection onto
xξξ

0

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx

 ,

thus

P21[x] =

x(1 + x∗x)−1x∗ x(1 + x∗x)−1 0
(1 + x∗x)−1x∗ (1 + x∗x)−1 0

0 0 0

 .

It is easy to see that, for x, y ∈ LS(M̂), the equation P12[x] = P21[y] holds if and

only if x is invertible in LS(M̂) and y = x−1. Therefore, Lemma 6.8 implies that an

operator x ∈ LS(M̂) is invertible in LS(M̂) if and only if P12[x] is LS-orthogonal
to eM1 and P12[x] ∨ eM1 = eM1 ∨ eM2 . Thus ψ12 preserves invertibility. The other
cases can be shown similarly. �

In particular, the operators ψ12(1), ψ13(1) are invertible in LS(N̂). Consider the

lattice automorphism φ of P(M3(N̂)) determined by φ(l(x)) = l(SxS−1), where

S =

1 0 0
0 ψ12(1)−1 0
0 0 ψ13(1)−1

. We see that φ(eNi ) = eNi , i = 1, 2, 3, and

φ ◦ Φ(P12[1M̂ ]) = P12[1N̂ ], φ ◦ Φ(P13[1M̂ ]) = P13[1N̂ ].

Considering φ ◦ Φ instead of Φ, we may assume Φ(P12[1M̂ ]) = P12[1N̂ ] and
Φ(P13[1M̂ ]) = P13[1N̂ ], or equivalently, ψ12(1) = ψ13(1) = 1.

Lemma 6.10. For any x, y ∈ LS(M̂), we have

P13[xy] = (P23[−x] ∨ P12[y]) ∧ (eM1 ∨ eM3 ).



GEOMETRY OF PROJECTIONS 29

Proof. Let M̂ ⊂ B(K). We know that the range of P23[−x] ∨ P12[y] is the closure
of

V :=


 η
ξ + yη
−xξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx, η ∈ dom y

 .

In particular, we have

 η
0
xyη

 ∈ V for any η ∈ dom y with yη ∈ domx. Since the

collection {η ∈ dom y | yη ∈ domx} is a core of the operator xy ∈ LS(M̂), we have
P13[xy] ≤ (P23[−x] ∨ P12[y]) ∧ (eM1 ∨ eM3 ).

We claim that the orthogonal complement V ⊥ of V is
−y∗x∗ζx∗ζ

ζ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ζ ∈ domx∗, x∗ζ ∈ dom y∗

 .

It is clear that any

−y∗x∗ζx∗ζ
ζ

 as above is an element in V ⊥. If

ζ1ζ2
ζ3

 ∈ V ⊥, then

0 =

〈ζ1ζ2
ζ3

 ,

 0
ξ
−xξ

〉 = 〈ζ2, ξ〉 − 〈ζ3, xξ〉

for any ξ ∈ domx, and hence we obtain ζ3 ∈ domx∗, ζ2 = x∗ζ3. By the equation

0 =

〈ζ1ζ2
ζ3

 ,

 η
yη
0

〉

for η ∈ dom y, we obtain the claim. Let

h1

h2

h3

 belong to the range of

(P23[−x] ∨ P12[y]) ∧ (eM1 ∨ eM3 ), which is equal to the orthogonal complement of

V ⊥ ∪


0
k
0

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ k ∈ K

. Then we have h2 = 0 and

0 =

〈h1

0
h3

 ,

−y∗x∗ζx∗ζ
ζ

〉 = −〈h1, y
∗x∗ζ〉+ 〈h3, ζ〉

for any ζ ∈ domx∗ with x∗ζ ∈ dom y∗. We know that {ζ ∈ domx∗ | x∗ζ ∈ dom y∗}
is a core of the operator y∗x∗ ∈ LS(M̂). Thus we obtain h1 ∈ dom(y∗x∗)∗ =

dom(xy) and h3 = (xy)h1 (here we view xy as a closed operator in LS(M̂)). �

Lemma 6.11. We have ψ12 = ψ13 = ψ23 =: ψ. Moreover, ψ : LS(M̂) → LS(N̂)
is multiplicative.

