2019”N“xSƒZƒƒXƒ^[
ŒŽ—j“ú15:00 --@ 470†Žº
‹à—j“ú15:00 --@470†Žº
4ŒŽ8“úiŒŽj16:00 --
쓇 –²l -- LKB representations and Reidemeister torsions
4ŒŽ15“úiŒŽj 15:00 --
–]ŒŽ ŒúŽu -- Casson-Walker invariant of 3-manifolds with genus one open book
decompositions
4ŒŽ22“úiŒŽj 15:00 --
Daniel Matei -- Computing volumes of cone 3-manifolds
4ŒŽ26“úi‹àj 13:00 --
ó”ö ‘וF -- Magnitude homology of CAT(κ) spaces
5ŒŽ10“úi‹àj 15:00 --
ó”ö ‘וF -- Magnitude homology of CAT(κ) spaces
5ŒŽ20“úiŒŽj 15:00 --
²“¡ ŒºŠî --
Fibrations over simlices and geometric realizations
of families in Homotopy Type Theory
5ŒŽ24“úi‹àj13:00 --
Lecture by Maria de los Angeles Guevara
- Introduction to Khovanov homology and its applications
5ŒŽ27“úiŒŽj 15:00 --
‹g“c ƒ --
Discussion session on categorification of Vassiliev invariants
5ŒŽ31“úi‹àj 15:00 --
“nç³ ‘, ˆÉ“¡ ¸ --
Discussion session on an affine R-matrix and Khovanov homology
6ŒŽ21“úi‹àj 16:00 --
쓇 –²l -- LKB representations and Reidemeister torsions of mapping tori
6ŒŽ24“úiŒŽj 15:00 --
‹g“c ƒ --
Spectral sequence for homology of homotopy algebra I
6ŒŽ28“úi‹àj 17:00 --
ˆÉ“¡ ¸, ‹g“c ƒ --
Discussion session on categorification of
Vassiliev invariants
7ŒŽ1“úiŒŽj 15:00 --
‹g“c ƒ --
Spectral sequence for homology of homotopy algebra II
7ŒŽ8“úiŒŽj 15:00 --
ŽáŒŽ x --
Brane coproducts and their applications
7ŒŽ22“úiŒŽj 15:00 --
²“¡ ŒºŠî --
Fibrations over simlices and geometric realizations
of families in Homotopy Type Theory
2018”N“xAƒZƒƒXƒ^[
‘åŠw‰@W’†ƒZƒ~ƒi[ 9ŒŽ15“ú -- 18“ú
Room 117, Graduate School of Mathematical Sciences,
the University of Tokyo
“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È117u‹`Žº
Program
[Sat, Sep 15]
10:15-11:45 Sergei BURKIN, ƒZƒ‹ƒQƒC ƒuƒ‹ƒLƒ“
Learning from hierarchy via persisitence forests, with applications to graph learning
14:00-15:30 SATO Genki, ²“¡ ŒºŠî
Geometric realization of semisimplicial sets in homotopy type theory
16:00-17:30 LIN Dexie, —Ñ íž™×
Superconnections and relative Chern characters
[Sun, Sep 16]
10:15-11:45 KITAMURA Takuma, –k‘º ‘ñ^
Grothendieck-Teichmüller grouop and its action on knots
14:00-15:30 TANAKA Toshiki, “c’† r‹P
On stability conjecture for Chari-Presseley-Loktev basis of (local) Weyl modules over sl_3[t]
16:00-17:30 Oleksii LEONTIEV, ƒAƒŒƒbƒNƒX ƒŒƒIƒ“ƒ`ƒGƒt
Symmetry breaking operators for the restriction of representations of indefinite orthogonal groups O(p, q)
[Mon, Sep 17]
10:15-11:45 KIM Minkyu Kim, ƒLƒ€ ƒ~ƒ“ƒMƒ…
Dijkgraaf-Witten theory
14:00-15:30 KAKU Soichiro, ‰Á—ˆ @ˆê˜Y
Extension of quandle cocycle invariants to pseudo functors
16:00-17:30 YOSHIDA Jun, ‹g“c ƒ
An operadic approach to involutions and dihedral homology
[Tue, Sep 18]
10:15-11:45 KATO Hiroki, ‰Á“¡‘å‹P
On l-independence of trace of monodromy
14:00-15:30 KAWASHIMA Yumehito, 쓇 –²l
A family of representations of mapping class groups
Titles and Abstracts
2018”N“xAƒZƒƒXƒ^[‘åŠw‰@ƒZƒ~ƒi[
ŒŽ—j“ú15:00 --@ 470†Žº
‹à—j“ú15:00 --@470†Žº
10ŒŽ1“úiŒŽj16:00 --
•Ÿ›¸ãÄ‘¾ -- Pseudodifferential operators in non-compact spaces
10ŒŽ12“úi‹àj 15:00 --
Sergei Burkin -- Persisitence forests
10ŒŽ22“úiŒŽj16:30 --
‰Á—ˆ @ˆê˜Y -- Calculation of pseudo functors for 2-category of
braid cobordisms with quandle colorings
10ŒŽ26“úi‹àj16:30 --
‹g“c ƒ -- Crossed ∞-groups
10ŒŽ29“úiŒŽj16:30 --
²“¡ ŒºŠî -- On a simpler construction of the geometric realization in
HoTT
11ŒŽ9“úi‹àj15:00 --
Special lecture by Daniel Matei
Title: Volumes of knot and link cone-manifolds
Abstract: I will discuss geometric structures on cone-manifolds associated to
knots and links in the 3-sphere and I will outline a method to compute their volumes.
11ŒŽ12“úiŒŽj15:00 --
Discussion session on category from operads
11ŒŽ19“úiŒŽj15:00 --
‰Á—ˆ @ˆê˜Y -- Pseudo functors for 2-category of
braid cobordisms with quandle colorings
11ŒŽ26“úiŒŽj15:00 --
ˆÉ“¡ ¸ -- On the degree three case of Goussarov-Polyak-Viro Conjecture of knots
12ŒŽ3“úiŒŽj15:00 --
‰Á—ˆ @ˆê˜Y -- Pseudo functors for 2-category of
braid cobordisms with quandle colorings
12ŒŽ7“úi‹àj16:30 --
Discussion session on categorification of Vassiliev invariants
(led by Noboru Ito)
12ŒŽ14“úi‹àj16:30 --
²“¡ ŒºŠî -- Geometric realization of simplicial sets in HoTT
1ŒŽ28“úiŒŽj15:00 --
ó”ö ‘וF -- Magnitude homology
1ŒŽ31“úi–Øj17:00 --
‰Á—ˆ @ˆê˜Y -- Presentation of master thesis
2018”N“xSƒZƒƒXƒ^[
ŒŽ—j“ú15:00 --@ 470†Žº
‹à—j“ú15:00 --@470†Žº
4ŒŽ6“úi‹àj17:00 --
ó”ö ‘וF -- Orbifold string topology
4ŒŽ9“úiŒŽj‹g“c ƒ -- Crossed interval groups and multi-categories
4ŒŽ13“úi‹àj²“¡ ŒºŠî -- Homotopy type theory
4ŒŽ16“úiŒŽjSergei Burkin -- Topolocal data analysis and machine learning
4ŒŽ23“úiŒŽj쓇 –²l -- Dilatation of pseudo-Anosov
braids and fixed point theory
4ŒŽ27“úi‹àj‹g“c ƒ -- Crossed interval groups and multi-categories
5ŒŽ7“úiŒŽj‰Á—ˆ @ˆê˜Y -- Quandle colored surface braids
5ŒŽ25“úi‹àj16:40 --
Minkyu Kim -- A K-theoretical Dijkgraaf-Witten theory
5ŒŽ28“úiŒŽj–k‘º ‘ñ^ -- Drinfeld associator
6ŒŽ1“úi‹àj‹g“c ƒ -- Categories of operators of multi-categories with symmtries
6ŒŽ18“úiŒŽj²“¡ ŒºŠî -- Geometric realization in HoTT
6ŒŽ22“úi‹àj‹g“c ƒ -- Symmetries on algebras and Hochschild homology in view of categories of operators
6ŒŽ25“úiŒŽj‰Á—ˆ @ˆê˜Y -- Quandle colored surface braids
7ŒŽ2“úiŒŽj16:00 --
쓇 –²l -- Dilatation of pseudo-Anosov
braids and fixed point theory
7ŒŽ6“úi‹àjMinkyu Kim -- A K-theoretical Dijkgraaf-Witten theory
2017”N“xAƒZƒƒXƒ^[
‘åŠw‰@W’†ƒZƒ~ƒi[ 9ŒŽ19“ú -- 21“ú, 23“ú, 25“ú
ƒvƒƒOƒ‰ƒ€
ŒŽ—j“ú15:00 --@ 156†Žº
‹à—j“ú15:00 --@ 156†Žº
10ŒŽ2“ú@iŒŽj
‹g“c ƒ -- Crossed groups and symmetries on monoidal categories
10ŒŽ6“ú@i‹àj 13:00-
–k‘º ‘ñ^ -- Drinfeld associators
10ŒŽ13“ú@i‹àj 17:00-
‰Á—ˆ @ˆê˜Y -- Braid cobordisms and 2-categories
10ŒŽ20“ú@i‹àj 13:00- Room 154
²“¡ ŒºŠî -- Homotopy type theory
10ŒŽ27“ú@i‹àj
‹Ê”ö ‘ôŽ¡ -- Half density quantization of the moduli space of flat
connections
11ŒŽ6“ú@iŒŽj
–k‘º ‘ñ^ -- Drinfeld associators
11ŒŽ10“ú@i‹àj
‰Á—ˆ @ˆê˜Y -- Representations of the 2-categories of quandle colored braid cobordisms
11ŒŽ13“ú@iŒŽj
Sergei Burkin -- Non-commutative probability theory
11ŒŽ20“ú@iŒŽj
‹g“c ƒ -- Crossed interval groups and multi-categories
11ŒŽ24“ú@i‹àj 17:00 --
‹Ê”ö ‘ôŽ¡ -- Real polarization of the moduli space of flat
connections
11ŒŽ27“ú@iŒŽj
–k‘º ‘ñ^ -- Kontsevich integrals and Drinfeld associators
12ŒŽ1“ú@i‹àj10:00 - Room 156
Sergei Burkin -- Non-commutative probability theory
12ŒŽ4“ú@iŒŽj
Adrian Jimenez Pascual -- Adequacy and crossing numbers
of satellite knots
12ŒŽ18“ú@iŒŽj
쓇–²l -- Fixed point theory and dilatation
12ŒŽ22“ú@i‹àj
‹Ê”ö ‘ôŽ¡ -- Real polarization of the moduli space of flat
SO(3)-connections on surfaces
12ŒŽ25“ú@iŒŽj
쓇 –²l -- Fixed point theory and dilatation
1ŒŽ5“ú@i‹àj
쓇–²l -- A new relationship between the dilatation of pseudo-Anosov
braids and fixed point theory
1ŒŽ22“ú@iŒŽj
‹Ê”ö ‘ôŽ¡ -- Real polarization of the moduli space of flat
SO(3)-connections on surfaces
1ŒŽ26“ú@i‹àj 17:00-
Sergei Burkin -- Geometric realizations of dendroidal sets
2ŒŽ13“ú@i‰Îj 10:00- Room 126
