On tensor category arising from representation theory of the restricted quantum universal enveloping algebra associated to \mathfrak{sl}_2

Yoshihisa Saito (Tokyo)

joint work with Hiroki Kondo (Tokyo)

(arXiv:0901.4221)

Sep. 23, 2009 @ Seoul

§ Introduction

Background

• Kazhdan-Lusztig (1993~1994):

Category of Category of representation of
$$\stackrel{\sim}{\longleftrightarrow}$$
 representation of $U_{\mathfrak{q}}(\mathfrak{g})$ affine Lie algebra $\widehat{\mathfrak{g}}$ at a root of unity

Main tool: Conformal Field Theory (WZW-model)

• Recently, a "log-version" of the above correspondence is considered.

What is a logarithmic CFT?

- Roughly speaking, a log CFT is a CFT such that "KZ-type equations" have logarithmic singularities.
- But, in mathematical sense, there is <u>no definition</u>. That is, there are only some examples.

As an example of log-CFTs, there is a CFT based on representation of the triplet vertex operator algebra W(p) $(p \in \mathbb{Z}_{\geq 2})$.

Conjecture 1 (Feigin et al.). There is a "log-version" of KL-equivalence. That is, as braided tensor categories,

$$\begin{array}{ccc} Category \ of \\ W(p)\text{-}modules & \stackrel{\sim}{\longleftarrow} & \begin{array}{c} Category \ of \\ finite \ dimensional \\ \overline{U}_{\mathfrak{q}}(\mathfrak{s}l_2)\text{-}modules, \end{array}$$

where $\overline{U}_{\mathfrak{q}}(\mathfrak{s}l_2)$ is the restricted quantum group associated $\mathfrak{s}l_2$ and $\mathfrak{q} = \exp(\frac{\pi\sqrt{-1}}{p})$.

They proved the conjecture for p = 2 case.

In 2009, Tsuchiya-Nagatomo proved the following theorem.

Theorem 2 (Tsuchiya-Nagatomo). As <u>abelian categories</u>, these are equivalent.

• In this talk, we only treat the quantum group side.

Aim:

Study tensor structure of $\overline{U}_{\mathfrak{q}}(\mathfrak{sl}_2)$ -mod.

Main result:

Indecomposable decomposition of all tensor products of $\overline{U}_{\mathfrak{q}}(\mathfrak{sl}_2)$ modules is completely determined in explicit formulas.

As a by-product, we show that $\overline{U}_{\mathfrak{q}}(\mathfrak{sl}_2)$ -mod is <u>not</u> a braided tensor category for $p \geq 3$.

 \Rightarrow It needs a *rectification* for Conjecture 1.

This is a future problem.

§ Preliminaries

Notations

Let $p \geq 2$ be an integer and \mathfrak{q} be a primitive 2p-th root of unity. For any integer n, we set

$$[n] = \frac{\mathfrak{q}^n - \mathfrak{q}^{-n}}{\mathfrak{q} - \mathfrak{q}^{-1}}.$$

Note that [n] = [p - n] for any n.

• $\overline{U} = \overline{U}_{\mathfrak{g}}(\mathfrak{sl}_2)$: The restricted quantum \mathfrak{sl}_2

An unital associative \mathbb{C} -algebra with generators E, F, K, K^{-1} and relations;

$$KK^{-1} = K^{-1}K = 1$$
, $KEK^{-1} = q^{2}E$, $KFK^{-1} = q^{-2}F$,
$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}},$$

$$K^{2p} = 1, \quad E^{p} = 0, \quad F^{p} = 0.$$

This is a $2p^3$ -dimensional \mathbb{C} -algebra and has a Hopf algebra structure defined by

$$\Delta \colon E \longmapsto E \otimes K + 1 \otimes E, \quad F \longmapsto F \otimes 1 + K^{-1} \otimes F,$$

$$K \longmapsto K \otimes K, \quad K^{-1} \longmapsto K^{-1} \otimes K^{-1},$$

$$\varepsilon \colon E \longmapsto 0, \quad F \longmapsto 0, \quad K \longmapsto 1, \quad K^{-1} \longmapsto 1,$$

$$S \colon E \longmapsto -EK^{-1}, \quad F \longmapsto -KF, \quad K^{\pm 1} \longmapsto K^{\mp 1}.$$

The category \overline{U} -mod of finite-dimensional left \overline{U} -modules has a structure of a monoidal category associated with this Hopf algebra structure on \overline{U} .

§ Structure of \overline{U} -mod

This is a survey of known results on \overline{U} -**mod** which were proved by Reshetikhin-Turaev, Suter, Xiao, Gunnlaugsdóttir, Feigin-Gainutdinov-Semikhatov-Tipunin, Arike.

Basic algebra

A: an unital associative \mathbb{C} -algebra of finite dimension,

 $A = \bigoplus_{i=1}^{n} \mathcal{P}_{i}^{m_{i}}$: a decomposition of A into indecomposable left ideals where $\mathcal{P}_{i} \ncong \mathcal{P}_{j}$ if $i \neq j$.

