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§ Introduction

Background
e Kazhdan-Lusztig (1993~1994):
Category of Category of
representation of «— representation of Uy(g)
affine Lie algebra g at a root of unity

Main tool : Conformal Field Theory (WZW-model)

e Recently, a “log-version” of the above correspondence is con-
sidered.

What is a logarithmic CFT?

e Roughly speaking, a log CFT is a CF'T such that “KZ-
type equations” have logarithmic singularities.

e But, in mathematical sense, there is no definition. That
is, there are only some examples.

As an example of log-CFEF'T's, there is a CFT based on represen-
tation of the triplet vertex operator algebra W (p) (p € Z>2).

Conjecture 1 (Feigin et al.). There is a “log-version” of
KL-equivalence. That is, as braided tensor categories,

Category of Category of
W )-%ZOZUZGS ——  finite dimensional
g U (sly)-modules,

where Uq(ﬁlz) 18 the restricted quantum group associated

sly and q = exp(”TF).

They proved the conjecture for p = 2 case.



In 2009, Tsuchiya-Nagatomo proved the following theorem.

Theorem 2 (Tsuchiya-Nagatomo). As abelian categories,
these are equivalent.

e In this talk, we only treat the quantum group side.

Aim :

Study tensor structure of U,(sly)-mod.

Main result :

Indecomposable decomposition of all tensor products of Uy (sly)-
modules is completely determined in explicit formulas.

As a by-product, we show that Uq(slz)-mod is not a braided
tensor category for p > 3.

= It needs a rectification for Conjecture 1.

This is a future problem.



§ Preliminaries

Notations

Let p > 2 be an integer and q be a primitive 2p-th root of
unity. For any integer n, we set

] = %
q—dq
Note that [n] = [p — n] for any n.

o U = U,(sly) : The restricted quantum sl

An unital associative C-algebra with generators E, F', K,
K1 and relations :

KK'=K'K=1, KEK'=¢FE, KFK'!'=¢?F
K- K1

q—q*t’

K*=1 E’=0, F’=0.

EFF'—FFE =

This is a 2p3-dimensional C-algebra and has a Hopf algebra
structure defined by

AN:E—FQK+1®FE, F—F®l+K '®F,
K—K®K, K'+—KloK!

e E—0, Fr—0 K1, K'!+—1,

S:E+— —EK', F+r— —-KF, K'+—KT.

The category U-mod of finite-dimensional left U-modules
has a structure of a monoidal category associated with this

Hopf algebra structure on U.
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§ Structure of U-mod

This is a survey of known results on U-mod which were
proved by Reshetikhin-Turaev, Suter, Xiao, Gunnlaugsdottir,
Feigin-Gainutdinov-Semikhatov-Tipunin, Arike.

Basic algebra

A : an unital associative C-algebra of finite dimension,

A= é P" . a decomposition of A into indecomposable left
i=1

ideals where P; 2 P; if ¢ # 7.

For each 7 take a primitive idempotent e; € A such that

Ae; = P;, and set e = > 1 e

B4 = eAe is called the basic algebra of A which has the
following nice properties:

e B, is Morita-equivalent to A.
There is a functor Bg-mod — A-mod defined as

Zr—— Ae®p, Z.

e B, is described by a quiver with relations.

A C-algebra B is called basic if B/rad(B) = C". It is
well-known that an basic algebra is described by a quiver with
relations and it is easy to see that By is basic.

= What is By ?



Answer:

The basic algebra By of U is decomposed as a direct product
By = Z;ZO B, and one can describe each B, as follows:
e By = B, = C. (l-dimensional algebra)
e For ecach s = 1,...,p — 1, By is isomorphic to the 8-
dimensional algebra B defined by the following quiver

+
T

7_2_ V_
o< 11 o

\—/
W
F + F

with relations 7°77 = 0 for i = 1,2, and 7i°757 = 7577 .

Remark. To get the basic algebra By of U, we need to de-
termine a complete set of mutually orthogonal primitive idem-
potents of U. The explicit form of it is known, but we omit to
give 1t.

The next problem is :
What is the structure of B-mod ?