Proof. Let x, y ∈ LS(M̂). By the preceding lemma, we have

P13[xy] = (P23[−x] ∨ P12[y]) ∧ (eM1 ∨ eM3 )
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and hence

P13[ψ13(xy)] = Φ(P13[xy]) = Φ
(
(P23[−x] ∨ P12[y]) ∧ (eM1 ∨ eM3 )

)
= (Φ(P23[−x]) ∨ Φ(P12[y])) ∧ (Φ(eM1 ) ∨ Φ(eM3 ))

= (P23[ψ23(−x)] ∨ P12[ψ12(y)]) ∧ (eN1 ∨ eN3 ).

It follows by the preceding lemma again (applied to N instead of M) that

(P23[ψ23(−x)] ∨ P12[ψ12(y)]) ∧ (eN1 ∨ eN3 ) = P13[−ψ23(−x)ψ12(y)].

Thus we obtain P13[−ψ23(−x)ψ12(y)] = P13[ψ13(xy)], which implies
−ψ23(−x)ψ12(y) = ψ13(xy).

In particular, putting x = y = 1, we obtain ψ23(−1) = −1. Putting x = 1,
we obtain −ψ23(−1)ψ12(y) = ψ13(y), hence ψ12(y) = ψ13(y). Moreover, putting
y = 1, we obtain −ψ23(−x)ψ12(1) = ψ13(x), hence −ψ23(−x) = ψ13(x). Thus
ψ12(x)ψ12(y) = −ψ23(−x)ψ12(y) = ψ13(xy) = ψ12(xy). Therefore, ψ12 is mul-

tiplicative. It follows that ψ12(−1) is central in LS(N̂), ψ12(−1)2 = 1 and
ψ12(−1)y 6= y for any y 6= 0, and hence we obtain ψ12(−1) = −1. We reach
the equation ψ13 = ψ12 = ψ23. �

Lemma 6.12. The mapping ψ is additive.

Proof. Let x, y ∈ LS(M̂). Consider the projections

f = (P12[x] ∨ eM3 ) ∧ (P13[1] ∨ eM2 ) and g = (P12[y] ∨ P13[1]) ∧ (eM2 ∨ eM3 ).

By an argument similar to that in the proof of Lemma 6.10, we can check the
following: The range of f is equal to

 ξ
xξ
ξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx


and the range of g is equal to

 0
−yη
η

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ η ∈ dom y

 ,

hence (f ∨g)∧ (eM1 ∨eM2 ) = P12[x+y]. Apply Φ to both sides to obtain the desired
conclusion. �

We define a mapping Ψ: LS(M3(M̂))→ LS(M3(N̂)) by Ψ((xij)ij) := (ψ(xij))ij ,

xij ∈ LS(M̂), i, j = 1, 2, 3. The preceding lemmas imply that Ψ is a ring isomor-

phism from LS(M3(M̂)) onto LS(M3(N̂)).

Lemma 6.13. We have Φ(l(x)) = l(Ψ(x)) for any x ∈ LS(M3(M̂)).

Proof. We partly imitate Dye’s argument in the proof of [6, Lemma 7]. By Lemma

6.4, it suffices to show that the lattice isomorphism Φ′ : P(M3(M̂)) → P(M3(N̂))

determined by l(Ψ(x)) = Φ′(l(x)), x ∈ LS(M3(M̂)), satisfies Φ = Φ′. For x ∈
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LS(M̂), we have

Φ(P12[x]) = P12[ψ(x)] = l

 1 0 0
ψ(x) 0 0

0 0 0


= l

Ψ

1 0 0
x 0 0
0 0 0

 = Φ′

l
1 0 0
x 0 0
0 0 0

 = Φ′(P12[x]).

Similarly, we see that Φ(p) = Φ′(p) for any p ∈ {Pk[x] | x ∈ LS(M̂), k =
12, 23, 13}.