For each i take a primitive idempotent $e_i \in A$ such that $Ae_i \cong \mathcal{P}_i$, and set $e = \sum_{i=1}^n e_i$.

 $B_A = eAe$ is called **the basic algebra of** A which has the following nice properties:

• B_A is Morita-equivalent to A.

There is a functor B_A -mod $\rightarrow A$ -mod defined as

$$\mathcal{Z} \longmapsto Ae \otimes_{B_A} \mathcal{Z}.$$

• B_A is described by a quiver with relations.

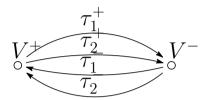
A \mathbb{C} -algebra B is called **basic** if $B/\operatorname{rad}(B) \cong \mathbb{C}^n$. It is well-known that an basic algebra is described by a quiver with relations and it is easy to see that B_A is basic.

 \Rightarrow What is $B_{\overline{U}}$?

Answer:

The basic algebra $B_{\overline{U}}$ of \overline{U} is decomposed as a direct product $B_{\overline{U}} \cong \prod_{s=0}^p B_s$ and one can describe each B_s as follows:

- $B_0 \cong B_p \cong \mathbb{C}$. (1-dimensional algebra)
- For each s = 1, ..., p 1, B_s is isomorphic to the 8-dimensional algebra B defined by the following quiver



with relations $\tau_i^{\pm}\tau_i^{\mp}=0$ for i=1,2, and $\tau_1^{\pm}\tau_2^{\mp}=\tau_2^{\pm}\tau_1^{\mp}$.

Remark. To get the basic algebra $B_{\overline{U}}$ of \overline{U} , we need to determine a complete set of mutually orthogonal primitive idempotents of \overline{U} . The explicit form of it is known, but we omit to give it.

The next problem is:

What is the structure of B-mod?

In the following, we will give you

- ullet the complete list of indecomposable B-modules and
- Auslander-Reiten quiver of B-mod.

Classification of indecomposable B-modules

We can identify a B-module with data

$$\mathcal{Z} = (V_{\mathcal{Z}}^+, V_{\mathcal{Z}}^-; \tau_{1,\mathcal{Z}}^+, \tau_{2,\mathcal{Z}}^+, \tau_{1,\mathcal{Z}}^-, \tau_{2,\mathcal{Z}}^-),$$

where

- $V_{\mathcal{Z}}^{\pm}$ is a vector space over \mathbb{C} (attached to the vertices \pm). $\tau_{i,\mathcal{Z}}^{\pm} \colon V_{\mathcal{Z}}^{\pm} \to V_{\mathcal{Z}}^{\mp}$ (i=1,2) are \mathbb{C} -linear maps (attached to the arrows) satisfying $\tau_{i,\mathcal{Z}}^{\pm}\tau_{i,\mathcal{Z}}^{\mp} = 0$, $\tau_{1,\mathcal{Z}}^{\pm}\tau_{2,\mathcal{Z}}^{\mp} = \tau_{2,\mathcal{Z}}^{\pm}\tau_{1,\mathcal{Z}}^{\mp}$.

For positive integers m, n and i = 1, ..., m, j = 1, ..., n, we denote the composition of j-th projection and i-th embedding

$$e_{i,j}:\mathbb{C}^n\to\mathbb{C}\to\mathbb{C}^m$$
.

Proposition 3. Any indecomposable B-module is isomorphic to exactly one of modules in the following list:

• Simple modules:

$$\mathcal{X}^+ = (\mathbb{C}, \{0\}; 0, 0, 0, 0), \quad \mathcal{X}^- = (\{0\}, \mathbb{C}; 0, 0, 0, 0).$$

• Projective-injective modules:

$$\mathcal{P}^+ = (\mathbb{C}^2, \mathbb{C}^2; e_{1,1}, e_{2,1}, e_{2,2}, e_{2,1}) = \begin{array}{c} \mathbb{C} & \mathbb{C} \\ \oplus & \mathbb{C} \\ \mathbb{C} & \mathbb{C} \end{array}$$

$$\mathcal{P}^{-} = (\mathbb{C}^{2}, \mathbb{C}^{2}; e_{2,2}, e_{2,1}, e_{1,1}, e_{2,1}) = \begin{array}{c} \mathbb{C} & \mathbb{C} \\ \oplus & \mathbb{C} \end{array}$$