In the following, we will give you

e the complete list of indecomposable B-modules and
e Auslander-Reiten quiver of B-mod.
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Classification of indecomposable B-modules

We can identify a B-module with data
zZ = (Vg, Vi Tf,rza TzJ,rza T 2 7'2_,2)7
where

e V3 is a vector space over C (attached to the vertices 4).
o7 : Vz — VI (i = 1,2) are C-linear maps (attached

+ F
To 2T 2z

to the arrows) satisfying 7577, = 0, 7275 5 =
For positive integers m,nand i =1,...,m, 7 =1,...,n, we
denote the composition of j-th projection and ¢-th embedding

e, j:C"—=C—C".

Proposition 3. Any indecomposable B-module is isomor-
phic to exactly one of modules in the following list:

o Simple modules :
X" =(C,{0};0,0,0,0), X~ =({0},C;0,0,0,0).
e Projective-injective modules :
C—C
Pt =(C°,C% e 21,620, €21) = D D
C~——C
C+—C
P~ =(C* C% ez, €21, €10, €21) = @ D
C—C



e [or each integer n > 2,

M*(n) = (Cn_l; Cc"; 22:11 €iir D i 11 €it1.4,0 0)

Here we omat
n
C", O-arrows.

M_<TL) — ((Cn’ Cn_l; 07 07 Z?:_ll €iis Z;'lz_ll 6i+1,i> )
W+( ) ((Cn (Cn L Z? 11 6i,i7 Zn 11 €; 2—1—170 O)

W™(n) = (Cn_la C"; 0,0, 2?2—11 €iis 2?2—11 62’,2’—1—1) :
o For each integer n > 1 and \ € P}(C),

EX(m;A) = (C",C"; p1(n: N, a(n; A), 0,0),

E(n;N) = ((C”,C";0,0,gpl(n; A), pa(n; )\)),
where

. oy = 1d+2216m+1,1d) (A=[8:1]),
i) = S et (T
h ¢ J(B;n)
C = C (=031
id
C'———=C" (A=][1:0])
\ J(0;n)

ET(nyA) = <

Here J(B;n) is the (n x n)-Jordan cell with eigenvalue (3.
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Auslander-Reiten quiver of B-mod

D

W) WHR) o M@ M)

NN

A (M
ET(3; ) E(3; A
/ P! (C)-family of P!'(C)-family of '
ET(2; M) ( homogeneous tubes homogeneous tubes | £7(2; A
1 1
ET(LN) L E7(A

D+
/N
MH) = M@)o W) W

i\éﬂxi\%\

Remark . We “divide’ the quiver of B into the following two
pieces which are isomorphic to the Kronecker quiver:

+ T — + T —

Q+ = o——To ‘47 T = oI——o
Jr —
T T

Consider AR-quivers of Q@ and @~ (i.e. two copies of AR-
quiver of the Kronecker quiver), and “paste” the above two
copies.

= AR-quiver of B-mod



Structure of U-mod

Recall a decomposition of the basic algebra Bg of U:
B;= & B,
5=0
where
By = B, =C, Bs=B (1<s<p-—1).

Denote by C(s) the full subcategory of U-mod correspond-
ing to Bs-modules (considered as Br-modules) for s = 0,.. ., p.

= We have a block decomposition of U-mod:

U-mod = éo C(s).

S

e Fors=1,...,p—1, let &, be the composition of functors
¢, : B-mod — By-mod — U-mod.

We denote by
XS+7 Xp__S,P;—,P_ M:(n) M, (n)7W:<n) W, (n)a

p—s? ) p—Ss ) p—Ss
ES(n;A), €, y(n; \)
the images of

X+7 X_7 P+7 7)_7 '/\/l+<n)7 M_<n)7 W+<n)7 W_(n>7
ET(;A),E7(n; N)
by ®,.
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e On the other hand, for s = 0 or p, let 4 be the composition
of functors

¢, : C-mod — By-mod — U-mod.

Let us denote X = C the unique simple object in C- mod.
We denote the corresponding object in C(0) and C(p) by

X7 = By(X) € C(0),
X = 0,(X) € Clp).

