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§ Introduction

Background

• Kazhdan-Lusztig (1993∼1994):

Category of Category of

representation of
∼←→ representation of Uq(g)

affine Lie algebra ĝ at a root of unity

Main tool : Conformal Field Theory (WZW-model)

• Recently, a “log-version” of the above correspondence is con-
sidered.

What is a logarithmic CFT?

• Roughly speaking, a log CFT is a CFT such that “KZ-
type equations” have logarithmic singularities.

• But, in mathematical sense, there is no definition. That
is, there are only some examples.

As an example of log-CFTs, there is a CFT based on represen-
tation of the triplet vertex operator algebra W (p) (p ∈ Z≥2).

Conjecture 1 (Feigin et al.). There is a “log-version” of
KL-equivalence. That is, as braided tensor categories,

Category of
W (p)-modules

∼←→
Category of

finite dimensional
U q(sl2)-modules,

where U q(sl2) is the restricted quantum group associated

sl2 and q = exp(π
√
−1
p ).

They proved the conjecture for p = 2 case.
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In 2009, Tsuchiya-Nagatomo proved the following theorem.

Theorem 2 (Tsuchiya-Nagatomo). As abelian categories,
these are equivalent.

• In this talk, we only treat the quantum group side.

Aim :

Study tensor structure of U q(sl2)-mod.

Main result :

Indecomposable decomposition of all tensor products of U q(sl2)-
modules is completely determined in explicit formulas.

As a by-product, we show that U q(sl2)-mod is not a braided
tensor category for p ≥ 3.

⇒ It needs a rectification for Conjecture 1.

This is a future problem.
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§ Preliminaries

Notations

Let p ≥ 2 be an integer and q be a primitive 2p-th root of
unity. For any integer n, we set

[n] =
qn − q−n

q − q−1
.

Note that [n] = [p − n] for any n.

• U = U q(sl2) : The restricted quantum sl2

An unital associative C-algebra with generators E, F , K,
K−1 and relations ;

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F,

EF − FE =
K − K−1

q − q−1
,

K2p = 1, Ep = 0, F p = 0.

This is a 2p3-dimensional C-algebra and has a Hopf algebra
structure defined by

∆: E 7−→ E ⊗ K + 1 ⊗ E, F 7−→ F ⊗ 1 + K−1 ⊗ F,

K 7−→ K ⊗ K, K−1 7−→ K−1 ⊗ K−1,

ε : E 7−→ 0, F 7−→ 0, K 7−→ 1, K−1 7−→ 1,

S : E 7−→ −EK−1, F 7−→ −KF, K±1 7−→ K∓1.

The category U -mod of finite-dimensional left U -modules
has a structure of a monoidal category associated with this
Hopf algebra structure on U .
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§ Structure of U-mod

This is a survey of known results on U -mod which were
proved by Reshetikhin-Turaev, Suter, Xiao, Gunnlaugsdóttir,
Feigin-Gainutdinov-Semikhatov-Tipunin, Arike.

Basic algebra

A : an unital associative C-algebra of finite dimension,

A =
n
⊕
i=1

Pmi
i : a decomposition of A into indecomposable left

ideals where Pi 6∼= Pj if i 6= j.

For each i take a primitive idempotent ei ∈ A such that
Aei

∼= Pi, and set e =
∑n

i=1 ei.

BA = eAe is called the basic algebra of A which has the
following nice properties:

• BA is Morita-equivalent to A.

There is a functor BA-mod → A-mod defined as

Z 7−→ Ae ⊗BA
Z.

• BA is described by a quiver with relations.

A C-algebra B is called basic if B/rad(B) ∼= Cn. It is
well-known that an basic algebra is described by a quiver with
relations and it is easy to see that BA is basic.

⇒ What is BU ?
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Answer:

The basic algebra BU of U is decomposed as a direct product
BU

∼=
∏p

s=0 Bs and one can describe each Bs as follows:

• B0
∼= Bp

∼= C. (1-dimensional algebra)
• For each s = 1, . . . , p − 1, Bs is isomorphic to the 8-

dimensional algebra B defined by the following quiver

τ+
1

τ+
2

τ−
1

τ−
2

V −V +

with relations τ±
i τ∓

i = 0 for i = 1, 2, and τ±
1 τ∓

2 = τ±
2 τ∓

1 .