• For each integer $n \geq 2$,

$$\mathcal{M}^{+}(n) = \left(\mathbb{C}^{n-1}, \mathbb{C}^{n}; \sum_{i=1}^{n-1} e_{i,i}, \sum_{i=1}^{n-1} e_{i+1,i}, 0, 0\right)$$

$$= \mathbb{C}^{n-1} \xrightarrow{\left(\begin{array}{ccc} 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0\end{array}\right)} \mathbb{C}^{n}, \quad \left(\begin{array}{ccc} Here & we & omit \\ 0 - arrows. \end{array}\right)$$

$$\stackrel{\left(\begin{array}{cccc} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right)}{\left(\begin{array}{cccc} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right)}$$

$$\mathcal{M}^{-}(n) = \left(\mathbb{C}^{n}, \mathbb{C}^{n-1}; 0, 0, \sum_{i=1}^{n-1} e_{i,i}, \sum_{i=1}^{n-1} e_{i+1,i}\right),$$

$$\mathcal{W}^{+}(n) = \left(\mathbb{C}^{n}, \mathbb{C}^{n-1}; \sum_{i=1}^{n-1} e_{i,i}, \sum_{i=1}^{n-1} e_{i,i+1}, 0, 0\right),$$

$$\mathcal{W}^{-}(n) = \left(\mathbb{C}^{n-1}, \mathbb{C}^{n}; 0, 0, \sum_{i=1}^{n-1} e_{i,i}, \sum_{i=1}^{n-1} e_{i,i+1}\right).$$

• For each integer $n \geq 1$ and $\lambda \in \mathbb{P}^1(\mathbb{C})$,

$$\mathcal{E}^{+}(n;\lambda) = (\mathbb{C}^{n}, \mathbb{C}^{n}; \varphi_{1}(n;\lambda), \varphi_{2}(n;\lambda), 0, 0),$$

$$\mathcal{E}^{-}(n;\lambda) = (\mathbb{C}^{n}, \mathbb{C}^{n}; 0, 0, \varphi_{1}(n;\lambda), \varphi_{2}(n;\lambda)),$$

where

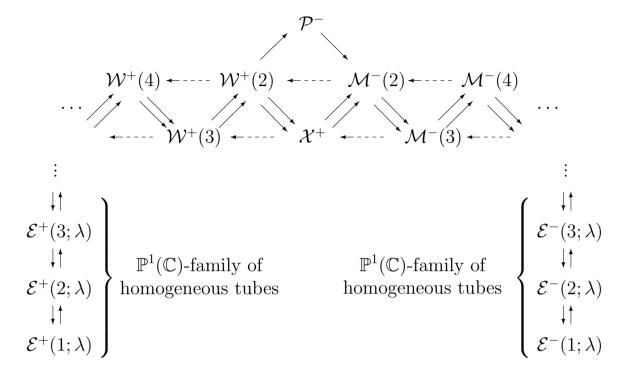
$$(\varphi_1(n;\lambda),\varphi_2(n;\lambda)) = \begin{cases} (\beta \cdot \mathrm{id} + \sum_{i=1}^{n-1} e_{i,i+1}, \mathrm{id}) & (\lambda = [\beta:1]), \\ (\mathrm{id}, \sum_{i=1}^{n-1} e_{i,i+1}) & (\lambda = [1:0]). \end{cases}$$

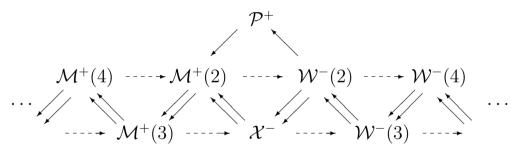
i.e.

$$\mathcal{E}^{+}(n;\lambda) = \begin{cases} \mathbb{C}^{n} & \xrightarrow{J(\beta;n)} \mathbb{C}^{n} & (\lambda = [\beta:1]), \\ & \text{id} & \\ \mathbb{C}^{n} & \xrightarrow{\text{id}} & \mathbb{C}^{n} & (\lambda = [1:0]). \end{cases}$$

Here $J(\beta; n)$ is the $(n \times n)$ -Jordan cell with eigenvalue β .

Auslander-Reiten quiver of B-mod





Remark. We "divide" the quiver of B into the following two pieces which are isomorphic to the Kronecker quiver:

Consider AR-quivers of Q^+ and Q^- (*i.e.* two copies of AR-quiver of the Kronecker quiver), and "paste" the above two copies.

 \Rightarrow AR-quiver of B-mod

Structure of \overline{U} -mod

Recall a decomposition of the basic algebra $B_{\overline{U}}$ of \overline{U} :

$$B_{\overline{U}} = \bigoplus_{s=0}^{p} B_s$$

where

$$B_0 \cong B_p \cong \mathbb{C}, \qquad B_s \cong B \quad (1 \le s \le p-1).$$

Denote by C(s) the full subcategory of \overline{U} -mod corresponding to B_s -modules (considered as $B_{\overline{U}}$ -modules) for $s = 0, \ldots, p$.

 \Rightarrow We have a block decomposition of \overline{U} -mod:

$$\overline{U}$$
-mod = $\bigoplus_{s=0}^{p} \mathcal{C}(s)$.

• For s = 1, ..., p-1, let Φ_s be the composition of functors $\Phi_s : B\text{-}\mathbf{mod} \to B_{\overline{U}}\text{-}\mathbf{mod} \to \overline{U}\text{-}\mathbf{mod}$.

