2012年度数学IA 小テスト (第5回) (6月18日)

担当:斉藤 義久

[1] 次の命題が間違っていることを,

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

を例にとり、説明せよ.

(間違った) 命題.

極座標表示を用いて $(x,y) = (r\cos\theta, r\sin\theta)$ と書く. 任意に固定した θ に対し、

$$\lim_{r \to 0} f(r\cos\theta, r\sin\theta) = 0$$

が成り立つならば,

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

である.

[2] X,Y を集合, $F:X\to Y$ を X から Y への写像とする.部分集合 $U\subset X$, $V\subset Y$ に対し,

$$F(U) = \{ y \in Y \mid x \in U$$
が存在して $y = F(x) \}$

$$F^{-1}(V) = \{ x \in X \mid F(x) \in V \}$$

とおく. F(U) は U の F による像, $F^{-1}(V)$ は V の F による逆像と呼ばれる.

- (1) $V = F(F^{-1}(V))$ を示せ.
- (2) $U \subset F^{-1}(F(U))$ を示せ、また、 $U \neq F^{-1}(F(U))$ となる例を構成せよ、
- [3] X を \mathbb{R}^2 内の開集合とし、X から \mathbb{R}^2 への写像 F を、

$$F(x,y) = (f_1(x,y), f_2(x,y))$$

で定める。ここに $f_i(x,y)$ (i=1,2) は X から \mathbb{R} への 2 変数関数である。このとき、次は同値であることを示せ、

(a) 各 $f_i(x,y)$ は、ともに X 上連続である。

(b) \mathbb{R}^2 の任意の開集合 V に対して,

$$F^{-1}(V) = \{(x, y) \in X \mid F(x, y) \in V\}$$

は \mathbb{R}^2 の開集合である.

- 注)(1) $f_j(x,y)$ が X 上の連続関数であるとは、『任意の $(a,b) \in X$ に対して、 $f_j(x,y)$ が (a,b) で連続であること』と定める。
- (2) 『空集合は開集合である』 と定義する.
- (3) 上記の同値な条件を満たすとき、Fは連続であるという.

コメント) これは次のように一般次元に拡張される。余力のある者は自分で確かめてみると良いだろう。

命題. $X \subset \mathbb{R}^m$ を開集合, $F: X \to \mathbb{R}^n$ を写像とする. 座標を用いて

$$F(x_1,\cdots,x_m)=\big(f_1(x_1,\cdots,x_m),\cdots,f_n(x_1,\cdots,x_m)\big)$$

と表示する。このとき、次は同値。

- (a) 各 $f_i(x_1, \dots, x_m)$ ($1 \le j \le n$) は、全て X 上連続である.
- (b) \mathbb{R}^n の任意の開集合 V に対して、 $F^{-1}(V)$ は \mathbb{R}^m の開集合である.
- [4] 複素数の全体 € を対応

$$\mathbb{C} \ni z = x + y\sqrt{-1} \mapsto (x, y) \in \mathbb{R}^2$$

によって、 \mathbb{R}^2 と見なす.

- (1) この同一視のもとに、 $\mathbb{C}\setminus\{0\}$ は \mathbb{C} の開集合であることを示せ.
- (2) $z \in \mathbb{C} \setminus \{0\}$ とする. このとき, $\mathbb{C} \setminus \{0\}$ から \mathbb{C} への写像 F を

$$F: \mathbb{C} \setminus \{0\} \ni z \mapsto \frac{1}{z} \in \mathbb{C}$$

で定める。上記の対応で \mathbb{C} を \mathbb{R}^2 と同一視し、値域の \mathbb{R}^2 の中で円

$$S = \{(u, v) \in \mathbb{R}^2 \mid (u - a)^2 + (v - b)^2 = r^2\} \qquad (\sqrt{a^2 + b^2} > r > 0)$$

を考える. 逆像 $F^{-1}(S)$ を求めよ.

(3) F は連続写像であることを示せ.