Remark. To get the basic algebra BU of U , we need to de-
termine a complete set of mutually orthogonal primitive idem-
potents of U . The explicit form of it is known, but we omit to
give it.

The next problem is :

What is the structure of B-mod ?

In the following, we will give you

• the complete list of indecomposable B-modules and
• Auslander-Reiten quiver of B-mod.
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Classification of indecomposable B-modules

We can identify a B-module with data

Z = (V +
Z , V −

Z ; τ+
1,Z , τ+

2,Z , τ−
1,Z , τ−

2,Z),

where

• V ±
Z is a vector space over C (attached to the vertices ±).

• τ±
i,Z : V ±

Z → V ∓
Z (i = 1, 2) are C-linear maps (attached

to the arrows) satisfying τ±
i,Zτ∓

i,Z = 0, τ±
1,Zτ∓

2,Z = τ±
2,Zτ∓

1,Z .

For positive integers m,n and i = 1, . . . ,m, j = 1, . . . , n, we
denote the composition of j-th projection and i-th embedding

ei,j : Cn → C → Cm.

Proposition 3. Any indecomposable B-module is isomor-
phic to exactly one of modules in the following list:

• Simple modules :

X+ = (C, {0}; 0, 0, 0, 0), X− = ({0}, C; 0, 0, 0, 0).

• Projective-injective modules :

P+ = (C2, C2; e1,1, e2,1, e2,2, e2,1) =
C
⊕
C

C
⊕
C

-

¡
¡

¡¡µ

¾ @
@

@@I

P− = (C2, C2; e2,2, e2,1, e1,1, e2,1) =
C
⊕
C

C
⊕
C

¾

¡
¡

¡¡µ

-@
@

@@I
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• For each integer n ≥ 2,

M+(n) =
(
Cn−1, Cn;

∑n−1
i=1 ei,i,

∑n−1
i=1 ei+1,i, 0, 0

)

= Cn−1

(
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

)
(

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

)-- Cn,

(
Here we omit

0-arrows.

)

M−(n) =
(
Cn, Cn−1; 0, 0,

∑n−1
i=1 ei,i,

∑n−1
i=1 ei+1,i

)
,

W+(n) =
(
Cn, Cn−1;

∑n−1
i=1 ei,i,

∑n−1
i=1 ei,i+1, 0, 0

)
,

W−(n) =
(
Cn−1, Cn; 0, 0,

∑n−1
i=1 ei,i,

∑n−1
i=1 ei,i+1

)
.

• For each integer n ≥ 1 and λ ∈ P1(C),

E+(n; λ) =
(
Cn, Cn; ϕ1(n; λ), ϕ2(n; λ), 0, 0

)
,

E−(n; λ) =
(
Cn, Cn; 0, 0, ϕ1(n; λ), ϕ2(n; λ)

)
,

where(
ϕ1(n; λ), ϕ2(n; λ)

)
=

{(
β · id +

∑n−1
i=1 ei,i+1, id

)
(λ = [β : 1]),(

id,
∑n−1

i=1 ei,i+1

)
(λ = [1 : 0]).

i.e,

E+(n; λ) =


Cn --

J(β; n)

id
Cn (λ = [β : 1]),

Cn --
id

J(0; n)
Cn (λ = [1 : 0]).

Here J(β; n) is the (n × n)-Jordan cell with eigenvalue β.
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Auslander-Reiten quiver of B-mod

P−

X+

W+(2)

W+(3)

W+(4)

· · ·
M−(2)

M−(3)

M−(4)

· · ·

¡
¡µ @

@R

¡
¡µ

¡
¡µ @

@R
@

@R ¡
¡µ

¡
¡µ @

@R@
@R

¡
¡µ

¡
¡µ @

@R@
@R

¡
¡µ

¡
¡µ @

@R@
@R

¾ ¾ ¾

¾ ¾ ¾ ¾

...