We denote by

$$\mathcal{X}_{s}^{+}, \mathcal{X}_{p-s}^{-}, \mathcal{P}_{s}^{+}, \mathcal{P}_{p-s}^{-}, \mathcal{M}_{s}^{+}(n), \mathcal{M}_{p-s}^{-}(n), \mathcal{W}_{s}^{+}(n), \mathcal{W}_{p-s}^{-}(n), \mathcal{E}_{s}^{+}(n; \lambda), \mathcal{E}_{p-s}^{-}(n; \lambda)$$

the images of

$$\mathcal{X}^+, \mathcal{X}^-, \mathcal{P}^+, \mathcal{P}^-, \mathcal{M}^+(n), \mathcal{M}^-(n), \mathcal{W}^+(n), \mathcal{W}^-(n),$$

 $\mathcal{E}^+(n; \lambda), \mathcal{E}^-(n; \lambda)$

by Φ_s .

• On the other hand, for s = 0 or p, let Φ_s be the composition of functors

$$\Phi_s : \mathbb{C}\text{-}\mathbf{mod} \to B_{\overline{U}}\text{-}\mathbf{mod} \to \overline{U}\text{-}\mathbf{mod}.$$

Let us denote $\mathcal{X} \cong \mathbb{C}$ the unique simple object in \mathbb{C} - \mathbf{mod} . We denote the corresponding object in $\mathcal{C}(0)$ and $\mathcal{C}(p)$ by

$$\mathcal{X}_p^- := \Phi_0(\mathcal{X}) \in \mathcal{C}(0),$$

$$\mathcal{X}_p^+ := \Phi_p(\mathcal{X}) \in \mathcal{C}(p).$$

We remark that both \mathcal{X}_p^- and \mathcal{X}_p^+ are also projective. In that sense, we sometimes denote

$$\mathcal{P}_p^{\pm} := \mathcal{X}_p^{\pm}.$$

Simple objects in C(s)

The explicit form of $\Phi_s(\mathcal{X}^{\pm})$ are given as follows:

$$\circ 1 \le s \le p-1$$

• $\mathcal{X}_s^+ = \Phi_s(\mathcal{X}^+)$ is isomorphic to the <u>s-dimensional</u> module defined by basis $\{a_n\}_{n=0,\dots,s-1}$ and \overline{U} -action given by

$$Ka_n = q^{s-1-2n}a_n,$$

$$Ea_n = \begin{cases} [n][s-n]a_{n-1} & (n \neq 0) \\ 0 & (n = 0) \end{cases},$$

$$Fa_n = \begin{cases} a_{n+1} & (n \neq s-1) \\ 0 & (n = s-1) \end{cases}.$$

• $\mathcal{X}_{p-s}^- = \Phi_s(\mathcal{X}^-)$ is isomorphic to the (p-s)-dimensional module defined by basis $\{a_n\}_{n=0,\dots,p-s-1}$ and \overline{U} -action given by

$$Ka_n = -q^{p-s-1-2n}a_n,$$

$$Ea_n = \begin{cases} -[n][p-s-n]a_{n-1} & (n \neq 0) \\ 0 & (n = 0) \end{cases},$$

$$Fa_n = \begin{cases} a_{n+1} & (n \neq p-s-1) \\ 0 & (n = p-s-1) \end{cases}.$$

Remark. Since we consider all finite dimensional \overline{U} -modules, modules which are not of type I are appeared. For example, \mathcal{X}_s^+ is a \overline{U} -module of type I. On the other hand \mathcal{X}_{p-s}^- is not.

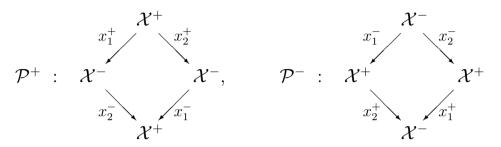
$$\circ s = 0 \text{ or } p$$

 $\mathcal{X}_p^+ = \Phi_p(\mathcal{X})$ (resp. $\mathcal{X}_p^- = \Phi_0(\mathcal{X})$) is the *p*-dimensional irreducible module of \overline{U} defined as similar way.

Other indecomposable objects in C(s) $(1 \le s \le p-1)$

• Since C(s) is equivalent to B-mod as an abelian category, all information of indecomposable objects in C(s) can be obtained form one of the corresponding objects in B-mod.

Example. In B-mod, the structure of the projective modules \mathcal{P}^{\pm} are given as:



By easy computation, we have

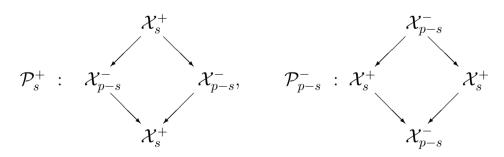
$$\operatorname{Ext}_B^1(\mathcal{X}^{\pm}, \mathcal{X}^{\mp}) = \mathbb{C}^2.$$

We fix basis of $\operatorname{Ext}_B^1(\mathcal{X}^+, \mathcal{X}^-)$ and $\operatorname{Ext}_B^1(\mathcal{X}^-, \mathcal{X}^+)$ by $\{x_1^+, x_2^+\}$ and $\{x_1^-, x_2^-\}$ respectively.

(We omit to give the explicit form of them.)