Let x2, x3 ∈ LS(M̂). We consider the projection Px2,x3 ∈ P(M3(M̂)) onto the
closed subspace 

 ξ
x2ξ
x3ξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ domx2 ∩ domx3

 .

It is not difficult to see that this projection is equal to (P12[x2]∨eM3 )∧(P13[x3]∨eM2 ).
It follows that Φ(Px2,x3) = Φ′(Px2,x3).

Consider an arbitrary nonzero projection p = (pi,j)1≤i,j≤3 ∈ P(M3(M̂)). By
Zorn’s lemma, to show that Φ(p) = Φ′(p), it suffices to find a nonzero subprojection

(p ≥) q ∈ P(M3(M̂)) such that Φ(q) = Φ′(q). Note that pii =
∑

1≤k≤3 pikp
∗
ik, hence

we see that pii 6= 0 for some i ∈ {1, 2, 3}.
If p11 6= 0, put e := χ(‖p11‖/2,‖p11‖](p11) ∈ P(M̂) \ {0} and x1 := p−1

11 e ∈ M̂ . It

follows that the projection q ∈ P(M3(M̂)) onto the subspace
p11ξ
p21ξ
p31ξ

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ ξ ∈ eK

 =


 η
p21x1η
p31x1η

 ∈ K ⊕K ⊕K
∣∣∣∣∣∣ η ∈ eK


is a nonzero subprojection of p. Since q = Pp21x1,p31x1

∧ ((P12[e⊥]∧eM1 )∨eM2 ∨eM3 ),
we obtain Φ(q) = Φ′(q).

If p11 = 0 and p22 6= 0, we have p ≤ eM2 ∨ eM3 . Then a similar discussion applies.

If p11 = p22 = 0, then p33 ∈ P(M̂). Use the equation (P13[1] ∨ P13[p⊥33]) ∧ eM3 = p,
which can be verified easily, to obtain the desired conclusion. �

Therefore, the proof of Theorem A is complete in the case M has order 3. The
same discussion with a slight modification is valid in any case M has order n with
3 ≤ n < ∞. We know that a projection lattice isomorphism preserves central
projections because a projection p in a von Neumann algebra M is central if and
only if {q ∈ P(M) | p∨q = 1, p∧q = 0} = {p⊥}. Since every von Neumann algebra
without type I1 and I2 direct summands decomposes into the direct sum of algebras
of order 3 ≤ n <∞, now it easy to complete the proof of Theorem A in the general
case.

In what follows, let us give a proof of Theorem 1.4 by Dye (in the case the von
Neumann algebras are without commutative direct summands) as an application
of Theorem A. The proof below is partly based on Feldman’s argument in [7, Proof
of Theorem 3].

Let M and N be von Neumann algebra without type I1 and I2 direct summands
and suppose that Φ: P(M) → P(N) is a lattice isomorphism. Suppose further
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that we have pq = 0 if and only if Φ(p)Φ(q) = 0 for any pair p, q ∈ P(M). By
Theorem A, there exists a unique ring isomorphism Ψ: LS(M)→ LS(N) such that
Φ(l(x)) = l(Ψ(x)) for any x ∈ LS(M).

Then we have Ψ(p) = Φ(p) ∈ P(N) for every p ∈ P(M). Indeed, since
p2 = p and pp⊥ = 0, we have Ψ(p)2 = Ψ(p) and Ψ(p)Ψ(p⊥) = 0. Thus
we have r(Ψ(p))l(Ψ(p⊥)) = 0. Our assumption implies l(Ψ(p⊥)) = Φ(p⊥) =
Φ(p)⊥ = l(Ψ(p))⊥, thus we obtain r(Ψ(p)) ≤ l(Ψ(p)). By the equation (l(Ψ(p)) −
Ψ(p))Ψ(p) = 0, we obtain 0 = (l(Ψ(p)) − Ψ(p))l(Ψ(p)) = l(Ψ(p)) − Ψ(p). Hence
Ψ(p) = l(Ψ(p)) = Φ(p) ∈ P(N).