?6

E+(3; λ)

?6

E+(2; λ)

?6

E+(1; λ)


P1(C)-family of

homogeneous tubes


P1(C)-family of

homogeneous tubes

...

?6

E−(3; λ)

?6

E−(2; λ)

?6

E−(1; λ)

P+

X−

M+(2)

M+(3)

M+(4)

· · ·
W−(2)

W−(3)

W−(4)

· · ·

¡
¡ª @

@I

¡
¡ª ¡
¡ª @

@I
@

@I ¡
¡ª

¡
¡ª @

@I
@

@I ¡
¡ª ¡
¡ª @

@I
@

@I ¡
¡ª

¡
¡ª @
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@
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- - -

- - - -

Remark . We “divide” the quiver of B into the following two
pieces which are isomorphic to the Kronecker quiver:

Q+ := ◦
+

◦
−

--
τ+
1

τ+
2

“+” Q− := ◦
+

◦
−

¾¾
τ−
1

τ−
2

Consider AR-quivers of Q+ and Q− (i.e. two copies of AR-
quiver of the Kronecker quiver), and “paste” the above two
copies.

⇒ AR-quiver of B-mod
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Structure of U-mod

Recall a decomposition of the basic algebra BU of U :

BU =
p
⊕
s=0

Bs

where

B0
∼= Bp

∼= C, Bs
∼= B (1 ≤ s ≤ p − 1).

Denote by C(s) the full subcategory of U -mod correspond-
ing to Bs-modules (considered as BU -modules) for s = 0, . . . , p.

⇒ We have a block decomposition of U -mod:

U -mod =
p
⊕
s=0

C(s).

• For s = 1, . . . , p− 1, let Φs be the composition of functors

Φs : B-mod → BU -mod → U -mod.

We denote by

X+
s ,X−

p−s,P+
s ,P−

p−s,M+
s (n),M−

p−s(n),W+
s (n),W−

p−s(n),

E+
s (n; λ), E−

p−s(n; λ)

the images of

X+,X−,P+,P−,M+(n),M−(n),W+(n),W−(n),

E+(n; λ), E−(n; λ)

by Φs.
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• On the other hand, for s = 0 or p, let Φs be the composition
of functors

Φs : C-mod → BU -mod → U -mod.

Let us denote X ∼= C the unique simple object in C- mod.
We denote the corresponding object in C(0) and C(p) by

X−
p := Φ0(X ) ∈ C(0),

X+
p := Φp(X ) ∈ C(p).

We remark that both X−
p and X+

p are also projective. In
that sense, we sometimes denote

P±
p := X±

p .
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Simple objects in C(s)

The explicit form of Φs(X±) are given as follows:

◦ 1 ≤ s ≤ p − 1

• X+
s = Φs(X+) is isomorphic to the s-dimensional module

defined by basis {an}n=0,...,s−1 and U -action given by

Kan = qs−1−2nan,

Ean =

{
[n][s − n]an−1 (n 6= 0)

0 (n = 0)
,

Fan =

{
an+1 (n 6= s − 1)

0 (n = s − 1)
.

• X−
p−s = Φs(X−) is isomorphic to the (p − s)-dimensional

module defined by basis {an}n=0,...,p−s−1 and U -action given
by

Kan = −qp−s−1−2nan,

Ean =

{
−[n][p − s − n]an−1 (n 6= 0)

0 (n = 0)
,

Fan =

{
an+1 (n 6= p − s − 1)

0 (n = p − s − 1)
.

Remark . Since we consider all finite dimensional U -modules,
modules which are not of type I are appeared. For example,
X+

s is a U -module of type I . On the other hand X−
p−s is not.

◦ s = 0 or p

X+
p = Φp(X ) (resp. X−

p = Φ0(X )) is the p-dimensional

irreducible module of U defined as similar way.
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Other indecomposable objects in C(s) (1 ≤ s ≤ p − 1)

• Since C(s) is equivalent to B-mod as an abelian category, all
information of indecomposable objects in C(s) can be obtained
form one of the corresponding objects in B-mod.