In the above diagram, we denote $\mathcal{X}_1 \xrightarrow{x} \mathcal{X}_2$ by the extension by $x \in \operatorname{Ext}_B^1(\mathcal{X}_1, \mathcal{X}_2)$.

Applying the functor Φ_s , we have



As a corollary, we have

$$\dim \mathcal{P}_s^+ = 2p \ (= 2s + 2(p - s)), \quad \dim \mathcal{P}_{p-s}^- = 2p.$$

§ Calculation of tensor products

Main tools

- (a) Some (basic) short exact sequences.

 (It is enough to show the existence of them in *B*-mod.)
- (b) Exactness of the functors $-\otimes \mathcal{Z}$ and $\mathcal{Z} \otimes -$. (: \otimes in a tensor product over a field \mathbb{C} .)
- (c) For a projective module \mathcal{P} , both $\mathcal{P} \otimes \mathcal{Z}$ and $\mathcal{Z} \otimes \mathcal{P}$ are also projective.
- (d) \overline{U} is a Frobenius algebra. As a by-product, \mathcal{Z} is projective $\Leftrightarrow \mathcal{Z}$ is injective.
- (e) Rigidity : For $n \ge 0$,

$$\operatorname{Ext}_{\overline{U}}^n(\mathcal{Z}_1,\mathcal{Z}_2\otimes\mathcal{Z}_3)\cong\operatorname{Ext}_{\overline{U}}^n(D(\mathcal{Z}_2)\otimes\mathcal{Z}_1,\mathcal{Z}_3),$$

$$\operatorname{Ext}_{\overline{U}}^n(\mathcal{Z}_1\otimes\mathcal{Z}_2,\mathcal{Z}_3)\cong\operatorname{Ext}_{\overline{U}}^n(\mathcal{Z}_1,\mathcal{Z}_3\otimes D(\mathcal{Z}_2)).$$

Here $D(\mathcal{Z})$ the standard dual of $\mathcal{Z} \in \overline{U}$ -mod. More precisely, define \overline{U} -module structure on the dual space $D(\mathcal{Z}) := \operatorname{Hom}_{\mathbb{C}}(\mathcal{Z}, \mathbb{C})$ as:

$$(a \cdot f)(z) := f(S(a)z) \quad (a \in \overline{U}, f \in D(\mathcal{Z}), z \in \mathcal{Z}),$$

where S is the antipode of \overline{U} .

Remark. It is known that the properties (c), (d) and (e) hold in more general setting. Namely, for any finite dimensional Hopf-algebra A over a field, these properties hold in A-**mod**. (Of course, (b) is also satisfied.)

Tensor products of simple modules

The following proposition is proved by Reshetikhin-Turaev.

Proposition 4 (Reshetikhin-Traev). For $s, s' = 1, \ldots, p$,

$$\mathcal{X}_{s}^{+} \otimes \mathcal{X}_{s'}^{+} \cong \begin{cases} \overset{s+s'-1}{\underset{t=|s-s'|+1,\\2\text{-steps}}{\otimes}} \mathcal{X}_{t}^{+} & (s+s'-1 \leq p), \\ \begin{pmatrix} 2p-s-s'-1\\ \underset{t=|s-s'|+1,\\2\text{-steps}}{\otimes} \mathcal{X}_{t}^{+} \end{pmatrix} \oplus \begin{pmatrix} p-\delta\\ \underset{t'=2p-s-s'+1,\\2\text{-steps}}{\otimes} \mathcal{P}_{t'}^{+} \\ & (s+s'-1 > p), \end{cases}$$

where

$$\delta = \begin{cases} 1 & (s+s'-p-1 \ is \ odd), \\ 0 & (s+s'-p-1 \ is \ even). \end{cases}$$

- If $s + s' 1 \le p$, the formula is nothing but Clebush-Gordan formula.
- It is easy to see that

$$\mathcal{X}_s^{\pm} \otimes \mathcal{X}_1^{-} \cong \mathcal{X}_1^{-} \otimes \mathcal{X}_s^{\pm} \cong \mathcal{X}_s^{\mp},$$

 $\mathcal{P}_s^{\pm} \otimes \mathcal{X}_1^{-} \cong \mathcal{X}_1^{-} \otimes \mathcal{P}_s^{\pm} \cong \mathcal{P}_s^{\mp}.$

By the associativity of tensor products, we can calculate other decompositions. For example,

$$\mathcal{X}_{s}^{-} \otimes \mathcal{X}_{s'}^{+} \cong (\mathcal{X}_{1}^{-} \otimes \mathcal{X}_{s}^{+}) \otimes \mathcal{X}_{s'}^{+}
\cong \mathcal{X}_{1}^{-} \otimes ((\oplus_{t} \mathcal{X}_{t}^{+}) \oplus (\oplus_{t'} \mathcal{P}_{t'}^{+}))
\cong ((\oplus_{t} \mathcal{X}_{t}^{-}) \oplus (\oplus_{t'} \mathcal{P}_{t'}^{-})).$$

Main result

Theorem 5. Indecomposable decomposition of all tensor products in \overline{U} - mod is completely determined in explicit formulas.