Consider the ring automorphism x 7→ Ψ−1(Ψ(x∗)∗) of LS(M). This fixes ev-
ery projection, hence Lemma 6.4 implies that x = Ψ−1(Ψ(x∗)∗), or equivalently,
Ψ(x)∗ = Ψ(x∗) for each x ∈ LS(M). It follows that Ψ maps the self-adjoint part of
LS(M) onto that of LS(N). Since Ψ preserves squares, Ψ restricted to self-adjoint
parts preserves order in both directions. Since Ψ(1) = 1, Ψ restricts to a real
∗-isomorphism from M onto N and extends Φ, which is the desired conclusion.

7. Ring isomorphisms of locally measurable operator algebras

By the preceding section, lattice isomorphisms between projection lattices are in
one-to-one correspondence with ring isomorphisms between the algebras of locally
measurable operators. Hence the following question is well motivated.

Question. Let M , N be von Neumann algebras. What is the general form of ring
isomorphisms from LS(M) onto LS(N)?

Lemma 7.1. Let M,N be general von Neumann algebras. Let

M =

⊕
n≥1

MIn

⊕MI∞ ⊕MII1 ⊕MII∞ ⊕MIII,

N =

⊕
n≥1

NIn

⊕NI∞ ⊕NII1 ⊕NII∞ ⊕NIII

be the type decompositions, where Mj, Nj are von Neumann algebras of type
j. Suppose that Ψ: LS(M) → LS(N) is a ring isomorphism. Then there ex-
ist ring isomorphisms ψj : LS(Mj) → LS(Nj) such that Ψ(x) = ψj(x) for any
x ∈ LS(Mj) (⊂ LS(M)).

Proof. It is easy to see that Ψ maps the collection of central projections in M
onto that in N . Hence it suffices to show: If M , N are of type j, k ∈ {In |
n ≥ 1} ∪ {I∞, II1, II∞, III}, respectively, then j = k. We consider the lattice
isomorphism Φ: P(M) → P(N) as in Proposition 6.1. It is easy to see that a
projection p ∈ P(M) is abelian (namely, pMp is an abelian von Neumann algebra)
if and only if Φ(p) is abelian. Moreover, a projection p ∈ P(M) is finite if and only if
Φ(p) ∈ P(N) is finite. Indeed, if p is not finite, then there exist mutually orthogonal
nonzero subprojections p1, p2, p3 of p such that p1 ∼ p2 ∼ p3 ∼ p1 + p2. The same
argument as in the proof of Lemma 6.7 implies Φ(p1) ∼ Φ(p3) ∼ Φ(p1 + p2), which
shows that Φ(p) is not finite. Similarly, if Φ(p) is not finite, then p is not finite.
The rest of the proof is a standard argument of von Neumann algebra theory, and
we omit the details. See e.g. [18, Chapter 6]. �
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Therefore, Question reduces to the case both M and N are of type j, j ∈ {In |
n ≥ 1} ∪ {I∞, II1, II∞, III}.

We first consider Question in the case M,N are von Neumann algebras of type
In. Suppose that LS(M) is ring isomorphic to LS(N). Since the central projec-
tion lattices of M and N are lattice isomorphic, we see that the center of M is
∗-isomorphic to that of N . Hence there exists a commutative von Neumann al-
gebra A such that M ∼= N ∼= Mn(A). Therefore, it suffices to think about ring
automorphisms of LS(Mn(A)), which can be identified with the collection of all
n× n matrices with entries in LS(A). Note that A can be identified with the alge-
bra L∞(µ) of all complex-valued essentially bounded measurable functions (modulo
almost-everywhere equivalence) for some measure µ. Then LS(A) corresponds to
L0(µ), which denotes the collection of all complex-valued measurable functions.
Remark that any ring automorphism ψ of LS(A) determines a ring automorphism
ψ′ of LS(Mn(A)) by the formula ψ′((xij)) = (ψ(xij))ij . The following proposition
slightly generalizes (but can be shown by exactly the same argument as in) [1,
Theorem 3.3] by Albeverio, Ayupov, Kudaybergenov and Djumamuratov.