Arthur Soulié -- Long-Moody constructions
2017”N“xSƒZƒƒXƒ^[
ŒŽ—j“ú16:00 --@ 156†Žº
‹à—j“ú15:00 --@ 156†Žº
4ŒŽ10“ú@iŒŽj
ó”ö ‘וF -- Orbifold string topology
4ŒŽ14“ú@i‹àj
²“¡ ŒºŠî -- Homotopy Type Theory
4ŒŽ17“ú@iŒŽj
–k‘º ‘ñ^ -- Mordell-Weil theorem
4ŒŽ24“ú@iŒŽj
‰Á—ˆ @ˆê˜Y -- Legendrian knots
5ŒŽ1“ú@iŒŽj
Sergei Burkin -- Operads
5ŒŽ8“ú@iŒŽj
Adrian Jimenez Pascual -- Adequacy of knots in a solid torus
5ŒŽ12“ú@i‹àj
‹g“c ƒ -- Cobordism hypethesis and graphical calculus
5ŒŽ15“ú@iŒŽj
‹Ê”ö ‘ôŽ¡ -- Bohr-Sommerfeld orbits
5ŒŽ22“ú@iŒŽj
–k‘º ‘ñ^ -- Construction of knot invariants
5ŒŽ29“ú@iŒŽj
쓇 –²l -- Fixed point theory and dilatation numbers
6ŒŽ2“ú@i‹àj
‰Á—ˆ @ˆê˜Y -- Khovanov homology
6ŒŽ9“ú@iŒŽj
ó”ö ‘וF -- Loop groupoids for orientable orbifolds
6ŒŽ12“ú@iŒŽj
Sergei Burkin -- Operads
6ŒŽ19“ú@iŒŽj
‹Ê”ö ‘ôŽ¡ -- Bohr-Sommerfeld orbits
6ŒŽ23“ú@i‹àj 16:00-
‰Á—ˆ @ˆê˜Y -- Khovanov homology and link cobordisms
6ŒŽ26“ú@iŒŽj17:00-
–k‘º ‘ñ^ -- Ribbon category
6ŒŽ30“ú@i‹àj
²“¡ ŒºŠî -- Homotopy Type Theory
7ŒŽ10“ú@iŒŽj
‹Ê”ö ‘ôŽ¡ -- Bohr-Sommerfeld orbits
7ŒŽ14“ú@i‹àj
Adrian Jimenez Pascual -- Crossing numbers of satellite knots
7ŒŽ24“ú@iŒŽj
–k‘º ‘ñ^ -- Ribbon category and quantum groups
7ŒŽ28“ú@i‹àj
‰Á—ˆ @ˆê˜Y -- Category of quandle colored 2-braids
2016”N“xAƒZƒƒXƒ^[
‘åŠw‰@W’†ƒZƒ~ƒi[ 9ŒŽ7“ú -- 9ŒŽ10“ú
ƒvƒƒOƒ‰ƒ€
9ŒŽ23“ú@i‹àj
ó”ö ‘וF -- Loop homology of spherical orbifolds
9ŒŽ26“ú@iŒŽj@17:30 -- (FMSP LecturesI—¹Œã)
™ŽR ‘ -- A_infty Koszul dual and Fukaya categories
9ŒŽ30“ú@i‹àj@16:00 --
²“¡ ŒºŠî -- Homotopy type theory and fillability of cubes,
simplices and simplex-shaped diagrams
10ŒŽ4“ú@i‰Îj@17:00 --
¬ì ŠG—¢ˆß -- Alexander polynomial of spatial graphs and
a generalization of Burau representation
10ŒŽ7“ú@i‹àj@17:00 --
‹Ê”ö ‘ôŽ¡ -- Reduction of symplectic manifolds by Lie group actions
10ŒŽ17“ú@iŒŽj@15:00 --
Ε аK -- Non contractible periodic orbits for Hamiltonian equations
10ŒŽ20“ú@i–Øj@15:00 -- 270†Žº
²“¡ ŒºŠî -- Homotopy type theory and fillability of cubes,
simplices and simplex-shaped diagrams
10ŒŽ28“ú@i‹àj@15:00 --
¬ì ŠG—¢ˆß -- Alexander polynomial of spatial graphs and
a generalization of Burau representation
10ŒŽ31“ú@iŒŽj@15:00 --
Adrian Jimenez Pascual -- Minimal Language Expression
11ŒŽ7“ú@iŒŽj@15:30 --
‹Ê”ö ‘ôŽ¡ -- Lagrangian classical field theory
11ŒŽ14“ú@iŒŽj15:00 --
ó”ö ‘וF -- Loop homology of some global quotient orbifolds
11ŒŽ24“ú@i–Øj@13:00 -- 270†Žº
²“¡ ŒºŠî -- Homotopy type theory and fillability of cubes,
simplices and simplex-shaped diagrams
11ŒŽ29“ú@i‰Îj@15:00 -- 056†Žº
‹g“c ƒ -- Graphical calculus on cobordisms
12ŒŽ2“ú@i‹àj@15:00 --
¬ì ŠG—¢ˆß -- Alexander polynomial of spatial graphs and
a generalization of Burau representation
12ŒŽ5“ú@iŒŽj@15:00 --
‹Ê”ö ‘ôŽ¡ -- Prequantization and integrability condition
12ŒŽ9“ú@i‹àj@15:00 --
Ε аK -- Non contractible periodic orbits for Hamiltonian equations
12ŒŽ12“ú@iŒŽj@16:30 --
쓇 –²l -- A trace formula for the forcing relation of braids
1ŒŽ13“ú@i‹àj@15:00 --
ˆ¢•” ‰‹ó¯ -- 4-cycles of Alexander quandles on finite fields
1ŒŽ23“ú@iŒŽj@15:00 --
CŽm˜_•¶‚Ì“à—e‚Ì”•\ -- ΕA¬ì
1ŒŽ27“ú@i‹àj@15:00 --
CŽm˜_•¶‚Ì“à—e‚Ì”•\ -- ó”öA²“¡
1ŒŽ30“ú@iŒŽj@15:00 --
”ŽŽm˜_•¶‚Ì“à—e‚Ì”•\ -- “¡“à
2016”N“xSƒZƒƒXƒ^[
4ŒŽ15“ú@i‹àj
ó”ö ‘וF -- Orbifold string topology
4ŒŽ18“ú@iŒŽj
“¡“à ãÄ‘¾ -- CAT(0)-properties of orthoscheme complexes
4ŒŽ22“ú@i‹àj
Sergei Burkin -- The theory of operads
4ŒŽ25“ú@iŒŽj
²“¡ ŒºŠî -- Homotopy type theory
5ŒŽ2“ú@iŒŽj
‹g“c ƒ -- Monoidal algebraic theories
5ŒŽ6“ú@i‹àj
‹Ê”ö ‘ôŽ¡ -- Foliations and symplectic reductions
5ŒŽ9“ú@iŒŽj
쓇 –²l -- Nielsen-Thurston classifications of braids
5ŒŽ13“ú@i‹àj
™ŽR ‘ -- A_infty Koszul dual and Fukaya categories
5ŒŽ16“ú@iŒŽj
Sergei Burkin -- Cyclic, modular and strong homotopy operads
5ŒŽ23“ú@iŒŽj 17:00 --
ó”ö ‘וF -- Orbifold string topology
5ŒŽ27“ú@i‹àj 17:00 --
‹Ê”ö ‘ôŽ¡ -- Moment maps
5ŒŽ30“ú@iŒŽj
²“¡ ŒºŠî -- Geometric realizations in homotopy type theory
6ŒŽ3“ú@i‹àj
“¡“à ãÄ‘¾ -- A representation theorem for locally distributive semi-lattices
6ŒŽ6“ú@iŒŽj
Ε аK -- Non contractible periodic orbits for Hamiltonian equations
6ŒŽ13“ú@iŒŽj
¬ì ŠG—¢ˆß -- Presentations of knot groups and Fox free differential calculus
6ŒŽ20“ú@iŒŽj
‹Ê”ö ‘ôŽ¡ -- G-equivariant moment maps and affine orbits
6ŒŽ24“ú@i‹àj 13:00 --
²“¡ ŒºŠî -- Path spaces associated with categories in HoTT
6ŒŽ27“ú@iŒŽj
쓇 –²l -- Nielsen-Thurston classification
7ŒŽ1“ú@i‹àj
ó”ö ‘וF -- Loop homology of spherical odd orbifolds
7ŒŽ4“ú@iŒŽj 17:00 --
‹g“c ƒ -- Relative Morse theory
7ŒŽ8“ú@i‹àj
Ε аK -- Existence of non-contractible orbits for Hamiltonian functions
separating two disjoint meridians on tori
7ŒŽ11“ú@iŒŽj
“¡“à ãÄ‘¾ -- Orthoscheme complex of locally distributive semilattices
7ŒŽ22“ú@i‹àj
¬ì ŠG—¢ˆß -- Alexander polynomial of spatial graphs and a generalization of Burau representation
2015”N“xAƒZƒƒXƒ^[
9ŒŽ15“ú@i‰Îj
ŠÖŒû ~ -- Salvetti complex for relative configuration spaces
9ŒŽ18“ú@i‹àj
²“¡ ŒºŠî -- Homotopy type theory
W’†ƒZƒ~ƒi[
9/19 -- 20 iŠe“ú 10:00 -- 18:00 ) 056†Žº
9/19i“yj
10:00 -- Adrian Jimenez Pascual@13:00 -- ó”ö ‘וF, “¡“à ãÄ‘¾
9/20i“új
10:00 -- ¬ì ŠG—¢ˆß @13:00 -- ‹g“c ƒ, 쓇 –²l, ¼‰º ®O
Adrian Jimenez Pascual, Lassos' wrapping numbers and inversion number
ó”ö ‘וF, Orbifolds
“¡“à ãÄ‘¾, CAT(0) property for orthoscheme complex
¬ì ŠG—¢ˆß, Arf invariants and Jones polynomial
‹g“c ƒ, Morse theory for embedded manifolds and string calculus for pivotal categories
쓇 –²l, Train-tracks for surface homeomorphims
¼‰º ®O, Loop space construction for 2-colored graphs
9ŒŽ22“ú@i‰Îj
™ŽR ‘ -- Tree Koszul algebras and Fukaya categories
9ŒŽ29“ú@i‰Îj
Ε аK -- Symplectic capacity
10ŒŽ2“ú@i‹àj
‹g“c ƒ -- Morse theory for arrangements
10ŒŽ6“ú@i‰Îj
ó”ö ‘וF -- Orbifolds and groupoids
10ŒŽ20“ú@i‰Îj
Ε аK -- Symplectic capacity and displacement energy
10ŒŽ23“ú@i‹àj
ŠÖŒû ~ -- Salvetti complex for relative configuration spaces
10ŒŽ30“ú@i‹àj
¬ì ŠG—¢ˆß -- Rational tangles and applications to biological sciences
11ŒŽ17“ú@i‰Îj
²“¡ ŒºŠî -- Geometric realizations in HoTT
11ŒŽ20“ú@i‹àj
ŠÖŒû ~ -- Salvetti complex for relative configuration spaces
11ŒŽ24“ú@i‰Îj
™ŽR ‘ -- Tree Koszul algebras and Fukaya categories
12ŒŽ1“ú@i‰Îj
Ε аK -- Symplectic Floer homology
12ŒŽ4“ú@i‹àj
ó”ö ‘וF -- Transfer principle in model categories
12ŒŽ8“ú@i‰Îj
¬ì ŠG—¢ˆß -- Double branched coverings for 2-bridge knots
12ŒŽ11“ú@i‹àj
ŠÖŒû ~ -- Salvetti complex for relative configuration spaces
12ŒŽ15“ú@i‰Îj
²“¡ ŒºŠî -- Geometric realizations in HoTT
12ŒŽ18“ú@i‹àj
¼‰º ®O -- ”ŽŽm˜_•¶‚Ì“à—e‚ɂ‚¢‚Ä
W’†ƒZƒ~ƒi[
1/15 -- 17 iŠe“ú 10:00 -- 17:45) 118†Žº
1/15i‹àj–Ø‘ºA‰Á“¡AΕ
1/16i“yj™ŽRA³–ØAŽáŒŽA–ìè
1/17i“új’ÒA¡–ìAŠÖŒû
–Ø‘º –³ŒÀƒuƒŒƒCƒhŒQ‚ÌŒðŠ·Žq•”•ªŒQã‚Ì‹¤–ð•s•σmƒ‹ƒ€
‰Á“¡ —ޑ̘_‚Æ”˜_Šô‰½
Ε Spectral invariants and energy capacity inequality
™ŽR On the geometric Koszul dual of directed higher Koszul algebra
³–Ø Skyrmion Dynamics
ŽáŒŽ Description and trivivality of the loop products and coproducts for
rational Gorenstein spaces
–ìè The preimage of a knot in $L(p,q)$ under the covering map $S^3 \to
L(p,q)$.
