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1 Introduction

There are several models to describe motion of interphase boundaries in coarsening pro-
cesses. The Cahn-Hilliard equation is one of typical models describing such evolutions
from macroscopic point of view. It is known that as a singular limit of the Cahn-Hilliard
equation there are several evolution equations for phase boundaries. These interface mod-
els are geometric in the sense that evolution law is completely determined by geometry of
phase boundaries. If the surface diffusion is dominated, the interface model comes to be
a quasilinear diffusion equation for position of phase boundaries. However, this equation
is not second order but fourth order so there are several phenomena which are different
from those of second order model like the mean curvature flow equation which is a model
describing motion of antiphase boundaries. The authors analyse such fourth order models
from rigorous mathematical point of view. The authors for example proved: (i) a curve
that moves by surface diffusion may pinch in a finite time, (ii) a curve that moves by surface
diffusion may not preserve its convexity in a finite time. These phenomena do not happen
for the curve shortening equation. Several other behaviours of solutions will be presented
in the lecture.

We study motion by surface diffusion which was first derived by Mullins [7].

Let T'; C R? be a closed evolving curve depending on time ¢ with initial data I';|;—¢ = T.
The governing equation for evolving curves by surface diffusion is of the form

V = —Kgs. (1)

Here V denotes the outward normal velocity and x denotes the outward curvature; s denotes
the arclength parameter of I';. There are several derivations of this equation other than
Mullins [7]. See for example Cahn and Taylor [1] and Cahn, Elliott and Novick-Cohen [2].
In the latter paper, (1) is obtained as some formal limit of Cahn-Hilliard equations. A
typical feature of I'; moved by (1) is that the area enclosed by T'; is preserved. Related
equations to (1) are well explained in Elliott and Garcke [3] and Cahn and Taylor [1]. For
physical background of these equations, see [1, 3] and references cited there.

In [3] local existence of solution for (1) was proved without uniqueness as well as for
other equations. They proved that if initial data is close to a circle, then I'; exists globally
in time and it converges to a circle with the same area enclosed by I'y as ¢t tends to infinity.
They also conjectured that I'; moved by (1) may pinch for some simple smooth initial data.
After this work was completed, we were informed of a recent work of Escher, Mayer and
Simonett [4] on unique local existence of solutions of (1). They proved the unique existence
of local-in-time solutions even for higher dimensional version of (1) in small Hélder spaces by
appealing abstract semigroup theory. They also studied the large time behavior of solutions
of the higher dimensional version of (1) if initial data are close to a sphere. These results are
regarded as a natural extension of the results of [3] to higher dimensional setting. Moreover,
they showed numerical evidence of existence of pinchings for various closed curves.

In this paper we present a rigorous mathematical result proving Elliott and Garcke’s
conjecture without detailed proof. The detailed proof is given in our paper [6]. Let us
explain our idea. We consider a smooth closed simple curve 'y which is symmetric with
respect to z-axis and y-axis. We assume that Iy is of the form

Lo = {(z,9);y = £uo(2)},

where ug(z) is even and ug(z) takes the only local minimum at z = 0. If I'; is represented
by y = u(t,z), then (1) becomes a fourth order equation of u(t,z). If we linearize (1)
around u = 0, we obtain

Ut = —Uggze-

1,364




If we consider the Cauchy problem for this equation with ug(z) > 0 and ug(z) = z* + §
for small § > 0 near ¢ = 0, then u(¢,0) would be negative in a short time. In other
words, the comparison principle does not hold. It is easy to guess this phenomenon since
u(t,z) = zt— 41+ solves Uy = —Uzqgzq- For a good choice of ug(x), u(t, 0) becomes negative
in short time during the period that solution I'y: y = u(¢,z) of (1) exists as smooth curves.
Since T is represented by y = u(t,z), and symmetric with respect to y = 0, this means
that I'; pinches in short time even if 'y is simple. This is a rough idea of our proof.

2 Pinching of evolving closed curves

We summarize here a parametrization of (1) by following Elliott and Garcke [4].
Let M° be a fixed reference C*® (or at least C®) closed curve with arclength 2L. For
T =R/(2LZ), let

X% T M
n— X°(n)

be an arclength parametrization of M°. By definition, X is a function on T or equivalently
2L-periodic function. Then, 7°(7) = XJ(n) is the unit tangent vector of M° and the Frenet
formula gives

79(n) = £*(n)n’(n),

no(n) = =& (n)7°(n),

where n’(n) is the unit normal vector and «°(n) is the curvature of M° with the sign
convention that the curvature of a circle is negative.

Let T'; C R? be a closed curve moved by surface diffusion law with respect to time ¢t > 0
starting from initial closed curve I'y. For small T > 0 we expect that I'; is parametrized by

X: [0,T)xT — T,
tmn) = X(tmn),

X(t,n) = X°(n) + d(t,n)n’(n)

with some d(t,7) defined on [0,T) x T. If I'y is embedded and T'; is close to Iy, then d(t,7)
is the distance function from M°. By this parametrization, (1) is equivalent to

1—dk° 1 1
J dt = —76,,(:]-6,,/&),

where J = | X, | = 8s/0n is the Jacobian and «(¢,7) is the curvature of I'; in the direction
of n°. Their explicit forms are

J = J(Tla aOaal)|(ao,01):(d,dq) = (dgy + (1 - dK0)2)1/2’

1
:ﬁ(

K 1— dr)dy, + 26°d2 + kdd, + £°(1 - d&®)*}.