Example. In B-mod, the structure of the projective modules
P± are given as:

P+ :

X+

X−

X+

X−,

¡
¡¡ª

@
@@R

@
@@R

¡
¡¡ª

x+
1 x+

2

x−
2 x−

1

P− :

X−

X+

X−

X+

¡
¡¡ª

@
@@R

@
@@R

¡
¡¡ª

x−
1 x−

2

x+
2 x+

1

By easy computation, we have

Ext1B(X±,X∓) = C2.

We fix basis of Ext1B(X+,X−) and Ext1B(X−,X+) by {x+
1 , x+

2 }
and {x−

1 , x−
2 } respectively.

(We omit to give the explicit form of them.)

In the above diagram, we denote X1
x−→ X2 by the extension

by x ∈ Ext1B(X1,X2).

Applying the functor Φs, we have

P+
s :

X+
s

X−
p−s

X+
s

X−
p−s,

¡
¡¡ª

@
@@R

@
@@R

¡
¡¡ª

P−
p−s :

X−
p−s

X+
s

X−
p−s

X+
s

¡
¡¡ª

@
@@R

@
@@R

¡
¡¡ª

As a corollary, we have

dimP+
s = 2p (= 2s + 2(p − s)), dimP−

p−s = 2p.
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§ Calculation of tensor products

Main tools

(a) Some (basic) short exact sequences.
(It is enough to show the existence of them in B-mod.)

(b) Exactness of the functors −⊗Z and Z ⊗−.
(∵ ⊗ in a tensor product over a field C.)

(c) For a projective module P , both P ⊗Z and Z ⊗P are
also projective.

(d) U is a Frobenius algebra. As a by-product,

Z is projective ⇔ Z is injective.

(e) Rigidity : For n ≥ 0,

Extn
U
(Z1,Z2 ⊗Z3) ∼= Extn

U
(D(Z2) ⊗Z1,Z3),

Extn
U
(Z1 ⊗Z2,Z3) ∼= Extn

U
(Z1,Z3 ⊗ D(Z2)).

Here D(Z) the standard dual of Z ∈ U -mod. More
precisely, define U -module structure on the dual space
D(Z) := HomC(Z, C) as:

(a · f )(z) := f(S(a)z) (a ∈ U, f ∈ D(Z), z ∈ Z),

where S is the antipode of U .

Remark . It is known that the properties (c), (d) and (e) hold
in more general setting. Namely, for any finite dimensional
Hopf-algebra A over a field, these properties hold in A–mod.

(Of course, (b) is also satisfied.)
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Tensor products of simple modules

The following proposition is proved by Reshetikhin-Turaev.

Proposition 4 (Reshetikhin-Traev). For s, s′ = 1, . . . , p,

X+
s ⊗X+

s′
∼=



s+s′−1
⊕

t=|s−s′|+1,
2-steps

X+
t (s + s′ − 1 ≤ p),

2p−s−s′−1
⊕

t=|s−s′|+1,
2-steps

X+
t

 ⊕

 p−δ
⊕

t′=2p−s−s′+1,
2-steps

P+
t′


(s + s′ − 1 > p),

where

δ =

{
1 (s + s′ − p − 1 is odd),

0 (s + s′ − p − 1 is even).

• If s + s′ − 1 ≤ p, the formula is nothing but Clebush-
Gordan formula.

• It is easy to see that

X±
s ⊗X−

1
∼= X−

1 ⊗X±
s
∼= X∓

s ,

P±
s ⊗X−

1
∼= X−

1 ⊗ P±
s
∼= P∓

s .

By the associativity of tensor products, we can calculate
other decompositions. For example,

X−
s ⊗X+

s′
∼= (X−

1 ⊗X+
s ) ⊗X+

s′

∼= X−
1 ⊗

(
(⊕tX+

t ) ⊕ (⊕t′P+
t′ )

)
∼=

(
(⊕tX−

t ) ⊕ (⊕t′P−
t′ )

)
.
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Main result

Theorem 5. Indecomposable decomposition of all tensor
products in U- mod is completely determined in explicit
formulas.

Since there are too many indecomposables in U -mod, we
can not list up all formulas in this talk. In the following, we
will give some typical examples.