’Ò ƒXƒPƒCƒ“‘㔂ɂæ‚é®”3-ƒzƒ‚ƒƒW[‹…–ʂ̕s•Ï—Ê
¡–ì Bound on genus and configurations of embedded surfaces in 4-manifolds
ŠÖŒû ‘Š‘Î”z’u‹óŠÔ‚ÌSalvetti•¡‘̂ƃRƒzƒ‚ƒƒW[ŒQ
1ŒŽ22“ú@i‹àj 13:00 -- 15:00
²“¡ ŒºŠîAŠÖŒû ~ -- CŽm˜_•¶‚Ì“à—e‚Ì”•\
2015”N“xSƒZƒƒXƒ^[
4ŒŽ7“ú@i‰Îj
Adrian Jimenez Pascual -- Lassos' satellites
4ŒŽ10“ú@i‹àj
쓇 –²l -- Homological representations of braid groups
4ŒŽ17“ú@i‹àj
“¡“à ãÄ‘¾ -- Orthoscheme complex
4ŒŽ24“ú@i‹àj
¬ì ŠG—¢ˆß -- Conway polynomial
4ŒŽ28“ú@i‰Îj
Ε аK -- Convexity theorem for moment maps
5ŒŽ1“ú@i‹àj
ó”ö ‘וF -- Bordisms and generalized homology
5ŒŽ8“ú@i‹àj
™ŽR ‘ -- Introduction to symplectic geometry - Floer homology, mirror symmetry etc
5ŒŽ19“ú@i‰Îj
²“¡ ŒºŠî -- Homotopy type theory
5ŒŽ22“ú@i‹àj
‹g“c ƒ -- Simplicial categories and homotopy limits
5ŒŽ26“ú@i‰Îj
¬ì ŠG—¢ˆß -- Slice knots and signature
5ŒŽ29“ú@i‹àj
Ε аK -- Morse homology
6ŒŽ2“ú@i‰Îj
ó”ö ‘וF -- Index theorem
6ŒŽ5“ú@i‹àj
쓇 –²l -- Burau representation and Nielsen-Thurston classification of braids
6ŒŽ9“ú@i‰Îj
¼‰º ®O -- Box complex and model structures on the category of graphs
6ŒŽ12“ú@i‹àj
ŠÖŒû ~ -- Salvetti complex
6ŒŽ19“ú@i‹àj
Ε аK -- Morse homology
7ŒŽ7“ú@i‰Îj
Adrian Jimenez Pascual -- Wrapping numbers
7ŒŽ10“ú@i‹àj
Special lecture by Carlos Moraga Ferrándiz
on Morse-Novikov theory
2014”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
9/19 -- 23 iŠe“ú 10:00 -- 18:00 ) 128†Žº
9/19i‹àj
10:00 -- ¼‰º ®O@13:20 -- Adrian Jimenez Pascual
9/20i“yj
10:00 -- ‹g“c Œšˆê @13:00 -- –ìè —Y‘¾, “c’†—Yˆê˜Y
9/21i“új
10:00 -- Ž›“ˆ ˆè“ñ@13:00 -- ™ŽR ‘, ‹« Œ\ˆê, ó–ì ’mh, ³–Ø—S•ã
9/22iŒŽj
10:00 -- “¡“à ãÄ‘¾@16:20 -- ‹g“cƒ
9/23i‰Îj
10:00 -- 쓇 –²l@13:00 -- ²“¡ ŒºŠî, ŠÖŒû ~, Adrian Jimenez Pascual
¼‰º ®O -- r-neighborhood complex
Adrian Jimenez Pascual -- Differentiating lassos' satellites
‹g“c Œšˆê -- Stable presentation length of 3-manifold groups
–ìè —Y‘¾ -- LMO functor
“c’† —Yˆê˜Y -- Visible actions and harmonic analysis on spherical varieties
Ž›“ˆ ˆè“ñ -- ƒxƒCƒŠƒ“ƒ\ƒ“—Þ‚Ì–¾Ž¦“I‚È\¬
™ŽR ‘ -- ‹È–ÊLefschetz‘©‚ÆFukaya-SeidelŒ—‚ɂ‚¢‚Ä
‹« Œ\ˆê -- Haefliger •s•ϗʂւ̔z’u‹óŠÔÏ•ª‚ð—p‚¢‚½ƒAƒvƒ[ƒ`
ó–ì ’mh -- Correspondence and TQFT
³–Ø —S•ã -- Andreev approximation for inhomogeneous superconductor
“¡“à ãÄ‘¾ -- Frobenius complexes
‹g“c ƒ -- Inj-Skeletons and a new construction of cubical sites
쓇 –²l -- A family of representations of braid groups on surfaces
²“¡ ŒºŠî -- An introduction to homotopy type theory
ŠÖŒû ~ -- Morse-Novikov theory
10ŒŽ10“ú@i‹àj
ŠÖŒû ~ -- Morse-Novikov theory
10ŒŽ21“ú@i‰Îj
‹g“c ƒ -- Inj-Skeletons and a new construction of cubical sites
10ŒŽ24“ú@i‹àj
‹g“c ƒ -- Inj-Skeletons and a new construction of cubical sites
10ŒŽ28“ú@i‰Îj
Adrian Jimenez Pascual -- Lassos' satellites
10ŒŽ31“ú@i‹àj 18:00 --
Adrian Jimenez Pascual -- Lassos' satellites
11ŒŽ4“ú@i‰Îj
²“¡ ŒºŠî -- Homotopy type theory
11ŒŽ7“ú@i‹àj
‹g“c ƒ -- Inj-Skeletons and a new construction of cubical sites
11ŒŽ11“ú@i‰Îj
ŠÖŒû ~ -- Morse-Novikov theory
12ŒŽ2“ú@i‹àj
‹g“c ƒ -- A general method to construct cube-like categories
12ŒŽ9“ú@i‰Îj
ŠÖŒû ~ -- Morse theory on Grassmann manifolds
1ŒŽ13“ú@i‰Îj
‹g“c ƒ, Adrian Jimenez Pascual -- CŽm˜_•¶‚Ì”•\
1ŒŽ16“ú@i‹àj
‹g“c ƒ -- Test categories
1ŒŽ20“ú@i‰Îj
¼‰º ®O --
Categorification•׋‰ï
ŒŽ—j“ú@16:30 -- 18:00, 002†Žº
5ŒŽ19“ú (ŒŽ)
“y‰ª r‰î -- 2-representations of sl_2
6ŒŽ9“ú (ŒŽ)
‹g“c ƒ -- Higher categories in homotopy theory
7ŒŽ14“ú (ŒŽ)
17:00 --
Adrian Jimenez Pascual -- Khovanov homology
11ŒŽ17“ú (ŒŽ)
¼‰º ®O -- Model category
12ŒŽ8“ú (ŒŽ)
“y‰ª r‰î -- Khovanov-Lauda‚ÌЉî
2014”N“x‰ÄŠwŠú
4ŒŽ8“ú@i‰Îj
–¾Î •ü‰¹ -- Elliptic cohomology
4ŒŽ15“ú@i‰Îj
‹g“c ƒ -- Categorification
4ŒŽ18“ú@i‹àj
Adrian Jimenez Pascual -- Conway polynomial
5ŒŽ2“ú@i‰Îj
¼‰º ®O -- Box complex‚Ì“¯Œ^–â‘è
5ŒŽ9“ú@i‹àj
ŠÖŒû ~ -- Morse homology
5ŒŽ13“ú@i‰Îj
²“¡ ŒºŠî -- Vector fields on spheres (after Adams)
5ŒŽ16“ú@i‹àj
Adrian Jimenez Pascual -- On lassos
5ŒŽ20“ú@i‰Îj
‹g“c ƒ -- Reedy model structures
5ŒŽ27“ú@i‰Îj
ŠÖŒû ~ -- Morse homology
5ŒŽ30“ú@i‹àj
²“¡ ŒºŠî -- Vector fields on spheres (after Adams)
6ŒŽ3“ú@i‰Îj
Adrian Jimenez Pascual -- Jones polynomials of satellite knots
6ŒŽ6“ú@i‹àj
–¾Î •ü‰¹ -- Algebraic K-theory of the 2-category of 2-vector spaces
6ŒŽ10“ú@i‰Îj u‰‰‰ï
Sergei Duzhin (Steklov Institute of Matematics)
-- Bipartite knots
6ŒŽ13“ú@i‹àj
ŠÖŒû ~ -- Morse homology
6ŒŽ17“ú@i‰Îj
²“¡ ŒºŠî -- Vector fields on spheres (after Adams)
6ŒŽ20“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
7ŒŽ1“ú@i‰Îj
“¡“à ãÄ‘¾ -- Frobenius complex
7ŒŽ4“ú@i‹àj
–¾Î •ü‰¹ -- Algebraic K-theory of the 2-category of 2-vector spaces
7ŒŽ8“ú@i‰Îj
Adrian Jimenez Pascual -- Khovanov homology
7ŒŽ11“ú@i‹àj
‹g“c ƒ -- Yoneda's lemma and Reedy model structures
2013”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
9/28 -- 30 iŠe“ú 10:00 -- 18:00 ) 470†Žº
9/28i“yj
10:00 -- ¼‰º ®O 13:00 -- ‹g“c ƒ, –¾Î •ü‰¹, Adrian Jimenez Pascual
9/29i“új
10:00 -- “¡“à ãÄ‘¾ 13:00 -- ™ŽR ‘, 쓇 –²l
9/30iŒŽj
10:00 -- ‹g“c Œšˆê 13:00 -- “c’† —Yˆê˜Y, ³–Ø —S•ã
¼‰º ®O -- r-neighborhood complex
‹g“c ƒ -- Homotopy 2-groupoids of Hausdorff spaces
–¾Î •ü‰¹ -- Quillen's theorem on formal group laws
Adrian Jimenez Pascual -- Alexander polynomial of satellite knots
“¡“à ãÄ‘¾ -- Frobenius complex
