2011年度数学IA 小テスト(第1回) (4月18日)

担当:斉藤 義久

[1] 第 n 項が次で与えられる数列 $\{a_n\}$ の極限値を求めよ.

(1)
$$a_n = \frac{(-1)^n}{n}$$
 (2) $a_n = \frac{n}{n+2}$ (3) $a_n = \sqrt{n}$ (4) $a_n = \sqrt{n+1} - \sqrt{n}$

[2] 正の実数よりなる数列 $\{a_n\}$ に対し,極限 $\lim_{n o\infty} rac{a_{n+1}}{a_n}$ が存在すると仮定する.この極限値を lpha とするとき,

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \alpha$$

となることを証明せよ、

[3] 数列 $\{a_n\}$ を以下の漸化式で定める.

$$a_1 = 1$$
, $a_n = \frac{a_{n-1}}{2} + \frac{1}{a_{n-1}} \ (n \ge 2)$.

このとき,

$$\lim_{n\to\infty} a_n = \sqrt{2}$$

を示せ、

コメント)作り方から各 a_n は全て有理数であるが、にもかかわらず「収束先は無理数である」というのが、この問題のポイントである.

○ 発展問題

x を実数とするとき,次の等式を示せ.

$$\lim_{n \to \infty} \left(\lim_{m \to \infty} (\cos(n!\pi x))^{2m} \right) = \begin{cases} 1 & x$$
 は有理数 $0 & x$ は無理数

また、極限を取る順序を入れ替えて

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} \left(\cos(n!\pi x) \right)^{2m} \right)$$

とした場合はどうなるか考えてみよ.