確率論と無限次元解析

会田茂樹

ある状態空間(典型的なのは実数の集合)の中を 時間とともにランダムに変動する量は、数学的には 確率過程ととらえられ、解析されます。ここでは、 時間とともに連続的に変動する量を考えましょう。 そのとき、確率過程を考えることと 非負の実数全体から状態空間への連続写像全体の 空間上に確率測度を与えることは同値になります。 その代表的なものが、ブラウン運動であり、 Wiener測度です。 他の連続な確率過程もブラウン運動をインプットとする 確率微分方程式を解いて、得られることが多いと言えます。 実際、解析学の多くの問題が2階楕円型微分作用素に 関係していますが、その生成する拡散半群の 確率論的表示に確率微分方程式の 解が用いられます。 このようにして、応用に現れる多くの ランダムな量が確率微分方程式の解やその 関数で表される ことがわかり、ブラウン運動の汎関数の 解析を行うことの重要性が見てとれます。 私の研究課題の一つは、 このような無限次元解析の視点に立って、 有限次元空間の幾何、解析、応用に現れる 問題を研究することにあります。

この方面での具体的な研究テーマの一つは、 拡散半群の熱核の上と下からの精細な評価、 対数微分の評価です。 この分野は近年、楕円型作用素のみならず準楕円型作用素 に対する解析も盛んに研究されており、興味深い新たな 進展が期待される分野です。 また、ブラウン運動の汎関数の平均値の計算は、 無限次元空間上の積分ですが、その効率的な 数値計算の研究も数理ファイナンスへの 応用も考慮して、アタックしたい問題の 一つです。

ところで、これらの汎関数は通常、連続関数の位相に対して 連続ではありません。 しかし、Terry Lyons教授により 確率微分方程式の解は、インプットのブラウン運動 そのものとその軌道の 描く面積のふたつの量の汎関数としては 連続な写像とみれるという結果が 得られており(ラフパス解析と呼ばれています)、 その応用にも関心を持っています。

これまで、述べてきたのは、有限次元空間上の 問題(例えば有限次元空間上の拡散半群の問題) を無限次元解析を通して研究しようという ことですが、無限次元空間上で自然に現れる 問題にも関心を持っており、現在の私の研究の中心は こちらにあると言えます。 例えば、場の量子論 は無限個の調和振動子が相互作用して いる系の量子化にかかわるものと言えますが、 そのハミルトニアンは必然的に無限次元空間上の 微分作用素(もっと正確には シュワルツ超関数の空間にガウス測度が 与えられた確率空間上のシュレーディンガー型作用素)となります。 また、物理的な意味は薄れますが、 リーマン多様体上の始点と終点が一致しているループの空間 の上で関数に作用するOrnstein-Uhlenbeck作用素や 微分形式に作用するHodge-Kodaira型の 作用素を考えるのは幾何学的に興味深いことです。 このような無限次元空間上の微分作用素の研究は、私の 中心的な研究テーマで、現在はこれらの作用素の準古典極限の 研究に特に関心を持っています。 これらの研究では、対数ソボレフ不等式とよばれる関数型不等式が重要な 役割を果たします。

1982年にEdward Witten教授がモース不等式 をそのモース関数で変形して得られる 超対称ハミルトニアン(Witten Laplacian) のスペクトルの準古典的挙動から導いたのは、 準古典極限の顕著な応用と言えるでしょう。 今考えているのは、その無限次元版 なわけで、ループ空間などの幾何学的な 対象のときは、道のエネルギーがモース関数に 相当します。 この場合でもモース不等式が準古典的 アプローチで証明できるのでしょうか? 最近、コンパクトリー群上のpinned path spaceで少し結果が 出始めましたが、遠方での評価が得られず、まだ解決には至っていません。

また、 最近、場の量子論の典型的モデルである有限体積での$P(\phi)_2$型ハミルトニアン (現在の所、4次の多項式で、体積の大きさに制限が着いたものに限る) の最小固有値の準古典極限を決定することができました。 さらに第一固有値と第二固有値のギャップの漸近挙動 がAgmon距離により決定されるのか、超対称ハミルトニアンの場合の研究など に引き続き取り組んでいます。

数学の研究では、あきらめないでねばり強く考えることと、一つの 視点にとらわれない自由な物の見方が要求されます。 意欲ある学生諸君を待っています。



会田茂樹のホームページへ

東京大学大学院数理科学研究科のページへ



Shigeki Aida 平成16年6月23日