™ŽR ‘ -- On connecting two almost complex structures with
estimate of the Nienhuis tensor
쓇 –²l -- (n+1)-holed sphere‚Ìmapping class group‚ɂ‚¢‚Ä
‹g“c Œšˆê -- 3ŽŸŒ³‘o‹È‘½—l‘̂̑ÌςƊî–{ŒQ
“c’† —Yˆê˜Y -- Decompositions and representations of Lie groups
³–Ø —S•ã -- ƒgƒ|ƒƒWƒJƒ‹’´“`“±‰Qc’†‚Ì‘©”›€ˆÊ‚ɑ΂·‚é•sƒ•¨Œø‰Ê
10ŒŽ8“ú@i‰Îj
–¾Î •ü‰¹ -- Quillen's theorem on formal group laws
10ŒŽ11“ú@i‹àj
쓇 –²l -- (n+1)-holed sphere‚Ìmapping class group‚ɂ‚¢‚Ä
10ŒŽ15“ú@i‰Îj
“¡“à ãÄ‘¾ -- Frobenius complex
10ŒŽ18“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
10ŒŽ22“ú@i‰Îj
Adrian Jimenez Pascual -- On Lassos
10ŒŽ25“ú@i‹àj
‹g“c ƒ -- Simplicial method in ƒÖ-groupoids
10ŒŽ29“ú@i‰Îj
쓇 –²l -- Linearity of the mapping class groups of surfaces
of genus zero with boundary
11ŒŽ1“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
11ŒŽ5“ú@i‰Îj
쓇 –²l -- Linearity of the mapping class groups of surfaces
of genus zero with boundary
11ŒŽ8“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
11ŒŽ12“ú@i‰Îj
“¡“à ãÄ‘¾ -- Frobenius complex
11ŒŽ19“ú@i‰Îj
쓇 –²l -- Linearity of the mapping class groups of surfaces
of genus zero with boundary
11ŒŽ22“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
11ŒŽ26“ú@i‰Îj
쓇 –²l -- Linearity of the mapping class groups of surfaces
of genus zero with boundary
11ŒŽ29“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
12ŒŽ10“ú@i‰Îj
‹g“c ƒ -- The homotopy hypothesis on algebraic Kan complex
12ŒŽ13“ú@i‹àj
™ŽR ‘ -- Fukaya-Seidel categories of Lefschetz fibrations
12ŒŽ17“ú@i‰Îj
Adrian Jimenez Pascual --
Alexander polynomials of satellite knots
12ŒŽ20“ú@i‹àj
–¾Î •ü‰¹ -- elliptic genus
12ŒŽ24“ú@i‰Îj
Carlos Moraga Ferrándiz --
s-cobordism theorem and Latour's theorem
1ŒŽ17“ú@i‹àj
Presentation of master thesis
2013”N“x‰ÄŠwŠú
4ŒŽ9“ú@i‰Îj
쓇 –²l -- Faithful representation of the Artin group of type B
4ŒŽ12“ú@i‹àj16:00 --
¼‰º ®O -- r-fundamental groups of graphs
4ŒŽ23“ú@i‰Îj
Adrian Jimenez Pascual -- Seifert matrix and Alexander polynomial
4ŒŽ26“ú@i‹àj
‹g“c ƒ -- The geometric realization of a simplicial Hausdorff space is Hausdorff
4ŒŽ30“ú@i‰Îj
–¾Î •ü‰¹ -- K groups
5ŒŽ7“ú@i‰Îj
쓇 –²l -- Faithful representation of the Artin group of type B
5ŒŽ10“ú@i‹àj
™ŽR ‘ -- Fukaya categories of Lefschetz fibrations
5ŒŽ21“ú@i‰Îj
“¡“à ãÄ‘¾ -- Posets and simplicial complexes
6ŒŽ4“ú@i‰Îj
Adrian Jimenez Pascual -- Seifert matrix and Alexander polynomial
6ŒŽ7“ú@i‹àj
쓇 –²l -- Faithful representation of the Artin group of type B
6ŒŽ11“ú@i‰Îj
–¾Î •ü‰¹ -- K groups
6ŒŽ14“ú@i‹àj
‹g“c ƒ -- The geometric realization of a simplicial Hausdorff space is Hausdorff
6ŒŽ18“ú@i‰Îj
Adrian Jimenez Pascual -- Seifert matrix and Alexander polynomial
6ŒŽ21“ú@i‹àj
™ŽR ‘ -- Fukaya categories for surfaces
7ŒŽ9“ú@i‰Îj
쓇 –²l -- Faithful representation of the Artin group of type B
7ŒŽ12“ú@i‹àj
“¡“à ãÄ‘¾ -- Frobenius complex
7ŒŽ23“ú@i‰Îj
™ŽR ‘ -- Fukaya-Seidel categories for Lefschetz fibrations
7ŒŽ26“ú@i‹àj
Adrian Jimenez Pascual -- Seifert matrix and Alexander polynomial
2012”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
9ŒŽ24“ú 10:00 -- 17:00 “¡“àC쓇CAdrian Jimenez Pascual
9ŒŽ25“ú 10:00 -- 16:00 @™ŽRC¼‰º
“¡“à ãÄ‘¾ -- Model categories
쓇 –²l -- Whitehead torsion
Adrian Jimenez Pascual -- Knot polynomials
™ŽR ‘ -- Moduli spaces and transversasity
¼‰º ®O -- Fundamental groups of neighborhood complexes
10ŒŽ2“ú@i‰Îj
“¡“à ãÄ‘¾ -- Model category structure on Top
10ŒŽ5“ú@i‹àj
“¡“à ãÄ‘¾ -- Model category structure on Top
10ŒŽ9“ú@i‰Îj
쓇 –²l -- Whitehead torsion
10ŒŽ23“ú@i‰Îj
™ŽR ‘ -- Moduli spaces and transversasity
10ŒŽ26“ú@i‹àj
‘Œ’J ‹v–î -- Bott-Chern cohomology (j/w D. Angella)
10ŒŽ30“ú@i‰Îj
¼‰º ®O -- Fundamental groups of neighborhood complexes
11ŒŽ2“ú@i‹àj
“¡“à ãÄ‘¾ -- Simplicial methods
11ŒŽ6“ú@i‰Îj
쓇 –²l -- Faithful representations of braid groups
11ŒŽ9“ú@i‹àj
™ŽR ‘ -- Gromov-Witten invariants and quantum cohomology
11ŒŽ19“ú@i‰Îj
•“c ~•v -- Homological representations of braid groups and Jones polynomial
12ŒŽ4“ú@i‰Îj
¼‰º ®O -- Fundamental groups of neighborhood complexes
12ŒŽ11“ú@i‰Îj
“¡“à ãÄ‘¾ -- Simplicial methods
12ŒŽ14“ú@i‹àj
쓇 –²l -- Faithful representations of braid groups
12ŒŽ18“ú@i‹àj
™ŽR ‘ -- Gromov-Witten invariants and quantum cohomology
1ŒŽ8“ú@i‰Îj
¼‰º ®O -- Fundamental groups of neighborhood complexes
1ŒŽ11“ú@i‹àj
•“c ~•v -- Homological representations of braid groups and Jones polynomial
1ŒŽ18“ú@i‹àj
¼‰º ®O, •“c ~•v -- CŽm˜_•¶‚Ì”•\
2ŒŽ15“ú@i‹àj
쓇 –²l -- Faithful representations of braid groups
2ŒŽ19“ú@i‰Îj
“¡“à ãÄ‘¾ -- Lovasz' theorem
2ŒŽ26“ú@i‹àj
Adrian Jimenez Pascual -- Seifert matrix and Alexander polynomial
3ŒŽ1“ú@i‰Îj
™ŽR ‘ -- MacDuff's theorem
2012”N“x‰ÄŠwŠú
4ŒŽ10“ú@i‰Îj
ƒZƒ~ƒi[ƒƒ“ƒo[‚ÌŽ©ŒÈЉî
4ŒŽ17“ú@i‰Îj
™ŽR ‘ -- Symplectic geometry - Darboux theorem, Hamiltonian flow
4ŒŽ20“ú@i‹àj
¼‰º ®O -- Hom complex and test graphs
4ŒŽ24“ú@i‰Îj
“¡“à ãÄ‘¾ -- Category and functors - Yoneda's lemma
5ŒŽ1“ú@i‰Îj
쓇 –²l -- Whitehead torsion
5ŒŽ8“ú@i‰Îj u‰‰‰ï
‹« Œ\ˆê (MB‘åŠw) -- Embedding spaces and string topology
Abstract:
There are several similarities between the topology of embedding spaces and that of (free) loop space.
In this talk I will review the similarities, with a focus on "string topology" for embedding spaces.