Since there are too many indecomposables in \overline{U} -mod, we can not list up all formulas in this talk. In the following, we will give some typical examples.

Tensor products of $\mathcal{E}_s^{\pm}(1;\lambda)$ with simple modules

By direct calculation, we have the following.

Proposition 6. For s, s' = 1, ..., p - 1, $n \ge 1$ and $\lambda = [\lambda_1 : \lambda_2] \in \mathbb{P}^1(\mathbb{C})$ we have

$$\mathcal{E}_{s}^{\pm}(1;\lambda) \otimes \mathcal{X}_{1}^{-} \cong \mathcal{E}_{s}^{\mp}(1;-\lambda),$$

$$\mathcal{X}_{1}^{-} \otimes \mathcal{E}_{s}^{\pm}(1;\lambda) \cong \mathcal{E}_{s}^{\mp}(1;(-1)^{p-1}\lambda),$$

$$\mathcal{E}_{s}^{+}(1;\lambda) \otimes \mathcal{X}_{2}^{+} \cong \mathcal{E}_{s-1}^{+}\left(1; \frac{[s]}{[s-1]}\lambda\right) \oplus \mathcal{E}_{s+1}^{+}\left(1; \frac{[s]}{[s+1]}\lambda\right),$$

$$\mathcal{X}_{2}^{+} \otimes \mathcal{E}_{s}^{+}(1;\lambda) \cong \mathcal{E}_{s-1}^{+}\left(1; -\frac{[s]}{[s-1]}\lambda\right) \oplus \mathcal{E}_{s+1}^{+}\left(1; -\frac{[s]}{[s+1]}\lambda\right).$$

Here, for $c \in \mathbb{C}$, we set $c\lambda = [c\lambda_1 : \lambda_2] \in \mathbb{P}^1(\mathbb{C})$.

Remark. This proposition tells us that, in general,

$$\mathcal{E}_{s}^{\pm}(1;\lambda) \otimes \mathcal{X}_{1}^{-} \ncong \mathcal{X}_{1}^{-} \otimes \mathcal{E}_{s}^{\pm}(1;\lambda),$$

 $\mathcal{E}_{s}^{+}(1;\lambda) \otimes \mathcal{X}_{2}^{+} \ncong \mathcal{X}_{2}^{+} \otimes \mathcal{E}_{s}^{+}(1;\lambda).$

That is, \overline{U} -mod is <u>not</u> a braided tensor category.

Proposition 7. For $s, s' = 1, \ldots, p-1$ and $\lambda \in \mathbb{P}^1(k)$,

$$\mathcal{E}_{s}^{+}(1;\lambda)\otimes\mathcal{X}_{s'}^{+}\cong\bigoplus_{t_{1}\in I_{s,s'}}\mathcal{E}_{t_{1}}^{+}\left(1;\frac{[s]}{[t_{1}]}\lambda\right)\oplus\bigoplus_{t_{2}\in J_{s+s'}}\mathcal{P}_{t_{2}}^{+}\oplus\bigoplus_{t_{3}\in J_{p-s+s'}}\mathcal{P}_{t_{3}}^{-}.$$

Here, $I_{s,s'}$, $J_{s+s'}$, $J_{p-s+s'}$ are some sets of integers.

(For $\mathcal{X}_{s'}^+ \otimes \mathcal{E}_s^+(1;\lambda)$, we have a similar formula.)

Proof. There is a (basic) exact sequence in \overline{U} -mod:

$$0 \to \mathcal{X}_{p-s}^- \to \mathcal{E}_s^+(1;\lambda) \to \mathcal{X}_s^+ \to 0.$$

Applying $-\otimes \mathcal{X}_{s'}^+$, we have

$$0 \to \mathcal{X}_{p-s}^- \otimes \mathcal{X}_{s'}^+ \to \mathcal{E}_s^+(1;\lambda) \otimes \mathcal{X}_{s'}^+ \to \mathcal{X}_s^+ \otimes \mathcal{X}_{s'}^+ \to 0.$$

By Proposition 4, we have

$$\mathcal{E}_{s}^{+}(1;\lambda)\otimes\mathcal{X}_{s'}^{+}\cong\bigoplus_{t_{1}}\mathcal{Z}_{t_{1}}^{+}\oplus\bigoplus_{t_{2}}\mathcal{P}_{t_{2}}^{+}\oplus\bigoplus_{t_{2}}\mathcal{P}_{t_{3}}^{-}$$

with an exact sequence $0 \to \mathcal{X}_{p-t_1}^- \to \mathcal{Z}_{t_1} \to \mathcal{X}_{t_1}^+ \to 0$ for each t_1 . We remark that \mathcal{Z}_{t_1} is not projective.