We remark that both X~ and A" are also projective. In
that sense, we sometimes denote

+ . yp=x
PE = X
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Simple objects in C(s)

The explicit form of ®,(X*) are given as follows:

ol <s<p-—-1

o X =, (X") is isomorphic to the s-dimensional module

.....

s—1—-2n
Ka, = q Up,

EM_{MB—M%l (n#0)

Jap (n#s—1)
Fan_{() (n=s-1)

o X .= &, (X) is isomorphic to the (p — s)-dimensional
module defined by basis {a,}n—o. ,—s-1 and U-action given
by
Ka, = —¢""'""a,,
po _ [Flp—s—nlas (00
0 (n =0)

Fa. — 4 &t (n#p—s—1)
" 0 (n=p—s—1)

Remark . Since we consider all finite dimensional U-modules,
modules which are not of type I are appeared. For example,
X is a U-module of type I. On the other hand &, is not.

os=0orp

XS = O)(X) (resp. X, = do(&)) is the p-dimensional
irreducible module of U defined as similar way.
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Other indecomposable objects in C(s) (1 <s<p—1)

e Since C(s) is equivalent to B-mod as an abelian category, all
information of indecomposable objects in C(s) can be obtained
form one of the corresponding objects in B-mod.

Example. In B-mod, the structure of the projective modules
P are given as:

X~ X~ P At X+
:EQ_\‘X +,41_ 37;\«)( _AL

P o

By easy computation, we have
Exty(X*, XF) = C*
We fix basis of Ext (X, X7) and Exty(X~, X ) by {z], 25}

and {x|, x; } respectively.
(We omit to give the explicit form of them.)

In the above diagram, we denote X; — X% by the extension
by o € Extp (X, &Xp).

Applying the functor @4, we have

N I

X, X, P, X, -
X X,

Pr o

S

As a corollary, we have

dimP; =2p (=2s+2(p—s)), dimP, , =2p.
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§ Calculation of tensor products

Main tools

(a) Some (basic) short exact sequences.
(It is enough to show the existence of them in B-mod.)
(b) Exactness of the functors — ® Z and Z ® —.
(" ® in a tensor product over a field C.)
(¢) For a projective module P, both P ® Z and Z ® P are
also projective.
(d) U is a Frobenius algebra. As a by-product,

Z is projective < Z is injective.
(e) Rigidity : For n > 0,
EXt%(Zl, ZQ X Zg) = EXt%(D(ZQ) & Zl, Zg),

EXt%(Zl X ZQ, Zg) = EXt%(Zl, Zg X D(ZQ))

Here D(Z) the standard dual of Z € U-mod. More
precisely, define U-module structure on the dual space
D(Z) := Hom¢(Z,C) as:

(a- f)(z) = f(S(a)z) (a€U, feDZ)zeZ)
where S is the antipode of U.
Remark . It is known that the properties (c), (d) and (e) hold

in more general setting. Namely, for any finite dimensional
Hopf-algebra A over a field, these properties hold in A-mod.

(Of course, (b) is also satisfied.)
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Tensor products of simple modules

The following proposition is proved by Reshetikhin-Turaev.
Proposition 4 (Reshetikhin-Traev). For s,s' =1,...,p,

( s+s'—1

/
& A (s+s —1<p),
t=[s—s|+1,
2-steps
Xfox) =
S /
2p—s—s'—1 p—0
+ +
t=|s—s'|+1, t'=2p—s—s'+1,
2-steps 2-steps
\ (s+5 —1>p),
where

5 — 1 (s+8 —p—1is odd),
|0 (s+8 —p—1is even).

o If s+ —1 < p, the formula is nothing but Clebush-
Gordan formula.
e [t is easy to see that

ij: Y X_ = ‘Xl_ ® ij: = Xj?
PrRX =X ®P; = PT.

By the associativity of tensor products, we can calculate
other decompositions. For example,

X, X, = (X X)X
=X @ (@) @ (@nPy))
= (@) @ (@ Py)).-
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Main result

Theorem 5. Indecomposable decomposition of all tensor
products tn U- mod is completely determined in explicit
formulas.

Since there are too many indecomposables in U-mod, we
can not list up all formulas in this talk. In the following, we
will give some typical examples.

Tensor products of £X(1;\) with simple modules

By direct calculation, we have the following.

Proposition 6. For s, =1,...,p—1, n > 1 and A =
(A1 2 Ag] € PHC) we have

EF(LN) @ X XET(L -\,
X @ ES (L) ZET(L (=17,

Ej(l;A)®X2+%’8jl<1-[ i 1 )eaejﬂ(l;%x)

Xy &ML ) =EN ( E [_]1] )@é’sﬂ( -—%A).

Here, for c € C, we set cA = [cA; : \o] € PL(C).

Remark . This proposition tells us that, in general,
5?(13 AN@XT FAX ® 53(1; A,
EFLN) @ XS 22X @ &(1;N).