5ŒŽ15“ú@i‰Îj
™ŽR ‘ -- Pseudo holomorphic curves
5ŒŽ18“ú@i‹àj
¼‰º ®O -- Fundamental groups of graphs and chromatic numbers
5ŒŽ29“ú@i‰Îj
“¡“à ãÄ‘¾ -- Derived category
6ŒŽ1“ú@i‹àj
쓇 –²l -- Whitehead torsion
6ŒŽ5“ú@i‰Îj
¼‰º ®O -- Fundamental groups of graphs and chromatic numbers
6ŒŽ8“ú@i‹àj
쎺 Œ\Žq (University of Iowa) -- A criterion for tightness
6ŒŽ12“ú@i‰Îj
™ŽR ‘ -- Pseudo holomorphic curves
6ŒŽ29“ú@i‹àj
“¡“à ãÄ‘¾ -- Derived category
7ŒŽ10“ú@i‰Îj
쓇 –²l -- Whitehead torsion
2011”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
9ŒŽ12“ú 10:00 -- 18:00 @ˆÉ“¡, •“c, ´…, ‰Pˆä
9ŒŽ13“ú 10:00 -- 18:00 @‘Œ’J, ⊪, –x–ì, ¼‰º
ˆÉ“¡@Open book foliations I (j/w Keiko Kawamuro)
•“c@Faithful representations of braid groups
´…@Algebraic theory and delooping of free loop spaces
‰Pˆä@On visible L-spaces
‘Œ’J@Dolbeault cohomology of solvmanifolds
–x–ì@Legendrian (m, -n)-torus knot with convex Seifert surface
¼‰º@π*(MU)
10ŒŽ4“ú@i‰Îj
ˆÉ“¡“N–ç -- Open book foliations II : new tightness criterion (j/w Keiko Kawamuro)
10ŒŽ25“ú@i‰Îj
–x–ì‘ד¿ -- Legendrian (m, -n)-torus knot with convex Seifert surface
10ŒŽ28“ú@i‹àj
•“c~•v -- Gassner representations of pure braid groups
11ŒŽ1“ú@i‰Îj
¼‰º®O -- Formal group law
11ŒŽ8“ú@i‰Îj
‰œ“c—²K -- ‘ÎÌ‹óŠÔã‚ÌSL(2,R) ‚̌ŗLì—p‚ƋȖʌQ‚Ì•s˜A‘±ì—p‚ÌŠÖŒW‚ɂ‚¢‚Ä
10ŒŽ25“ú@i‰Îj
–x–ì‘ד¿ -- Legendrian (m, -n)-torus knot with convex Seifert surface
11ŒŽ15“ú@i‰Îj
´…’´‹M -- Algebraic theory and delooping functor of free loop spaces
12ŒŽ13“ú@i‰Îj
‰Pˆä‘ô–ç@On visible L-spaces and smoothing order on links
12ŒŽ21“ú@i…j
ˆÉ“¡“N–ç@LKB representations detect dual Garside length
1ŒŽ6“ú@i‹àj
´…’´‹M -- Algebraic theory and delooping functor of free loop spaces
2011”N“x‰ÄŠwŠú
4ŒŽ12“ú@i‰Îj
ˆÉ“¡“N–ç -- Classification of Wada type representations of braid groups
4ŒŽ15“ú@i‹àj
‘Œ’J‹v–î -- Vaisman metrics on solvmanifolds
4ŒŽ19“ú@i‰Îj
‰Pˆä‘ô–ç -- Ozsvath-Szabo invariant of some Seifert manifolds
4ŒŽ26“ú@i‰Îj
¼‰º®O -- Adams spectral sequence
5ŒŽ10“ú@i‰Îj
•“c~•v -- Faithfulness of Gassner representations of pure braid groups
5ŒŽ13“ú@i‹àj
´…’´‹M -- String topology via Sullivan chord diagrams
5ŒŽ17“ú@i‰Îj
‰Pˆä‘ô–ç -- Heegaard-Floer homology and examples of L-spaces
5ŒŽ20“ú@i‹àj
¼‰º®O -- Adams spectral sequence
5ŒŽ24“ú@i‰Îj
•“c~•v -- Faithfulness of Gassner representations of pure braid groups
5ŒŽ27“ú@i‹àj
⊪—º‘¾ -- String topology for non-simply connected manifolds
6ŒŽ7“ú@i‰Îj
´…’´‹M -- String topology via Sullivan chord diagrams
6ŒŽ10“ú@i‹àj
¼‰º®O -- Adams spectral sequence
6ŒŽ28“ú@i‰Îj
–x–ì‘ד¿ -- Negative torus knots and plumbing in S^3
7ŒŽ1“ú@i‹àj
‰Pˆä‘ô–ç -- Examples of L-spaces and gradings
7ŒŽ5“ú@i‰Îj
•“c~•v -- Monodromy representations of braid groups
7ŒŽ8“ú@i‹àj
¼‰º®O -- CGWH topology
7ŒŽ12“ú@i‰Îj
ˆÉ“¡“N–ç -- Self linking numbers and open book foliations
7ŒŽ19“ú@i‰Îj
Philippe Humbert -- Kontsevich integrals for higher genus
2010”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
10ŒŽ9“ú 10:00 -- 18:00 @–kŽRC‰PˆäC⊪
10ŒŽ10“ú 10:00 -- 18:00 @ˆÉ“¡C–x–ìC•“c
10ŒŽ11“ú 10:00 -- 18:00 @ ‘Œ’JC´…CŒÃì
–kŽR‹M—T -- Homology cylinders of higher order
‰Pˆä‘ô–ç -- Introduction to Heegaard Floer homology
⊪—º‘¾ -- de Rham model for string topology
ˆÉ“¡“N–ç -- An algorithmic approach to Hurwitz equivalences/search problem
–x–ì‘ד¿ -- Legendrian simplicity
•“c~•v -- Faithfulness of Burau representation and Lawrence-Krammer-Bigelow representation
‘Œ’J‹v–î -- Minimal models, formality and hard Lefschetz property of solvmanifolds with local coefficients
´…’´‹M -- Framed n-disks oerad and BV_n-structure
ŒÃì—É -- Convex surface and bypass
10ŒŽ15“ú@i‹àj
‰Pˆä‘ô–ç -- Introduction to Heegaard Floer homology
10ŒŽ19“ú@i‰Îj
–x–ì‘ד¿ -- Legendrian simplicity
10ŒŽ22“ú@i‹àj
•“c~•v -- Faithfulness of Burau representation and Lawrence-Krammer-Bigelow representation
11ŒŽ2“ú@i‰Îj
´…’´‹M -- Framed n-disks operad and BV_n-structure
11ŒŽ5“ú@i‹àj
‘Œ’J‹v–î -- Minimal models, formality and hard Lefschetz property of solvmanifolds with local coefficients
11ŒŽ16“ú@i‰Îj
‰Pˆä‘ô–ç -- Introduction to Heegaard Floer homology
11ŒŽ22“ú@i‹àj
IPMU Komaba Seminar by Tomoo Matsumura
11ŒŽ30“ú@i‰Îj
–x–ì‘ד¿ -- Legendrian knots and plumbing
12ŒŽ3“ú@i‹àj
•“c~•v -- Faithfulness of Lawrence-Krammer-Bigelow representation
12ŒŽ7“ú@i‰Îj
´…’´‹M -- Operads and BV_n-structure for the homology of free loop spaces
12ŒŽ10“ú@i‹àj
ŒÃì—É --
12ŒŽ14“ú@i‰Îj
•“c~•v -- Faithfulness of Lawrence-Krammer-Bigelow representation
12ŒŽ17“ú@i‹àj
⊪—º‘¾ -- de Rham model for string topology
1ŒŽ7“ú@i‹àj
ˆÉ“¡“N–ç -- Alexander invariants and bi-invariant orderings
1ŒŽ11“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
1ŒŽ14“ú@i‹àj
–kŽR‹M—T -- Non-abelian Reidemeister torsion, Morse-Novikov theory and
homology cylinders of higher order
1ŒŽ25“ú@i‰Îj
‰Pˆä‘ô–ç --
2010”N“x‰ÄŠwŠú
4ŒŽ13“ú@i‰Îj
ˆÉ“¡“N–ç -- The space of left orderings on groups and bounded cohomology
4ŒŽ16“ú@i‹àj
‰Pˆä‘ô–ç -- Heegaard diagrams
4ŒŽ20“ú@i‰Îj
‘Œ’J‹v–î -- Formality and hard Lefschetz properties of aspherical spaces
4ŒŽ23“ú@i‹àj
•“c~•v -- Braid groups and Magnus representations
4ŒŽ27“ú@i‰Îj
–x–ì‘ד¿ -- Contact geometry and Lagrangian knots
4ŒŽ30“ú@i‹àj
´…’´‹M -- String topology and ring spectra
5ŒŽ7“ú@i‰Îj
ŒÃì—É -- Integrable plane fields, Frobenius theorem ...
5ŒŽ11“ú@i‰Îj
‰Pˆä‘ô–ç -- Symmetric products of Riemann surfaces
5ŒŽ14“ú@i‹àj
⊪—º‘¾ -- de Rham model for string topology
5ŒŽ18“ú@i‰Îj
–x–ì‘ד¿ -- Invariants of Legendrian knots
5ŒŽ21“ú@i‹àj
´…’´‹M -- String topology and spectra
6ŒŽ1“ú@i‰Îj
•“c~•v -- Burau and Gassner representations
6ŒŽ4“ú@i‹àj
–kŽR‹M—T -- Homology cylinder and higer Reidemeister torsions
6ŒŽ8“ú@i‰Îj
ˆÉ“¡“N–ç -- The space of left orderings on groups
6ŒŽ11“ú@i‹àj
‰Pˆä‘ô–ç -- Heegaard Floer homology
6ŒŽ15“ú@i‰Îj
–x–ì‘ד¿ -- Contact geometry
7ŒŽ13“ú@i‰Îj
•“c~•v -- Burau and Gassner representations
7ŒŽ16“ú@i‹àj
´…’´‹M -- String topology and spectra
2009”N“x“~ŠwŠú
W’†ƒZƒ~ƒi[
9ŒŽ14“ú 10:00 -- 17:00 ‘Œ’JCˆÉ“¡C–kŽR
9ŒŽ15“ú 10:00 -- 17:00 ŒÃìC–Ø‘ºC‹«
10ŒŽ6“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
10ŒŽ13“ú@i‰Îj
‘Œ’J‹v–î -- Polycyclic groups, algebraic hull and formality
10ŒŽ16“ú@i‹àj
ŒÃì—É -- Quamtum invariants after Blanchet et al
10ŒŽ20“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
10ŒŽ23“ú@i‹àj
ˆÉ“¡“N–ç -- Finite orbits of Hurwitz actions on braid systems
10ŒŽ27“ú@i‰Îj
‘Œ’J‹v–î -- Polycyclic groups, algebraic hull and formality
10ŒŽ30“ú@i‹àj
–kŽR‹M—T -- Non-abelian Reidemeister torsion
11ŒŽ6“ú@i‹àj
ŒÃì—É -- Quantum invariants after Blanchet et al
11ŒŽ17“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
11ŒŽ24“ú@i‰Îj
‘Œ’J‹v–î -- Polycyclic groups, algebraic hull and formality
12ŒŽ22“ú@i‹àj
ŒÃì—É -- Quantum invariants after Blanchet et al
2009”N“x‰ÄŠwŠú
4ŒŽ17“ú@i‹àj
‘Œ’J‹v–î -- Polycyclic groups and algebraic hull