Assume the formula hols for $s'' \leq s' - 1$. Then,

$$\begin{aligned}
\left(\mathcal{E}_{s}^{+}(1;\lambda)\otimes\mathcal{X}_{s'-1}^{+}\right)\otimes\mathcal{X}_{2}^{+} \\
&\cong \mathcal{E}_{s}^{+}(1;\lambda)\otimes\left(\mathcal{X}_{s'-1}^{+}\otimes\mathcal{X}_{2}^{+}\right) \\
&\cong \mathcal{E}_{s}^{+}(1;\lambda)\otimes\left(\mathcal{X}_{s'-2}^{+}\oplus\mathcal{X}_{s'}^{+}\right) \\
&\cong \left(\mathcal{E}_{s}^{+}(1;\lambda)\otimes\mathcal{X}_{s'-2}^{+}\right)\oplus\left(\mathcal{E}_{s}^{+}(1;\lambda)\otimes\mathcal{X}_{s'}^{+}\right)
\end{aligned}$$

tells us that a non-projective indecomposable summand of $\mathcal{E}_{s}^{+}(1;\lambda) \otimes \mathcal{X}_{s'}^{+}$ must be of the form $\mathcal{E}_{t}^{+}(1;\frac{[s]}{[t]}\lambda)$ with $t = 1,\ldots,p-1$. Then we have $\mathcal{Z}_{t_1} \cong \mathcal{E}_{t_1}^{+}(1;\frac{[s]}{[t_1]}\lambda)$ since \mathcal{Z}_{t_1} cannot be projective. Thus we have the formula.

Tensor products of $\mathcal{E}_s^{\pm}(n;\lambda)$ with simple modules

For computing these combination, we need the rigidity.

Proposition 8. For
$$s = 1, ..., p-1$$
 and $\lambda \in \mathbb{P}^1(k)$, $D(\mathcal{X}_s^{\pm}) \cong \mathcal{X}_s^{\pm}, \quad D(\mathcal{E}_s^+(1;\lambda)) \cong \mathcal{E}_{p-s}^-(1;(-1)^s\lambda),$ $D(\mathcal{E}_s^-(1;\lambda)) \cong \mathcal{E}_{p-s}^+(1;(-1)^{p-s}\lambda).$

Proposition 9.

$$D(\mathcal{E}_s^+(n;\lambda)) \cong \mathcal{E}_{p-s}^-(n;(-1)^s\lambda), \ D(\mathcal{E}_s^-(n;\lambda)) \cong \mathcal{E}_{p-s}^+(n;(-1)^{p-s}\lambda).$$

Proof. Since dim $\mathcal{E}_s^+(n;\lambda) = pn$ and D preserves direct sum and dimension, $D(\mathcal{E}_s^+(n;\lambda))$ is an indecomposable module of dimension pn.

 \Rightarrow This is of the form $\mathcal{E}_t^{\pm}(n;\mu)$ or is projective (the latter case could occur only if $n \leq 2$).

$$\operatorname{ext}_{\overline{U}}^{1}(D(\mathcal{E}_{s}^{+}(n;\lambda)), \mathcal{X}_{s}^{+}) \quad (\operatorname{ext} := \dim_{\mathbb{C}} \operatorname{Ext.}) \\
= \operatorname{ext}_{\overline{U}}^{1}(D(\mathcal{E}_{s}^{+}(n;\lambda)) \otimes \mathcal{X}_{1}^{+}, \mathcal{X}_{s}^{+}) = \operatorname{ext}_{\overline{U}}^{1}(\mathcal{X}_{1}^{+}, \mathcal{E}_{s}^{+}(n;\lambda) \otimes \mathcal{X}_{s}^{+}) \\
= \operatorname{ext}_{\overline{U}}^{1}(\mathcal{X}_{1}^{+}, \mathcal{E}_{s}^{+}(n;\lambda) \otimes D(\mathcal{X}_{s}^{+})) = \operatorname{ext}_{\overline{U}}^{1}(\mathcal{X}_{1}^{+} \otimes \mathcal{X}_{s}^{+}, \mathcal{E}_{s}^{+}(n;\lambda)) \\
= \operatorname{ext}_{\overline{U}}^{1}(\mathcal{X}_{s}^{+}, \mathcal{E}_{s}^{+}(n;\lambda)) = \operatorname{ext}_{R}^{1}(\mathcal{X}^{+}, \mathcal{E}^{+}(n;\lambda)) = n.$$

 $\Rightarrow D(\mathcal{E}_s^+(n;\lambda))$ must be of the form $\mathcal{E}_t^{\pm}(n;\mu)$.

By the similar argument,

$$\operatorname{ext}_{\overline{U}}^{1}\left(D\left(\mathcal{E}_{s}^{+}(n;\lambda)\right), \mathcal{E}_{s}^{+}(1;\mu)\right) = \operatorname{ext}_{B}^{1}\left(\mathcal{E}^{-}\left(1;(-1)^{s}\mu\right), \mathcal{E}^{+}(n;\lambda)\right)$$
$$= \begin{cases} 1 & ((-1)^{s}\mu = -\lambda) \\ 0 & ((-1)^{s}\mu \neq -\lambda) \end{cases}.$$

$$\Rightarrow D(\mathcal{E}_s^+(n;\lambda)) \cong \mathcal{E}_{p-s}^-(n;(-1)^s\lambda).$$

Proposition 10.

$$\mathcal{E}_s^+(n;\lambda)\otimes\mathcal{X}_{s'}^+$$

$$\cong \bigoplus_{t_1 \in I_{s,s'}} \mathcal{E}_{t_1}^+ \left(n; \frac{[s]}{[t_1]} \lambda \right) \oplus \bigoplus_{t_2 \in J_{s+s'}} (\mathcal{P}_{t_2}^+)^n \oplus \bigoplus_{t_3 \in J_{p-s+s'}} (\mathcal{P}_{t_3}^-)^n.$$

(We have a similar formula for $\mathcal{X}_{s'}^+ \otimes \mathcal{E}_s^+(n;\lambda)$.)