Proposition 7.2. Let n ≥ 1 be an integer and A be a commutative von Neumann
algebra. Suppose that Ψ is a ring automorphism of LS(Mn(A)). Then there exist a
ring automorphism ψ : LS(A)→ LS(A) and an invertible element y in LS(Mn(A))
such that Ψ(x) = yψ′(x)y−1, x ∈ LS(Mn(A)).

Proof. Note that Ψ restricts to a ring automorphism ψ of the center of LS(Mn(A)),

which is canonically isomorphic to LS(A). Then Ψ ◦ ψ′−1
fixes every element in

the center of LS(Mn(A)). We may apply [1, Theorem 3.1] to obtain the desired
conclusion. �

There exist highly nontrivial examples of ring automorphisms of LS(A) = L0(µ)
for a commutative von Neumann algebra A. For example, consider the case A =
C = LS(A). There are many ring automorphisms of C that are far from real-
linear. Consider the case µ is an atomless measure. It is known [21, (1)⇔(6) of
Theorem 3.4] (see also [21, Remark 6.3]) that there exists a (complex-linear) algebra
automorphism ψ of L0(µ) such that ψ(p) = p for any p ∈ P(A) but ψ 6= idL0(µ). It
seems that these examples are beyond the scope of the theory of operator algebras.

In contrast, we may give a purely operator algebraic solution to Question for
type I∞ or III in the following manner. This improves [1, Theorem 3.8], in which
algebra isomorphisms of the case of type I∞ were considered.

Theorem B. Let M,N be von Neumann algebras of type I∞ or III. If
Ψ: LS(M)→ LS(N) is a ring isomorphism, then there exist a real ∗-isomorphism
ψ : M → N (which extends to a real ∗-isomorphism from LS(M) onto LS(N)) and
an invertible element y ∈ LS(N) such that Ψ(x) = yψ(x)y−1, x ∈ LS(M).

Proof. Beware of the fact that Ψ restricts to a lattice isomorphism between the
central projection lattices of M and N . We first prove:

Claim There exists an operator a ∈ LS(Z(N))+ such that |||Ψ(x)||| ≤ a for any
x ∈M (⊂ LS(M)) with ‖x‖ ≤ 1.

Assume that this claim does not hold. We will obtain a contradiction in Step 4.

Step 1 We prove that there exists a central projection e in M such that for any
n ≥ 1 there exists some x ∈M with ‖x‖ ≤ 1 and |||Ψ(x)||| ≥ nΨ(e).
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Assume for a while that the center Z(M) of M admits a faithful normal state
τ : Z(M)→ C. For each positive integer n, consider the collection

En := {e ∈ P(Z(M)) | there exists x ∈M with ‖x‖ ≤ 1 and |||Ψ(x)||| ≥ nΨ(e)}.

Suppose that e, f belong to this collection. Take x, y ∈ M such that ‖x‖, ‖y‖ ≤ 1
and |||Ψ(x)||| ≥ nΨ(e), |||Ψ(y)||| ≥ nΨ(f). Then the element x′ := xe+ ye⊥ satisfies
‖x′‖ ≤ 1 and

|||Ψ(x′)||| =
∣∣∣∣∣∣Ψ(xe+ ye⊥)

∣∣∣∣∣∣
=
∣∣∣∣∣∣Ψ(x)Ψ(e) + Ψ(y)Ψ(e)⊥

∣∣∣∣∣∣
= |||Ψ(x)|||Ψ(e) + |||Ψ(y)|||Ψ(e)⊥

≥ nΨ(e) + nΨ(f)Ψ(e)⊥

= nΨ(e) ∨Ψ(f) = nΨ(e ∨ f).