4ŒŽ21“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
4ŒŽ24“ú@i‹àj
ˆÉ“¡“N–ç -- Toward Nielsen-Thurston theory for Garside groups
4ŒŽ28“ú@i‰Îj
–kŽR‹M—T -- Non-abelian Reidemeister torsion and Novikov-Morse theory
5ŒŽ1“ú@i‹àj
‘Œ’J‹v–î -- Algebraic hull of polycyclic groups and de Rham homotopy theory
5ŒŽ8“ú@i‹àj
Ivan Marin‚³‚ñ‚É‚æ‚éu‰‰‚ðs‚¢‚Ü‚·D
5ŒŽ12“ú@i‰Îj
ŒÃì—É -- Braid groups - generators and relations
5ŒŽ15“ú@i‹àj
ˆÉ“¡“N–ç -- A new estimate of braid index
5ŒŽ19“ú@i‰Îj
ŒÃì—É -- Braid groups and knots
5ŒŽ22“ú@i‹àj
‘Œ’J‹v–î -- Algebraic hull of polycyclic groups and de Rham homotopy theory
6ŒŽ2“ú@i‰Îj
⊪—º‘¾ -- de Rham model for string topology
6ŒŽ5“ú@i‹àj
–kŽR‹M—T -- Non-abelian Reidemeister torsion and Novikov-Morse theory
6ŒŽ9“ú@i‰Îj
ŒÃì—É -- Braid groups - Alexander theorem
6ŒŽ30“ú@i‰Îj
‘Œ’J‹v–î -- Exponential iterated integrals and solvable completions
7ŒŽ3“ú@i‹àj
⊪—º‘¾ -- de Rham model for string topology
7ŒŽ6“ú@i‰Îj
ŒÃì—É -- Markov theorem
7ŒŽ9“ú@i‹àj
⊪—º‘¾ -- de Rham model for string topology
7ŒŽ10“ú@i‹àj
–kŽR‹M—T -- Non-abelian Reidemeister torsion and Novikov-Morse theory
7ŒŽ21“ú@i‰Îj
ŒÃì—É -- Markov theorem
2008”N“x“~ŠwŠú
10ŒŽ14“ú@i‰Îj
ˆÉ“¡“N–ç -- Braid foliations and Dehornoy floor
10ŒŽ17“ú@i‹àj
‘Œ’J‹v–î -- Hodge numbers of nilmanifolds
10ŒŽ21“ú@i‰Îj
–kŽR‹M—T -- Dehn surgery formula for SU(2) twisted Alexander invariant
10ŒŽ24“ú@i‹àj
⊪—º‘¾ -- String topology
10ŒŽ28“ú@i‰Îj
–Ø‘ºNl -- Knot quandle‚Ì3ŽŸƒzƒ‚ƒƒW[
10ŒŽ31“ú@i‹àj
‘Œ’J‹v–î -- Solvmanifolds
11ŒŽ4“ú@i‰Îj
ŽRŒûËŽi -- Variety of repersentations of knot groups
11ŒŽ14“ú@i‹àj
⊪—º‘¾ -- String topology
11ŒŽ25“ú@i‰Îj
ˆÉ“¡“N–ç -- Braid foliations and Dehornoy floor
12ŒŽ12“ú@i‹àj
–kŽR‹M—T -- Dehn surgery formula for twisted Alexander invariants
12ŒŽ16“ú@i‰Îj
ŽRŒûËŽi -- Variety of repersentations of knot groups
12ŒŽ19“ú@i‹àj
‘Œ’J‹v–î -- Solvmanifolds
1ŒŽ20“ú@i‰Îj
ˆÉ“¡“N–ç -- Thurston type orderings for braids
1ŒŽ23“ú@i‹àj
‹«Œ\ˆê -- Configuration space integrals and Haefliger invariants
2ŒŽ3“ú@i‰Îj
⊪—º‘¾ -- String topology
2008”N“x‰ÄŠwŠú
4ŒŽ15“ú@i‰Îj
“nç²’‰”V -- Kontsevich characteristic classes of unframed disc bundles
4ŒŽ18“ú@i‹àj
ˆÉ“¡“N–ç -- Braid ordering and genus of knots
4ŒŽ22“ú@i‰Îj
–kŽR‹M—T -- Reidemeister torsion forms on character varieties
4ŒŽ25“ú@i‹àj
⊪—º‘¾ -- Whitehead torsion
5ŒŽ2“ú@i‹àj
‘Œ’J‹v–î -- Harmonic integrals in Kaehler geometry
5ŒŽ9“ú@i‹àj
ŠÝ“c^ŒÈ -- Morse theory for path spaces
5ŒŽ13“ú@i‰Îj
ˆÉ“¡“N–ç -- Estimating braid orderings
5ŒŽ16“ú@i‹àj
⊪—º‘¾ -- Morse theory, graphs and string topology
5ŒŽ27“ú@i‰Îj
‘Œ’J‹v–î -- Gromov -Witten invariants
6ŒŽ3“ú@i‰Îj
–kŽR‹M—T -- Symmetries of SL(2, C) character varieties
6ŒŽ6“ú@i‹àj
ŠÝ“c^ŒÈ -- Morse theory for path spaces
6ŒŽ17“ú@i‰Îj
⊪—º‘¾ -- Morse theory, graphs and string topology
6ŒŽ24“ú@i‰Îj
‘Œ’J‹v–î -- Gromov -Witten invariants
6ŒŽ27“ú@i‹àj
ˆÉ“¡“N–ç -- Thurston type orderings for braids
7ŒŽ1“ú@i‰Îj
ŠÝ“c^ŒÈ -- Bott periodicity
7ŒŽ8“ú@i‰Îj
⊪—º‘¾ -- Morse theory, graphs and string topology
7ŒŽ11“ú@i‰Îj
‘Œ’J‹v–î -- Gromov -Witten invariants
7ŒŽ15“ú@i‰Îj
⊪—º‘¾ -- Morse theory, graphs and string topology
2007”N“x“~ŠwŠú
10ŒŽ9“ú@i‰Îj
ˆÉ“¡“N–ç -- A proof of Markov theorem
10ŒŽ12“ú@ i‹àj
–kŽR‹M—T -- Knot group‚Ì•\Œ»‹óŠÔ‚Ætwisted Alexander•s•Ï—Ê
10ŒŽ23“ú@i‰Îj
–Ø‘ºNl -- Knot quandle‚Ì3ŽŸƒzƒ‚ƒƒW[
10ŒŽ26“ú@i‹àj
‹àŽRO“¹ -- Bloch•s•Ï—Ê‚ÆA‘½€Ž®
11ŒŽ6“ú@i‰Îj
ŽR–{Œ°“N -- 2-knots with triple points
11ŒŽ9“ú@i‹àj
ˆÉ“¡“N–ç -- Total order for braids and Nielsen-Thurston theory
11ŒŽ20“ú@i‰Îj
ŽR–{Œ°“N -- 2-knots with triple points
11ŒŽ27“ú@i‰Îj
–kŽR‹M—T -- Knot group‚Ì•\Œ»‹óŠÔ‚Ætwisted Alexander•s•Ï—Ê
12ŒŽ4“ú@i‰Îj
–kŽR‹M—T -- Knot group‚Ì•\Œ»‹óŠÔ‚Ætwisted Alexander•s•Ï—Ê
1ŒŽ11“ú@i‹àj
–Ø‘ºNl -- Knot quandle‚̃zƒ‚ƒƒW[
2007”N“x‰ÄŠwŠú
4ŒŽ17“ú@i‰Îj
ˆÉ“¡“N–ç -- Left invariant total ordering for braids
5ŒŽ1“ú@ i‰Îj
ˆÉ“¡“N–ç -- Left invariant total ordering for braids
5ŒŽ8“ú@i‰Îj
‹àŽRO“¹ -- Extended Bloch groups
5ŒŽ15“ú@i‰Îj
–kŽR‹M—T -- Rational derived series
5ŒŽ18“ú@i‹àj
ŒÜ–¡´‹I -- Twisted K-theory
5ŒŽ29“ú@i‰Îj
ˆÉ“¡“N–ç -- Curve diagrams and band generators
6ŒŽ12“ú@i‰Îj
ŽR–{Œ°“N -- 2-knots with triple points
6ŒŽ15“ú@i‹àj
–kŽR‹M—T -- Rational derived series
6ŒŽ19“ú@i‰Îj
‹àŽRO“¹ -- Extended Bloch groups
7ŒŽ3“ú@i‰Îj
ЯԼNl -- Knot quandles
7ŒŽ10“ú@i‰Îj
ˆÉ“¡“N–ç --
7ŒŽ13“ú@i‹àj
ŒÜ–¡´‹I -- Twisted K-theory
7ŒŽ17“ú@i‰Îj
ŽR–{Œ°“N -- Quandle cocycle invariants for 2-knots with triple points
7ŒŽ20“ú@i‹àj
ŽRŒûËŽi -- Twisted Alexander invariants
‹ÊŒ´ƒZƒ~ƒi[
9ŒŽ8“ú@14:00 @‚©‚ç@9ŒŽ11“ú 12:00@‚Ü‚Å
2006”N“x“~ŠwŠú
10ŒŽ17“ú@i‰Îj
“¡ˆä_ˆê -- Conjugacy classes of fundamental groups and iterated integrals
10ŒŽ20“ú@i‹àj
’Â@’q -- K(\pi , 1) properties of affine type arrangements
10ŒŽ24“ú@i‰Îj
‹«Œ\ˆê -- Poisson structures on the homology of the space of long knots
10ŒŽ27“ú@i‹àj
—é–Ø—º•½ -- Khovanov invariants and Rasmussen's s-invariatnts for pretzel knots
10ŒŽ31“ú@i‰Îj
–kŽR‹M—T -- Twisted Alexander polynomials
11ŒŽ7“ú@i‰Îj
ŽR–{Œ°“N -- Surface knots
11ŒŽ10“ú@i‹àj
XŽR“N—T -- Casson type invariants and configuration spaces
11ŒŽ14“ú@i‰Îj
Eiko Fukunaga -- Artin irreducibility and reducibility for braids
11ŒŽ17“ú@i‹àj
‹«Œ\ˆê -- Poisson structures on the homology of the space of long knots
12ŒŽ5“ú@i‰Îj
‹àŽRO“¹ -- Genelarized orientations and Bloch groups
12ŒŽ8“ú@i‹àj
–kŽR‹M—T -- Twisted Alexander polynomials and sign determined Reidemeister torsions
12ŒŽ12“ú@i‰Îj
ЯԼNl -- 2nd cohomology of knot quandles
12ŒŽ15“ú@i‹àj
ŽR–{Œ°“N -- Surface knots
1ŒŽ12“ú@i‹àj
“¡ˆä_ˆêC—é–Ø—º•½ -- CŽm˜_•¶‚Ì“à—e
1ŒŽ16“ú@i‰Îj
‹«Œ\ˆê -- ”ŽŽm˜_•¶‚Ì“à—e
1ŒŽ19“ú@i‹àj
–kŽR‹M—T -- Twisted Alexander polynomials and sign determined Reidemeister torsions
2006”N“x‰ÄŠwŠú
4ŒŽ11“ú@i‰Îj
–kŽR‹M—T -- Whitehead torsion and Reidemeister torsion
4ŒŽ14“ú@i‹àj
‹«Œ\ˆê -- Cohomology of the space of knots and loop spaces of configuration spaces
4ŒŽ18“ú@i‰Îj
ŽR–{Œ°“N -- Surface knots
4ŒŽ25“ú@i‰Îj
‹g“c®•F -- Twisted toric structures
4ŒŽ28“ú@i‹àj
—é–Ø—º•½ -- Khovanov homology
5ŒŽ2“ú@i‰Îj
‹g“c®•F -- Twisted toric structures
5ŒŽ12“ú@i‹àj 17:00 --
–kŽR‹M—T -- Whitehead torsion and Reidemeister torsion
5ŒŽ23“ú@i‰Îj
ŽR–{Œ°“N -- Surface knots/braids
5ŒŽ26“ú@i‹àj
“¡ˆä_ˆê -- Iteerated integrals and string topology
5ŒŽ30“ú@i‰Îj
ЯԼNl -- Quandles and loop braid groups
6ŒŽ6“ú@i‰Îj
XŽR“N—T -- A vanishing of Rohlin invariant
6ŒŽ9“ú@i‹àj
–kŽR‹M—T -- Twisted Alexander polynomials
6ŒŽ13“úi‰Îj
ŽR–{Œ°“N -- Surface knots/braids
6ŒŽ30“ú@i‹àj
–kŽR‹M—T -- Novikov homology
7ŒŽ7“úi‹àj
ŽR–{Œ°“N -- Surface knots
2005”N“x“~ŠwŠú
10ŒŽ11“ú@i‰Îj
‹«Œ\ˆê -- Cohomology of the space of knots and loop spaces of configuration spaces
10ŒŽ14“ú@i‹àj
“¡ˆä_ˆê -- Iterated integrals and the cohomology of free loop spaces
10ŒŽ18“ú@i‰Îj
Alexander Stoimenow
10ŒŽ21“ú@i‹àj
—é–Ø—º•½ -- Khovanov homology and slice genus
10ŒŽ25“ú@i‰Îj
“¡ì‹MŽj -- Garside monoid, CAT(0) groups, ...