Proof. The same argument as the case of $\mathcal{E}_s^+(1;\lambda) \otimes \mathcal{X}_{s'}^+$ shows that

$$\mathcal{E}_{s}^{+}(n;\lambda) \otimes \mathcal{X}_{s'}^{+} \cong \bigoplus_{t_{1}} \mathcal{Z}_{t_{1}} \oplus \bigoplus_{t_{2}} (\mathcal{P}_{t_{2}}^{+})^{n} \oplus \bigoplus_{t_{3}} (\mathcal{P}_{t_{3}}^{-})^{n}$$

with an exact sequence $0 \to (\mathcal{X}_{p-t_1}^-)^n \to \mathcal{Z}_{t_1} \to (\mathcal{X}_{t_1}^+)^n \to 0$ for each t_1 . Moreover, by the exact sequence

$$0 \to \mathcal{E}_s^{\pm}(n-1;\lambda) \to \mathcal{E}_s^{\pm}(n;\lambda) \to \mathcal{E}_s^{\pm}(1;\lambda) \to 0$$

and induction on n, we have the following exact sequence

$$0 \to \mathcal{E}_{t_1}^+ \left(n - 1; \frac{[s]}{[t_1]} \lambda \right) \to \mathcal{Z}_{t_1} \to \mathcal{E}_{t_1}^+ \left(1; \frac{[s]}{[t_1]} \lambda \right) \to 0.$$

$$\Rightarrow \mathcal{Z}_{t_1} \in \mathcal{C}(t_1) \text{ and } \dim_{\mathbb{C}} \mathcal{Z}_{t_1} = pn.$$

By using the rigidity, we have

$$\operatorname{ext}^{\frac{1}{\overline{U}}}(\mathcal{E}_{s}^{+}(n;\lambda)\otimes\mathcal{X}_{s'}^{+},\mathcal{X}_{t}^{+})=0,$$

$$\operatorname{ext}^{\frac{1}{\overline{U}}}(\mathcal{E}_{s}^{+}(n;\lambda)\otimes\mathcal{X}_{s'}^{+},\mathcal{X}_{p-t}^{-})=n,$$

$$\operatorname{ext}^{\frac{1}{\overline{U}}}(\mathcal{E}_{s}^{+}(n;\lambda)\otimes\mathcal{X}_{s'}^{+},\mathcal{E}_{t}^{+}(1;\mu))=\begin{cases} 1 & (\lambda=\frac{[t]}{[s]}\mu)\\ 0 & (\lambda\neq\frac{[t]}{[s]}\mu) \end{cases}.$$

 \Rightarrow By the above properties, \mathcal{Z}_{t_1} is uniquely determined. Namely, we have $\mathcal{Z}_{t_1} \cong \mathcal{E}_{t_1}^+ \left(n; \frac{[s]}{[t_1]} \lambda\right)$.

Conclusions

For other combinations, we can compute the explicit formulas by the similar methods.

As a by-product, we have

Corollary 11. (1) Let \mathcal{Z}_1 , \mathcal{Z}_2 be $\overline{U}_q(\mathfrak{sl}_2)$ -modules. If \mathcal{Z}_1 nor \mathcal{Z}_2 do not have any indecomposable summand of type \mathcal{E} , we have $\mathcal{Z}_1 \otimes \mathcal{Z}_2 \cong \mathcal{Z}_2 \otimes \mathcal{Z}_1$.

- (2) If p = 2, for arbitrary $\overline{U}_q(\mathfrak{sl}_2)$ -modules \mathcal{Z}_1 , \mathcal{Z}_2 we have $\mathcal{Z}_1 \otimes \mathcal{Z}_2 \cong \mathcal{Z}_2 \otimes \mathcal{Z}_1$.
- (3) If $p \geq 3$, there exist $\overline{U}_q(\mathfrak{sl}_2)$ -modules \mathcal{Z}_1 , \mathcal{Z}_2 such that $\mathcal{Z}_1 \otimes \mathcal{Z}_2 \not\cong \mathcal{Z}_2 \otimes \mathcal{Z}_1$. In particular, $\overline{U}_q(\mathfrak{sl}_2)$ -mod is not a braided tensor category.

Remark. These method can be applied only for $\mathfrak{s}l_2$ -case. If $\mathfrak{g} \neq \mathfrak{s}l_2$, it is known that $\overline{U}_q(\mathfrak{g})$ -mod has a wild representation type.