That is, U-mod is not a braided tensor category.
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Proposition 7. For s,s'=1,...,p—1 and X € P}(k),

LN X = P 5;( ) @ PtQ@ P 7,

tleI o taed t3€J _std
Here, I ¢, Joig, Jp_sis are some sets of mtegers

(For X7 ® £f(1; A), we have a similar formula.)

Proof. There is a (basic) exact sequence in U-mod:
0—X ", =& (LN =& —0.
Applying — ® /'\,’S“,L, we have
0—- X _ QXS =& (LAN®X - XX —0.

By Proposition 4, we have
=004 @71 0 BP0 B

with an exact sequence 0 — X~ — Zy — th — 0 for
cach ¢1. We remark that Z;, is not projective.

Assume the formula hols for s” < s’ — 1. Then,
(EFLN QX)) X
=LA (X | 4
2 EN LN (X, D X))
= (EHLN@ X)) @ (ES (LN @A)
tells us that a non-projective indecomposable summand of
EF1;A) ® X7 must be of the form 5+(1'M)\) with ¢ =

1]
1,...,p—1. Then we have Z;, = & (1; [[‘j]]k) since Z;, cannot
be projective. Thus we have the formula. ]
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Tensor products of £X(n;\) with simple modules

For computing these combination, we need the rigidity.

Proposition 8. For s=1,...,p—1 and X € P}(k),
DX = xS, D(ESLN)=E (1;(—1)°N),
D(ES(LN) =& (1 (— )P *A).

Proposition 9.
D(ES(n; X)) = & (n;(=1)°A), D(E7(m;N)) = EF (n: (=1)P°N).

Proof. Since dim 58+ (n; A) = pn and D preserves direct sum

and dimension, D(S (n; )\)) is an indecomposable module of
dimension pn.

= This is of the form &(n; i) or is projective
(the latter case could occur only if n < 2).
extlﬁ(D (ES(n; X)), X)) (ext := dim¢ Ext.)
= exty (D(ES(mN) @ XH, X)) = exti (X, EF (ny\) @ X))

= ext (X, €5 (n; ) @ D(X))) = exty (X @ X;, EX(n: )
— exty- (X E (X)) = exty (X1, EF(nyN) =

S 1S

= D(&}(n; \)) must be of the form & (n; p).

By the similar argument,

exti(D(ES (s X)), &5 (L) = extip(E7 (15 (=1)°w), £ (n; N)

I FRR (I TEY
0 (—1)p#—A)

= D(EF(mN) =€,

b—

(n; (=1)°X). O
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Proposition 10.
ES (N @ X7

= @ ei(nn)e @ @Ere @ @

t1€] o tQEJs—i—s’ t3€Jp sts!

(We have a similar formula for X @ £ (n; A).)

Proof. The same argument as the case of £f(1; \) @ X shows
that

EfmNeX; =@z, o PP o PP,
t1 to t3
with an exact sequence 0 — (X", )" — 2, — (A7)" — 0

for each 1. Moreover, by the exact sequence
0— &E(n—1,A) = EF(mA) — EX(L;A) — 0

and induction on n, we have the following exact sequence

0 & (n it %)\) e (1;%9 0

= Z;, € C(t1) and dim¢ 24, = pn
By using the rigidity, we have
exti- S(ES () @ XT,?@L) =
exti (EF (i N) @ X, X)) =n,

[t]

i
71

C‘#CID

S

extlﬁ(é’ (n; ) @ X7, &1 (1 { Z

= By the above properties, Z;, is uniquely determined. Namely,

we have Z; = &F (n; %)\) O]
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Conclusions

For other combinations, we can compute the explicit formulas
by the similar methods.

As a by-product, we have

Corollary 11. (1) Let Z1, Z5 be U,(sly)-modules. If Z
nor Zo do not have any indecomposable summand of type
E, we have 21 ® Z9 = 29 Q Z;.

(2) If p =2, for arbitrary U,(sly)-modules Zy, Z, we have
Z1Q 29 = Z9 R Z.

(3) If p > 3, there exist U,(sly)-modules Z1, Z5 such that

Z1® 2y ¥ Zo® 2. In particular, U,(sly)-mod is not a
braided tensor category.

Remark . These method can be applied only for sly-case. It
g # sly, it is known that U ,(g)-mod has a wild representation
type. [J