Hence we have e ∨ f ∈ En, which implies that En is upward directed. Put cn :=
sup{τ(e) | e ∈ En}. We may take an increasing sequence {e(k)} ⊂ En such that
τ(e(k)) → cn as k → ∞. For each k take x(k) ∈ M such that ‖x(k)‖ ≤ 1 and∣∣∣∣∣∣Ψ(x(k))

∣∣∣∣∣∣ ≥ nΨ(e(k)). Some calculations show that the element

x′′ := x(1)e(1) +
∑
k≥2

x(k)(e(k) − e(k−1)) ∈M

satisfies ‖x′′‖ ≤ 1 and |||Ψ(x′′)||| ≥ nΨ(e(k)) for every k. This implies that for the
projection en :=

∨
En ∈ P(Z(M)) there exists xn ∈ P(Z(M)) such that ‖xn‖ ≤ 1

and |||Ψ(xn)||| ≥ nΨ(en).
Clearly, {en} is a decreasing sequence. Assume that en → 0 as n → ∞, then

the element a = Ψ(1 +
∑
n≥1 en) ∈ LS(Z(N))+ satisfies the property of Claim,

which contradicts our assumption. Hence we have en → e ∈ P(Z(M)) \ {0} as
n→∞, and e satisfies the desired property. Since every von Neumann algebra can
be decomposed into the direct sum of von Neumann algebras whose centers admit
faithful normal states, the same holds for arbitrary M and N .

Considering the restriction of Ψ to a ring isomorphism from LS(Me) onto
LS(NΨ(e)), we may assume that for any n ≥ 1 there exists some x ∈ M with
‖x‖ ≤ 1 and |||Ψ(x)||| ≥ n.

Step 2 We prove that for any a ∈ LS(Z(N))+ there exists some x ∈ M with
‖x‖ ≤ 1 and |||Ψ(x)||| ≥ a.

Let a ∈ LS(Z(N))+. We may take a sequence of mutually orthogonal central
projections {fn} such that a ≤

∑
n≥1 nfn. For each n, take xn ∈ M such that

‖xn‖ ≤ 1 and |||Ψ(xn)||| ≥ nfn. Some calculations show that the element x :=∑
n≥1 xnΨ−1(fn) satisfies ‖x‖ ≤ 1 and |||Ψ(x)||| ≥

∑
n≥1 nfn ≥ a.

Step 3 We prove: For any p ∈ P(M) with p ∼ p⊥ and any a ∈ LS(Z(N))+, there
exists an element x ∈M with pxp = x, ‖x‖ ≤ 1 and |||Ψ(x)||| ≥ a.

Take a partial isometry v ∈ M such that vv∗ = p and v∗v = p⊥. Since Ψ is a
ring isomorphism, for any x ∈M , we have

Ψ(x) = Ψ(pxp+ pxp⊥ + p⊥xp+ p⊥xp⊥)

= Ψ(pxp) + Ψ(pxv∗)Ψ(v) + Ψ(v∗)Ψ(vxp) + Ψ(v∗)Ψ(vxv∗)Ψ(v).
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For a given a ∈ LS(Z(N))+, put

b := 4a+ 4a|||Ψ(v)|||+ 4a|||Ψ(v∗)|||+ 4a|||Ψ(v)||||||Ψ(v∗)||| ∈ LS(Z(N))+.

The preceding step implies there exists x ∈M with ‖x‖ ≤ 1 and

b ≤ |||Ψ(x)|||
≤ |||Ψ(pxp)|||+ |||Ψ(pxv∗)||||||Ψ(v)|||+ |||Ψ(v∗)||||||Ψ(vxp)|||+ |||Ψ(v∗)||||||Ψ(vxv∗)||||||Ψ(v)|||.

Hence there exists a quadruple f1, f2, f3, f4 of central projections in N such that
f1 + f2 + f3 + f4 = 1, |||Ψ(pxp)|||f1 ≥ bf1/4, |||Ψ(pxv∗)||||||Ψ(v)|||f2 ≥ bf2/4,
|||Ψ(v∗)||||||Ψ(vxp)|||f3 ≥ bf3/4 and |||Ψ(v∗)||||||Ψ(vxv∗)||||||Ψ(v)|||f4 ≥ bf4/4. Put

x′ := pxpΨ−1(f1) + pxv∗Ψ−1(f2) + vxpΨ−1(f3) + vxv∗Ψ−1(f4).