Thus, the equation (1) for d(¢,n) with initial data T'y|;=o = T'o is of the form:

dy + J*dpyn + Py +Q =0, 0<t < T, ne T, @)
d(07n) = dO(T])7 ne Ta
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where P and Q are polynomials with arguments (1 — k°d)~%, J=', &°, &9, K3, kO, d,
d, and dy,. We note that x° toghther with its derivatives 3, &, 3,, is continuous and
bounded on T since M° is at least C5. We show that there is an evolving closed curve
which pinches in finite time, even if initial curve is simple.

Let us explain our idea of the proof. Let M® = {X°(n);n € T = R/(2LZ)} be
a dumbbell like curve symmetric with respect to both z-axis and y-axis and its neck is
so thin so that it is just a segment on the z-axis. It is normalized by setting X°(0) =
X°(L) = the origin (0,0). Let Tg = {X°(n) + do(n)n°(n);n € T} with do(n) > 0 be
symmetric with respect to both z-axis and y-axis and assume that do(n) takes its global
isolated minimum at n = 0 and L. Then, by symmetry of the equation (2), the solution
Iy = {X°n) +d(t,n)n’(n);n € T} stays symmetric with respect to both z-axis and y-axis.
In particular, d,(¢,0) = 0 and dp,,(t,0) = 0. Thus if d(¢, ) solves (2), then

d,(0,0) = —83d(0, 0) + 3(82d(0,0))°.

Thus, by the fundamental theorem of calculus,

d(t,0)

I

4(0,0) +di(0, 0t + | t [ du(s,0)dsdr
< d(0,0) + (—8;d(0,0) + 3(82d(0,0))*)t +£* - sup Tldn(t, ), (3)

te(0,7]
where % is taken so that d(t,n) exists for [0,#]. Roughly speaking, if d(0,0) is sufficiently
small and —87d(0, 0) + 3(82d(0,0))* < 0, then d(t,0) may be nagative for ¢ between two
roots of the quadratic equation of ¢: the R.H.S. of (3)= 0, which will imply a pinching of
Ft.
We shall state our result rigorously in the following. To do this, we define a special
(C®) reference curve M. This is parametrized by

X°(n) = (X1(n), X3(n)) forne T =R/(2LZ)

satisfying

X2 (n) = X7 (-n), 0<n<L,
X3(n) = X3(—n), 0<n<L,
X°(n) = (n,0), 0<n<L/4,
(XD)n(m) >0, 0<n<L/2,
XUL/2+n) =X)(L/2—n), 0<n<L/2,
X2(n) >0, L/a<n<L/2,
X)L/2+n)=—-X3(L/2—n), 0<n<L/2,

where 7 is an arclength parameter.
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We define a set of functions in T depending on positive parameters N and e:

Do(N,e) = {do:smooth;do(—n) = do(n) = do(L — 1), do(n) >0 (VneT),
|| dol[moemy < N, do(0) <&, dS?(0) — 3d5(0)* > 0,
do(n) attains its global minimum at n = 0}.

Here ||do||gs(T) denotes the sum of L2-norms of derivatives of dy up to order 9. Note that

closed curves 'y parametrized by X(0,7) = X°(n) + do(n)n’(n) with dy € Do(N,¢) are
simple in R2. A typical result is:

Theorem 1 (Pinching of evolving closed curves). For any N > 0 depending on M°, there
is an €9 > 0; for any ¢ € (0,&¢) and any dy € Dy(N,¢), there are ty € (0,T1(N)) (where
Ti(N) is an ezisting time of the solution of (2)) and t,(> to) such that for initial simple
closed curve T'y with parametrization

Lo = {X(0,n) = X°(n) + do(m)n°(n);n € T},

the solution curve T'y with parametrization
Te={X(t,n) = X (n) +d(t,mn’(n);n € T}, te[0,Ta(N)],

where d € Dr,(n)(N) is the unique solution of (2), ceases to be simple for at least ty < t <
min(tl, Tl(N))

This result looks stronger than the one presented in [6] in the sense that dy is taken arbitrary
but clearly the proof in [6] yields this result.

3 Nonpreserving of convexity of closed curves

We conclude this paper by stating our recent study for nonpreserving of convexity of evolv-
ing closed curves driven by surface diffusion. This phenomenon is markedly different from
that of second order model like the mean curvature flow equation. In fact, the mean cur-
vature flow equation preserves convexity of evolving closed curves as long as they exist (see
Gage and Hamilton [5]).

Our idea of the proof of this phenomenon is roughly stated as follows. Let X be the set
of all simple convex closed curves which are symmetric with respect to the y-axis. We can
construct a family of mappings {S}o<. 5«1 such that each S maps from ¥ to a set of
closed curves which are also symmetric with respect to the y-axis. Then, for any I'y € T,
we can choose a suitable ¢, § such that S¢% maps I'y to another simple convex closed curve
I’S“s and weakens the convexity of I'y locally. It can be also shown that the solution curve
I's? of (1) starting from I'y® = S¢9(Ty) exists in a time interval uniformly in 0 < & < 1
and it is simple and closed. After similar computations as in (3), we can show that this
I‘i"s loses its convexity in the above time interval.

We summarize our result in the following.

Theorem 2 (Nonpreserving of convezity). Let 'y € . Then, there is a 6o > 0; for any
§ € (0,80), there is an €5 > 0 such that for any e € (0,€2) there are t5° and t5° with
0 < t5° < 59 such that the solution curve T® of (1) starting from T§® = S95(Ty) loses its
convezity for at least t5° < t < min(Ty?, %), where Ty® > 0 is an existing time of T5°.
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