10ŒŽ28“ú@i‹àj
XŽR“N—T -- Casson invariant and signature
11ŒŽ1“ú@i‰Îj
Alexander Stoimenow --
11ŒŽ4“ú@i‹àj
“¡ˆä_ˆê -- Iterated integrals and the cohomology of free loop spaces
11ŒŽ11“ú@i‹àj
—é–Ø—º•½ -- Khovanov homology and slice genus
11ŒŽ22“ú@i‰Îj
‹àŽRO“¹ --Bloch invariants as characteristic classses
11ŒŽ25“ú@i‹àj
Eiko Fukunaga -- Artin reduciblity in braid groups
11ŒŽ29“ú@i‰Îj
”ª“ˆ—ms --@Geometry of algebroid functions
12ŒŽ2“ú@i‹àj
“¡ˆä_ˆê -- Iterated integrals and the cohomology of free loop spaces
12ŒŽ13“ú@i‰Îj
—é–Ø—º•½ -- Khovanov homology and slice genus
12ŒŽ16“ú@i‹àj
ЯԼNl -- Quandles and knot invariants
1ŒŽ17“ú@i‰Îj
”ª“ˆ—ms --@Deligne goupoids and line arrangement
1ŒŽ20“ú@i‹àj
“¡ˆä_ˆê -- Iterated integrals and string topology
1ŒŽ24“ú@i‰Îj
‹«Œ\ˆê -- Topology of the space of long knots
2005”N“x‰ÄŠwŠú
4ŒŽ12“ú@i‰Îj
“¡ˆä_ˆê -- Applications of Morse theory to loop spaces of Lie groups
4ŒŽ15“ú@i‹àj
—é–Ø—º•½ -- Jones polynomial of alternating knots
4ŒŽ19“ú@i‰Îj
XŽR“N—T -- Casson type invariants of maps between homology 3-spheres
4ŒŽ22“ú@i‹àj
Eiko Fukunaga -- Artin irreducibility of braids
5ŒŽ6“ú@i‹àj
“¡ˆä_ˆê -- Applications of Morse theory to loop spaces of Lie groups
5ŒŽ10“ú@i‰Îj
‹«Œ\ˆê -- Cohomology of the space of knots and loop spaces of configuration spaces
5ŒŽ13“ú@i‹àj
ЯԼNl -- Knot quandle invariants and framings
5ŒŽ24“ú@i‰Îj
“¡ì‹MŽj -- CAT(0) spaces and Gromov hyperbolic spaces
5ŒŽ27“ú@i‹àj
—é–Ø—º•½ -- Khovanov homology for knots
6ŒŽ7“ú@i‰Îj
”ª“ˆ—ms -- Geometric embeddings between reflection arrangements
6ŒŽ10“ú@i‹àj
XŽR“N—T -- Casson type invariants of maps between homology 3-spheres
6ŒŽ21“ú@i‰Îj
“¡ˆä_ˆê -- Cohomology of free loop spaces
6ŒŽ24“ú@i‹àj
ŒÜ–¡´‹I -- Central extensions of the gauge transformation groups of higher
abelian gerbes
6ŒŽ28“ú@i‰Îj
—é–Ø—º•½ -- Khovanov homology for knots
7ŒŽ1“ú@i‹àj
”ª“ˆ—ms -- Geometric embeddings between reflection arrangements
7ŒŽ19“ú@i‰Îj
“¡ì‹MŽj -- Garside monoids
7ŒŽ22“ú@i‹àj
“¡ˆä_ˆê -- Cohomology of free loop spaces
2004”N“x“~ŠwŠú
10ŒŽ26“ú@i‰Îj
“¡ì -- Volume of hyperbolic orthosimplex
11ŒŽ2“ú@i‰Îj
ŽR“c -- Iterated integrals and volumes
11ŒŽ5“ú@i‹àj
”¨“c -- Scissors congruences
11ŒŽ12“ú@i‹àj
‹àŽR -- Chern-Simons invariants
11ŒŽ26“ú@i‹àj
XŽR -- Embeddings of 3-manifods into 6-manifolds and Casson invariant
11ŒŽ30“ú@i‰Îj
‹àŽR -- Extended Bloch groups and Cheeger-Chern-Simons invariants
12ŒŽ3“ú@i‹àj
ЯԼ -- Quandle coloring of knots in a handlebody
12ŒŽ7“ú@i‰Îj
”ª“ˆ -- Logarithmic vector fields and line arrangements
12ŒŽ10“ú@i‹àj
‹« -- On the space of long knots and loop spaces
of configuration spaces
12ŒŽ14“ú@i‰Îj
CŽm˜_•¶‚ÉŠÖ‚·‚é‘Å‚¿‡‚킹‚Ì‚½‚߃Zƒ~ƒi[‚Í‹x‚Ý
12ŒŽ17“ú@i‹àj
”ª“ˆ -- Logarithmic vector fields and line arrangements
1ŒŽ18“ú@i‰Îj
‹àŽRC”¨“cCŽR“c@-- C˜_‚Ì“à—e‚ɂ‚¢‚Ä
Seminar Announcement
November 24, December 1, 10:00 -- 12:00 Room 056
January 12, January 26, 10:00 -- 12:00 Room 056
M. Zunino
An Informal Introduction to Modular
Categories and Related Topics
(Braided Tensor Categories, TQFTs,
Crossed G-categories, HQFTs,
and quantum invariants of 3-manifolds)
ABSTRACT: The main goal of this seminar is to
provide and introduction to modular categories
and their applications in topology. We will start
recalling the basic definitions of Braided Tensor
Category and Quasitriangular Hopf Algebra, then
we will dicscuss Modular Categories and TQFTs.
The last part of the seminar will be devoted to
Turaev Crossed G-categories, HQFTs and
Homotopy invariants of 3-manifolds.
The talk is intended to be accessible without any
specific preparation in the field.
December 15, 10:00 -- 12:00 Room 056
December 22, 10:00 -- 12:00 Room 122
Toshifumi Tanaka
The colored Jones polynomial of links and skein theory
Abstract:
We investigate the N-colored Jones polynomial by skein theory. We calculate
the N-colored Jones polynomial of doubled knots . As a corollary, we show
that if the volume conjecture for untwisted doubled knots are true, then
every nontrivial knot has the nontrivial N-colored Jones polynomial for some
odd integer N.
We@also give a formula for the N-colored Jones polynomial of an example of
a nontrivial 2-component link whose (2-colored) Jones polynomial is equal to
that of 2-component trivial link. We show that the formula deffers from that
of trivial link. We can plot the value of the colored Jones function of the
link by using Mathematica.
2004”N“x‰ÄŠwŠú
4ŒŽ13“ú@i‰Îj
’Â@’q -- A complex computing the homology with local
coefficients of the complement
of a hyperplane arrangement
4ŒŽ16“ú@i‹àj
ŒÜ–¡ -- Equivariant bundle gerbes
4ŒŽ20“ú@i‰Îj
“¡ì -- Margulis' lemma
4ŒŽ23“ú@i‹àj
‹x‚Ý
4ŒŽ27“ú@i‰Îj
ŽR“c -- Iterated integrals and fundamental groups
5ŒŽ7“ú@i‹àj
‹àŽR -- Chern-Simons invariants
5ŒŽ11“ú@i‰Îj
”¨“c -- Polylogarithms
5ŒŽ14“úA18“ú‚Í‚»‚ꂼ‚ê
o’£AW’†u‹`‚Ì‚½‚ß‹x‚Ý
5ŒŽ21“ú@i‹àj
“¡ì -- Mostow rigidity
5ŒŽ25“ú@i‰Îj
ټԘ -- Generating mapping class groups by involutions
5ŒŽ28“ú@i‹àj
“¡ì -- Mostow rigidity
6ŒŽ11“ú@i‹àj
”¨“c -- Polylogarithms
6ŒŽ15“ú@i‰Îj
ŽR“c -- Iterated integrals and fundamental groups
6ŒŽ18“ú@i‹àj
“¡ì -- Mostow rigidity, Gromov invariant
6ŒŽ22“ú@i‰Îj
‹àŽR -- Chern-Simons invariants
6ŒŽ25“ú@i‹àj
ЯԼ -- Cohomology of knot quandles
6ŒŽ29“ú@i‰Îj
‹« -- Cohomology of the space of embeddings
7ŒŽ2“ú@i‹àj
“¡ì -- Mostow rigidity
2003”N“x“~ŠwŠú
10ŒŽ7“ú@i‰Îj
‹àŽR -- J. Dupont, Scissors congruences ... Chap 5
10ŒŽ10“ú@i‹àj
”ª“ˆ -- Geometric embeddings of reflection arrangements
10ŒŽ14“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
10ŒŽ17“ú@i‹àj
Žç’J -- Symplectic capacities
10ŒŽ21“ú@i‰Îj
”¨“c -- J. Dupont, Scissors congruences ...
10ŒŽ24“ú@i‹àj
ЯԼ -- Quandle cocycle invariants
10ŒŽ28“ú@i‰Îj
‹àŽR -- J. Dupont, Scissors congruences ...
10ŒŽ31“ú@i‹àj
ټԘ -- Johnson's work on Torelli groups
11ŒŽ4“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
11ŒŽ7“ú@i‹àj
XŽR -- Casson invariant and signature
11ŒŽ11“ú@i‰Îj
”¨“c -- J. Dupont, Scissors congruences ...
11ŒŽ14“ú@i‹àj
•Ÿ‰i -- Nielsen-Thurston theory
11ŒŽ21“ú@i‹àj
Žç’J -- Hamiltonian diffeomorphisms and Lagrangian submanifolds
11ŒŽ25“ú@i‰Îj
‹àŽR -- J. Dupont, Scissors congruences ...