Then we have px′p = x′, ‖x′‖ ≤ 1 and

|||Ψ(x′)||| = |||Ψ(pxp)f1 + Ψ(pxv∗)f2 + Ψ(vxp)f3 + Ψ(vxv∗)f4|||
= |||Ψ(pxp)|||f1 + |||Ψ(pxv∗)|||f2 + |||Ψ(vxp)|||f3 + |||Ψ(vxv∗)|||f4

≥ 1

4
b(f1 + |||Ψ(v)|||−1

f2 + |||Ψ(v∗)|||−1
f3 + |||Ψ(v)|||−1|||Ψ(v∗)|||−1

f4) ≥ a.

(Note that |||Ψ(v)|||, |||Ψ(v∗)||| are invertible in LS(Z(N)).)

Step 4 Since M is properly infinite, we may take a sequence {pn}n≥1 of mutually

orthogonal projections in M such that pn ∼ p⊥n , n ≥ 1. By Step 3, for each
n ≥ 1, we may take an element xn ∈ M with pnxnpn = xn, ‖xn‖ ≤ 1 and
|||Ψ(xn)||| ≥ n|||Ψ(pn)|||. Put x :=

∑
n≥1 xn ∈ M (which is well-defined since pn,

n ≥ 1, are mutually orthogonal). For every n ≥ 1, we have

|||Ψ(x)||||||Ψ(pn)||| ≥ |||Ψ(x)Ψ(pn)||| = |||Ψ(xpn)||| = |||Ψ(xn)||| ≥ n|||Ψ(pn)|||.
Since |||Ψ(pn)||| is invertible in LS(Z(N)), we obtain |||Ψ(x)||| ≥ n for all n ∈ N, a
contradiction. This completes the proof of Claim.

Step 5 It follows that there exists an element a ∈ LS(Z(N))+ such that |||Ψ(x)||| ≤ a
for any x ∈M with ‖x‖ ≤ 1. By the same discussion applied to Ψ−1, we also obtain
an element a′ ∈ LS(Z(M))+ such that

∣∣∣∣∣∣Ψ−1(y)
∣∣∣∣∣∣ ≤ a′ for any y ∈ N with ‖y‖ ≤ 1.

We may take a sequence en of central projections in M such that en ↗ 1 and Ψ
restricts to a norm-bicontinuous ring isomorphism Ψn from Men onto NΨ(en),
n ≥ 1. By Lemma 5.1 we may verify the statement for each Ψn, which suffices to
complete the proof. �

Corollary 7.3. Let M,N be von Neumann algebras of type I∞ or III. Suppose that
Φ: P(M)→ P(N) is a lattice isomorphism. Then there exist a real ∗-isomorphism
ψ : M → N and an invertible element y ∈ LS(N) such that Φ(p) = l(yψ(p)),
p ∈ P(M).

8. Questions

The author skeptically conjectures that the same as Theorem B holds for type
II von Neumann algebras:

Conjecture 8.1. Let M and N be von Neumann algebras of type II. Suppose that
Ψ: LS(M)→ LS(N) is a ring isomorphism. Then there exist an invertible operator
y ∈ LS(N) and a real ∗-isomorphism ψ : M → N such that Ψ(x) = yψ(x)y−1 for
any x ∈ LS(M).



36 M. MORI

Not much is known about the structure of the algebra LS(M) for a type II
(in particular, II1) von Neumann algebra M . The author does not know whether
or not such a Ψ is automatically real-linear even in the case M and N are (say,
approximately finite dimensional) II1 factors. Note that LS(M) cannot have a
Banach algebra structure because of the fact that an element of LS(M) can have
an empty or dense spectrum. Hence it seems to be difficult to make use of automatic
continuity results on algebra isomorphisms as in [5]. However, the author suspects
that at least the following weaker statement holds:

Conjecture 8.2. Let M and N be von Neumann algebras of type II. If P(M)
and P(N) are lattice isomorphic, or equivalently, if LS(M) and LS(N) are ring
isomorphic, then M and N are real ∗-isomorphic (or equivalently, M and N are
Jordan ∗-isomorphic).