Tensor products of E±
s (1; λ) with simple modules

By direct calculation, we have the following.

Proposition 6. For s, s′ = 1, . . . , p − 1, n ≥ 1 and λ =
[λ1 : λ2] ∈ P1(C) we have

E±
s (1; λ) ⊗X−

1
∼= E∓

s (1;−λ),

X−
1 ⊗ E±

s (1; λ) ∼= E∓
s

(
1; (−1)p−1λ

)
,

E+
s (1; λ) ⊗X+

2
∼= E+

s−1

(
1;

[s]

[s − 1]
λ

)
⊕ E+

s+1

(
1;

[s]

[s + 1]
λ

)
,

X+
2 ⊗ E+

s (1; λ) ∼= E+
s−1

(
1;− [s]

[s − 1]
λ

)
⊕ E+

s+1

(
1;− [s]

[s + 1]
λ

)
.

Here, for c ∈ C, we set cλ = [cλ1 : λ2] ∈ P1(C).

Remark . This proposition tells us that, in general,

E±
s (1; λ) ⊗X−

1 6∼= X−
1 ⊗ E±

s (1; λ),

E+
s (1; λ) ⊗X+

2 6∼= X+
2 ⊗ E+

s (1; λ).

That is, U -mod is not a braided tensor category.



16

Proposition 7. For s, s′ = 1, . . . , p − 1 and λ ∈ P1(k),

E+
s (1; λ) ⊗X+

s′
∼=

⊕
t1∈Is,s′

E+
t1

(
1;

[s]

[t1]
λ

)
⊕

⊕
t2∈Js+s′

P+
t2
⊕

⊕
t3∈Jp−s+s′

P−
t3
.

Here, Is,s′, Js+s′, Jp−s+s′ are some sets of integers.

(For X+
s′ ⊗ E+

s (1; λ), we have a similar formula.)

Proof. There is a (basic) exact sequence in U -mod:

0 → X−
p−s → E+

s (1; λ) → X+
s → 0.

Applying −⊗X+
s′ , we have

0 → X−
p−s ⊗X+

s′ → E+
s (1; λ) ⊗X+

s′ → X+
s ⊗X+

s′ → 0.

By Proposition 4, we have

E+
s (1; λ) ⊗X+

s′
∼=

⊕
t1

Z+
t1
⊕

⊕
t2

P+
t2
⊕

⊕
t2

P−
t3

with an exact sequence 0 → X−
p−t1

→ Zt1 → X+
t1

→ 0 for
each t1. We remark that Zt1 is not projective.

Assume the formula hols for s′′ ≤ s′ − 1. Then,(
E+

s (1; λ) ⊗X+
s′−1

)
⊗X+

2

∼= E+
s (1; λ) ⊗ (X+

s′−1 ⊗X+
2 )

∼= E+
s (1; λ) ⊗ (X+

s′−2 ⊕X+
s′ )

∼=
(
E+

s (1; λ) ⊗X+
s′−2

)
⊕

(
E+

s (1; λ) ⊗X+
s′

)
tells us that a non-projective indecomposable summand of

E+
s (1; λ) ⊗ X+

s′ must be of the form E+
t

(
1; [s]

[t]λ
)

with t =

1, . . . , p−1. Then we have Zt1
∼= E+

t1

(
1; [s]

[t1]
λ
)

since Zt1 cannot

be projective. Thus we have the formula. ¤
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Tensor products of E±
s (n; λ) with simple modules

For computing these combination, we need the rigidity.

Proposition 8. For s = 1, . . . , p − 1 and λ ∈ P1(k),

D(X±
s ) ∼= X±

s , D
(
E+

s (1; λ)
) ∼= E−

p−s

(
1; (−1)sλ

)
,

D
(
E−

s (1; λ)
) ∼= E+

p−s

(
1; (−1)p−sλ

)
.

Proposition 9.

D
(
E+

s (n; λ)
) ∼= E−

p−s

(
n; (−1)sλ

)
, D

(
E−

s (n; λ)
) ∼= E+

p−s

(
n; (−1)p−sλ

)
.