11ŒŽ28“ú@i‹àj
ЯԼ -- Quandle cocycle invariants
12ŒŽ2“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
12ŒŽ9“ú@i‰Îj
”¨“c -- J. Dupont, Scissors congruences ...
12ŒŽ12“ú@i‹àj
‹« -- Perspectives on order 2 knot invariants
1ŒŽ9“ú@i‹àj
•Ÿ‰i -- Nielsen-Thurston theory
1ŒŽ13“ú@i‰Îj
‹àŽR -- J. Dupont, Scissors congruences ...
1ŒŽ16“ú@i‹àj
–Ø‘ºCŽç’J -- C˜_‚Ì“à—e‚ɂ‚¢‚Ä
1ŒŽ20“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
1ŒŽ27“ú@i‰Îj
”¨“c -- J. Dupont, Scissors congruences ...
2003”N“x‰ÄŠwŠú
4ŒŽ11“ú@i‹àj
‹àŽR -- ‘o‹È‚S–ʑ̂̑ÌÏCSchlafli‚ÌŒöŽ®‚È‚Ç
4ŒŽ15“ú@i‰Îj
‹g“c -- Symplectic geometry of the moduli space of flat
connections on Riemann surfaces
4ŒŽ18“ú@i‹àj
”¨“c -- J. Dupont, Scissors congruences ... Chap 1
4ŒŽ22“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
5ŒŽ2“ú@i‹àj
”¨“c -- J. Dupont, Scissors congruences ... Chap 2
5ŒŽ6“ú@i‰Îj
ŒÜ–¡ -- Equivariant gerbes
5ŒŽ9“ú@i‹àj
‹àŽR -- J. Dupont, Scissors congruences ... Chap 2,3
5ŒŽ13“ú@i‰Îj
ŽR“c -- Chen's iterated integrals
5ŒŽ16“ú@i‹àj
”ª“ˆ -- Flat coordinates, cohomology of Artin groups, ...
5ŒŽ23“ú@i‹àj
Žç’J -- Symplectic capacities
6ŒŽ6“ú@i‹àj
”¨“c -- J. Dupont, Scissors congruences ... Chap 4
6ŒŽ17“ú@i‰Îj
‹àŽR -- J. Dupont, Scissors congruences ... Chap 4
6ŒŽ20“ú@i‹àj 13:00 --
ŽR“c -- Chen's iterated integrals
6ŒŽ24“ú@i‰Îj
ŒÜ–¡ -- Equivariant Deligne cohomology
6ŒŽ27“ú@i‹àj
ЯԼ -- Quandle cocycle invariants
7ŒŽ1“ú@i‰Îj
‹« -- Cohomology of Imb(S^1, R^n)
7ŒŽ4“ú@i‹àj
•Ÿ‰i -- Nielsen-Thurston theory
7ŒŽ8“ú@i‰Îj
”¨“c -- J. Dupont, Scissors congruences ... Chap 5
7ŒŽ11“ú@i‹àj
ŽR“c -- Chen's iterated integrals
7ŒŽ15“ú@i‰Îj 17:00 --
‹g“c -- Symplectic geometry of the moduli space of flat
connections on Riemann surfaces
2002”N“x“~ŠwŠú
First meeting and organization
10ŒŽ11“ú@16:30 --- Room 370
Žç’J -- Symplectic geometry, contact homology ...
Seminar on hyperplane arrangements
and hypergeometric integrals
Tuesday, Oct. 15, 13:00 -- 14:30, Room 370
Monday, Oct. 21, 13:00 -- 15:00, Room 570
This seminar will take place regulary on Monday afternoon.
10ŒŽ15“ú@
‹g“c -- Symplectic geometry of the moduli of flat bundles
10ŒŽ18“ú@
ЯԼ -- Quandles and invariants of knots
10ŒŽ22“ú@
‹« -- Cohomology of Imb(S^1, R^n)
10ŒŽ25“ú@
‚‘º -- Deformation quantization
10ŒŽ28“ú@
‹g“c -- Symplectic geometry of the moduli of flat bundles
11ŒŽ1“ú@
Žç’J -- Contact homology
11ŒŽ5“ú@
ЯԼ -- Quandles and invariants of knots
11ŒŽ12“ú@
Ž›“ˆ -- Poisson geometry of supermanifolds
11ŒŽ15“ú@
”ª“ˆ -- Coxeter groups and flat coordinates
11ŒŽ19“ú, 22“ú@W’†u‹`‚Ì‚½‚ß‹x‚Ý
11ŒŽ26“ú@
ŒÜ–¡ -- SW version of Chern-Simons Lagrangians
12ŒŽ3“ú@
‹« -- Cohomology of Imb(S^1, R^n)
12ŒŽ6“ú@
ЯԼ -- Quandles and invariants of knots
12ŒŽ13“ú@
”ª“ˆ -- Coxeter groups and flat coordinates
12ŒŽ17“ú@
‹« -- Cohomology of Imb(S^1, R^n)
1ŒŽ28“ú@
‹«C‚‘ºC•Ÿ‰i
2ŒŽ4“ú@
”ª“ˆ
2002”N‰ÄŠwŠú
4ŒŽ23“ú@Žç’J -- Symplectic capacity
5ŒŽ7“ú@–Ø‘º -- Quandles
5ŒŽ10“ú@Žç’J -- Symplectic capacity
5ŒŽ21“ú@‹g“c -- Symplectic geometry of the moduli of parabolic bundles
5ŒŽ24“ú@–Ø‘º -- Quandles
5ŒŽ28“ú@‹« -- Cohomology of Imb(S^1, R^n)
5ŒŽ31“ú@’ -- Arrangement of hyperplanes
6ŒŽ4“ú@–Ø‘º -- Quandles
6ŒŽ7“ú@Žç’J -- Symplectic capacity
6ŒŽ11“ú@‹g“c -- Symplectic geometry of the moduli of parabolic bundles
6ŒŽ7“ú@Gibson -- Transverse knots and divides
6ŒŽ25“ú@Žç’J -- Symplectic capacity
7ŒŽ2“ú@‹« -- Cohomology of Imb(S^1, R^n)
7ŒŽ9“ú@–Ø‘º -- Quandles
7ŒŽ12“ú@”ª“ˆ -- Flat structure on the complement of discriminant
7ŒŽ16“ú@Ž›“ˆ
2001”N“~ŠwŠú
10ŒŽ16“ú@‚‘º -- Deformation quantization
10ŒŽ19“ú@ŒÜ–¡ -- Chern-Simons actions, gerbes, ...
10ŒŽ26“ú@‹«
10ŒŽ30“ú@’Â
11ŒŽ2“ú@”ª“ˆ
11ŒŽ6“ú@‚‘º
11ŒŽ13“ú@’Â
11ŒŽ16“ú@‹g“c
11ŒŽ20“ú@William Gibson
11ŒŽ27“ú@‚‘º
11ŒŽ30“ú@‹g“c
12ŒŽ3“ú‚ÌT‚ÍW’†u‹`‚Ì‚½‚ß‹x‚Ý
2001”N‰ÄŠwŠú
4ŒŽ13“ú@ŒÜ–¡ -- Chern-Simons action
4ŒŽ17“ú@‹« -- Jones polynomial
5ŒŽ8“ú@‚‘º -- Deformation quantization
5ŒŽ11“ú@”ª“ˆ -- Cohomology of configuration spaces
5ŒŽ15“ú@’ -- LK representaitons of braid groups
5ŒŽ18“ú@ŒÜ–¡ -- Chern-Simons action
5ŒŽ29“ú@‹g“c -- BRST cohomology
6ŒŽ12“ú@‹« -- Topology of knot space
6ŒŽ15“ú@ŒÜ–¡-- Gerbes
6ŒŽ19“ú@Ž›“ˆ -- Transports of A infinity algebras
6ŒŽ22“ú@‹« -- Topology of knot space
6ŒŽ26“ú@’ -- LK representaitons of braid groups
6ŒŽ30“ú@”ª“ˆ -- Cohomology of configuration spaces
7ŒŽ3“ú@ŒÜ–¡ -- Characteristic classes of gerbes
7ŒŽ6“ú@쑺 -- Graph devides
7ŒŽ10“ú@‹« -- Topology of knot space
7ŒŽ13“ú@Gibson -- Perron's algorithm
7ŒŽ17“ú@’ -- LK representaitons of braid groups
10ŒŽ17“ú@‚‘º@—º -- Woodhouse, "Geometric Quantization"
10ŒŽ20“ú@•£‘òO¹@-- Torelli group action on the extended Hatcher complex
10ŒŽ24“ú@’Â@’q@-- Quantum groups, braid groups and the Jones polynomial
@@@
10ŒŽ31“ú@‚‘º@—º -- Woodhouse, "Geometric Quantization"
11ŒŽ10“ú@William Gibson
11ŒŽ22“ú@’Â@’q@-- Quantum groups, braid groups and the Jones polynomial
@@@
11ŒŽ24“ú@Ž›“ˆˆè“ñ -- Higher parallel transport and its applications
11ŒŽ28“ú@‚‘º@—º -- Deformation quantization of Poisson manifolds
12ŒŽ5“ú@’Â@’q@-- Quantum groups, braid groups and the Jones polynomial
@@@
12ŒŽ8“ú@Ž›“ˆˆè“ñ -- Higher parallel transport and its applications
12ŒŽ19“ú@‚‘º@—º -- Deformation quantization of Poisson manifolds
1ŒŽ16“ú@’Â@’q@-- Representations of braid groups
1ŒŽ19“ú@‹g“c®•F-- Deformation quantization of toric manifolds
1ŒŽ23“ú@‚‘º@—º -- Deformation quantization of Poisson manifolds
2ŒŽ13“ú@William Gibson
2ŒŽ20“ú@ŒÜ–¡´‹I -- Gerbes in classical Chern-Simons theory
June 15, 10:40 -- 12:00 Room 128
William Gibson will talk on "Knot theory via oriented divides".
(Joint with Y. Matsumoto's seminar)
‹à—j“ú@470†Žº@14:40 --
4ŒŽ14“ú@”ª“ˆ—ms -- Loop spaces of configuration spaces
4ŒŽ21“ú@Ž›“ˆˆè“ñ@-- Higher Holonomy and Reciprocity Law
5ŒŽ12“ú@ŒÜ–¡´‹I@-- Higher dimensional holonomy
5ŒŽ19“ú@•£‘ò’蓹@-- Quilt decomposition and extended Hatcher complex
5ŒŽ26“ú@‹g“c®•F@-- Perfect Bott-Morse functions on polygon spaces
6ŒŽ8“ú@”ª“ˆ—ms -- Loop spaces of configuration spaces
6ŒŽ30“ú@쑺—F”ü -- Quasi-positivity of divide links
‚VŒŽ4“úi‰Îj@”ª“ˆ—ms -- Loop spaces of configuration spaces
‚VŒŽ‚V“ú@ŒÜ–¡´‹I@-- Higher dimensional holonomy
‚VŒŽ‚P‚S“ú William Gibson