視聴に際しての注意事項
このページに含まれる映像は自由に視聴することができますが、許可無くコピー・配布などの行為を禁止します。
日時: 2024年10月25日(金) 15:30-16:30
会場: 数理科学研究科棟(駒場) 大講義室
今野 北斗 氏(東京大学 大学院数理科学研究科)
Diffeomorphism group and gauge theory (JAPANESE)
4次元は多様体の分類理論の中で特異的な次元であり,4次元多様体のみに対して発生する現象が存在する.このような現象の発見・追求の道具として,物理学由来の偏微分方程式を4次元多様体上で考察するゲージ理論が有効であることも,現在では良く知られている.他方,多様体のトポロジーにおいて,多様体の自己同型群である微分同相群は基本的な興味の対象である.半世紀以上前に分類が一段落ついた高次元多様体に対してもなおその発展は著しく,最近のトポロジーの重要な潮流をなしている.そのような流れの中で,4次元多様体の微分同相群の組織的な研究,特にゲージ理論的な研究は,少数の先駆的な結果を除いて長らく未開拓だった.しかしこの数年,4次元多様体の族に対してゲージ理論を展開する「族のゲージ理論」が急速に発展し,それに伴い4次元多様体の微分同相群の理解が前進しつつある.具体的には,多様体の分類理論と同様,多様体の微分同相群に対しても,4次元特有の現象が存在することが明らかになってきたのである.談話会ではこのような最近の展開を概観したい.