Proof. Since dim E+
s (n; λ) = pn and D preserves direct sum

and dimension, D
(
E+

s (n; λ)
)

is an indecomposable module of
dimension pn.

⇒ This is of the form E±
t (n; µ) or is projective

(the latter case could occur only if n ≤ 2).

ext1
U

(
D

(
E+

s (n; λ)
)
,X+

s

)
(ext := dimC Ext.)

= ext1
U

(
D

(
E+

s (n; λ)
)
⊗X+

1 ,X+
s

)
= ext1

U

(
X+

1 , E+
s (n; λ) ⊗X+

s

)
= ext1

U

(
X+

1 , E+
s (n; λ) ⊗ D(X+

s )
)

= ext1
U

(
X+

1 ⊗X+
s , E+

s (n; λ)
)

= ext1
U

(
X+

s , E+
s (n; λ)

)
= ext1B

(
X+, E+(n; λ)

)
= n.

⇒ D
(
E+

s (n; λ)
)

must be of the form E±
t (n; µ).

By the similar argument,

ext1
U

(
D

(
E+

s (n; λ)
)
, E+

s (1; µ)
)

= ext1B
(
E−(

1; (−1)sµ
)
, E+(n; λ)

)
=

{
1 ((−1)sµ = −λ)

0 ((−1)sµ 6= −λ)
.

⇒ D
(
E+

s (n; λ)
) ∼= E−

p−s

(
n; (−1)sλ

)
. ¤
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Proposition 10.

E+
s (n; λ) ⊗X+

s′

∼=
⊕

t1∈Is,s′

E+
t1

(
n;

[s]

[t1]
λ

)
⊕

⊕
t2∈Js+s′

(P+
t2

)n ⊕
⊕

t3∈Jp−s+s′

(P−
t3

)n.

(We have a similar formula for X+
s′ ⊗ E+

s (n; λ).)

Proof. The same argument as the case of E+
s (1; λ)⊗X+

s′ shows
that

E+
s (n; λ) ⊗X+

s′
∼=

⊕
t1

Zt1 ⊕
⊕

t2

(P+
t2

)n ⊕
⊕

t3

(P−
t3

)n

with an exact sequence 0 → (X−
p−t1

)n → Zt1 → (X+
t1

)n → 0
for each t1. Moreover, by the exact sequence

0 → E±
s (n − 1; λ) → E±

s (n; λ) → E±
s (1; λ) → 0

and induction on n, we have the following exact sequence

0 → E+
t1

(
n − 1;

[s]

[t1]
λ

)
→ Zt1 → E+

t1

(
1;

[s]

[t1]
λ

)
→ 0.

⇒ Zt1 ∈ C(t1) and dimC Zt1 = pn.

By using the rigidity, we have

ext1
U

(
E+

s (n; λ) ⊗X+
s′ ,X

+
t

)
= 0,

ext1
U

(
E+

s (n; λ) ⊗X+
s′ ,X

−
p−t

)
= n,

ext1
U

(
E+

s (n; λ) ⊗X+
s′ , E

+
t (1; µ)

)
=

{
1

(
λ = [t]

[s]µ
)

0
(
λ 6= [t]

[s]µ
) .

⇒ By the above properties, Zt1 is uniquely determined. Namely,

we have Zt1
∼= E+

t1

(
n; [s]

[t1]
λ
)
. ¤
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Conclusions

For other combinations, we can compute the explicit formulas
by the similar methods.

As a by-product, we have

Corollary 11. (1) Let Z1, Z2 be U q(sl2)-modules. If Z1

nor Z2 do not have any indecomposable summand of type
E, we have Z1 ⊗Z2

∼= Z2 ⊗Z1.

(2) If p = 2, for arbitrary U q(sl2)-modules Z1, Z2 we have
Z1 ⊗Z2

∼= Z2 ⊗Z1.

(3) If p ≥ 3, there exist U q(sl2)-modules Z1, Z2 such that
Z1 ⊗ Z2 6∼= Z2 ⊗ Z1. In particular, U q(sl2)-mod is not a
braided tensor category.

Remark . These method can be applied only for sl2-case. If
g 6= sl2, it is known that U q(g)-mod has a wild representation
type.　