Remark. After the post of this part to the arXiv, Ayupov and Kudaybergenov [2]
gave an affirmative solution to Conjecture 8.1 (and 8.2) for type II1 von Neumann
algebras.

In another direction, we compare Theorem A with von Neumann’s theory of
complemented modular lattices and regular rings. Von Neumann axiomatized pro-
jection lattices of type II1 von Neumann algebras, and completed the amazing
theory on the correspondence between the vast classes of complemented modular
lattices and regular rings. Let us briefly recall this theory in [34, Part II].

Definition 8.3. A lattice L with greatest element 1 and least element 0 is comple-
mented if for each a ∈ L there exists b ∈ L such that a∨ b = 1, a∧ b = 0. A lattice
L is modular if the equation (a ∨ b) ∧ c = a ∨ (b ∧ c) holds for any a, b, c ∈ L with
a ≤ c.

Let L be a complemented modular lattice. Two elements a, b ∈ L are said to be
perspective if there exists c ∈ L such that a ∨ c = 1 = b ∨ c and a ∧ c = 0 = b ∧ c.
Let n be a positive integer. We say L has order n if there exist pairwise perspective
elements a1, a2, . . . , an ∈ L with a1∨a2∨· · ·∨an = 1 and

(∨
i∈I1 ai

)
∧
(∨

j∈I2 aj
)

= 0

for any disjoint I1, I2 ⊂ {1, 2, . . . , n}.

Definition 8.4. A (von Neumann) regular ring is a ring R with unit such that for
each x ∈ R there exists y ∈ R such that xyx = x.

Let R be a regular ring. A right ideal a of R is principal if it is generated by one
element of R.

Let M be a von Neumann algebra. Then P(M) is a complemented lattice. It is
not difficult to show that the following three conditions are equivalent.

• The von Neumann algebra M is finite.
• The lattice P(M) is modular.
• The ring LS(M) is regular.

Theorem 8.5 (von Neumann). If R is a regular ring, then the collection L of all
principal right ideals of R, ordered by inclusion, forms a complemented modular
lattice.

We call L in the statement of the preceding theorem the right ideal lattice of R.

Theorem 8.6 (von Neumann). Let R1, R2 be regular rings with right ideal lattices
L1, L2, respectively. Suppose that L1 has order n ≥ 3. If Φ: L1 → L2 is a lattice
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isomorphism, then there exists a unique ring isomorphism Ψ: R1 → R2 such that
Φ(a) = Ψ(a), a ∈ L1.

Theorem 8.7 (von Neumann). Let L be a complemented modular lattice with order
n ≥ 4. Then there exists a regular ring R such that the right ideal lattice of R is
lattice isomorphic to L.

Let M be a finite von Neumann algebra. Let a ⊂ LS(M) be a principal right
ideal generated by a ∈ LS(M). It is an easy exercise to show that a = {x ∈
LS(M) | l(x) ≤ l(a)}. Hence we obtain an identification of the right ideal lattice of
LS(M) with the projection lattice P(M). In particular, Theorem 1.3 is a corollary
of von Neumann’s results above. See also the article [14] by Goodearl, which deals
with the history of the study of regular rings in connection with functional analysis.

Von Neumann’s theory, applied to the setting of von Neumann algebras, is valid
only for finite von Neumann algebras. In this thesis, we proved that there exists
a complete correspondence between lattice isomorphisms and ring isomorphisms in
the general setting of von Neumann algebras. Hence the author believes that one
might be able to generalize von Neumann’s theory to a broader class of lattices that
covers projection lattices of any von Neumann algebras (of fixed order n ≥ 3 or 4).
This is left as a research program in the future.
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