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A STABLE DIFFERENCE SCHEME
FOR COMPUTING MOTION OF LEVEL
SURFACES BY THE MEAN CURVATURE

Y.-G. CHEN, Y. GiGa, T. HITAKA AND M. HONMA

ABSTRACT. A difference scheme is introduced for computing the motion of
level surfaces moved by the mean curvature. This scheme is proved to be
stable in the maximum norm so that the computation can be completed
without overflow.

§1. Introduction.

In the research fields of applied sciences like physics, engineering and biol-
ogy, it is important to track the evolution (motion) of a surface, such as the
interface between two kind of materials or two different phases of a certain
kind of material. The problem how to track and compute the motion of a
surface with a curvature-dependent speed is usually a key point in the stud-
ies. Qur scheme is based on a level set method. Such a method is developed
numerically by Osher and Sethian [OS],[S] and analytically by Chen, Giga
and Goto [CGG1] and Evans and Spruck [ES]. See also [CGG2,3]. There are
many works now available on this method but we do not try to mention all
of them for lack of spaces. If the evolution depends on curvature, the scheme
need not be monotone so the convergence to the analytic solution (viscosity
solution) is not at all clear (cf. [CL]). In fact as explained later, some of
the numerical solutions of the scheme in [OS] may not converge to analytic
solutions in uniform topology.

In this paper, we introduce a little bit different scheme reflecting diver-
gence structure and prove its stability in maximum norm for mean curvature
flow problems.

We consider the Cauchy problem of the mean curvature flow equation

;Z'), (t,7) € Q = (0,00) x RN

(V) u(0,z) = uo, z e RY.

(E) Uy = |Vu|div<
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Let u = u(t,z) be a continuous viscosity solution of (E)-(IV) which takes
a negative constant for large |z|, which holds true if the initial value ug is
assumed to have such property. If for each t'€ (0,00) there is a bounded
open set D(t) in RV such that u(t,z) > 0 for z € D(¢t) and u(¢,z) < 0 for
z € D(t), then the O-level set I'y = {z;u(¢,z) = 0} of u(t,z) determines
a closed surface which moves with a speed V = (n — 1)H at each point
z € ', where H(t,z) is the mean curvature vector at z € Ty, provided that
Vu # 0 on I';. The global existence and uniqueness of the viscosity solution
to (E)-(IV) have been proved by Chen, Giga & Goto [CGG1] and Evans &
Spruck [ES]. And more important thing is that the level set ', is uniquely
determined by its initial data [y which is independent of the choice of its
defining function ug, provided that ugy is bounded, continuous and ug > 0
for z € D(0),uq < 0 for z g D(0) and [y = {z;up(z) = 0}. Moreover, in
[CGG1] these results are proved for a general geometric evolution.

Here, we discuss the difference methods for computing u(¢, z), the viscos-
ity solution of (E)-(IV) To overcome the difficulty of taking O value in the
denominator which will cause errors in computers and stop the computation,
we introduce a parameter § > 0 and consider the difference approximation
of a modified equation

Vu
(Ve + 517

(Es) ue = |Vul|div < ) . (t,z) € Q =(0,00) x RY

with the same initial value (IV). Here, ¢ 2 1 is fixed. It can be shown that
the viscosity solution of (Es) with (IV) tends to that of (E) when § — 0.
Thus, it is reasonable to deal with the computation of the solution of (Ej)
as an approximation of the solution of (E) with the same initial value (IV),
for a sufficiently small § > 0 (say, § = 107°%).

There are several methods now available to compute evolving surfaces
moved by mean curvature. Using parametrization of surface a finite element
method was studied by Deckelnick and Dziuk[DD]. See also [D]. Although the
convergence of the scheme is proved, this scheme does not track the evolution
after it develops singularities. A finite element method for level set equations
was studied by Walkington [W] based on co-volume method. Another way is
to compute Allen-Cahn type reaction diffusion equation or its modification.
Such a calculation is done by Nochetto and his collaborators [NPV] and it is
very good to track the evolution after it experiences singularities. Another
method related to the level set method is introduced by Bence, Merriman
and Osher [BMO] where heat equation is used to study the motion by mean
curvature. Its convergence is proved by Evans [E] and others.
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We thank GARC for giving the opportunity for publication of this short
note. The main part of this paper was completed in 1991 but because of
personal problems of first two authors the completion of the paper had been

delayed.
§2. Difference schemes for the mean curvature flow equation.

Now we introduce our difference scheme for (Es), and for simplicity we
interpret the scheme here for the two dimensional case N = 2. Qur difference
equation for (Es) is given by

n+1l n+6
u]k '—'U. Du]k
g]kZDZ _*_5)1/0 )
],k:O,:tl,:tQ,... n=01,2--;
u?k :uﬁ(xj)yk)u ]/k:07:t17:t27

(1)

Here, several notations have been introduced as below. Denoting by z and
y the spatial variables in R?, we use z; and y; for the spatial coordinates of
the net points.

NOTATION:

e 7 =At > 0: increment of the time variable t;

e t, = nrt:nth time step;

e hy, hy : mesh sizes of z and y directions, respectively;

o (z;,yx) = (jh1,khy) : net point in R?, j k=0,£1,£2,---;

o u” : value of the difference solution approximate to u(tn, T;,Y%);

o Diufy = (ul,y, — oy )k Daul = (w0, —ule ) ko s the
approximations to uz(tn,z;,yx) and uy(t.,z;,yx) by central differ-
ence approach, respectively;

o g7 = g(DuT,): discretization of [Vu]| at (tn,zj,yk), which is chosen
positive definite for {thu;‘k; t=1,---,N}, where Dt and D~ denote
the standard forward and backward differences, respectively.

For instance, we may take

N 2
1 n - n 2
9k = <ZZ(|D,+UJ';<| + [ D7 ull) ) , or

=1

_ +
ﬁwnggHD Kl 1D7 uTel}
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The notation u? here denotes §u™*!+(1—6)u™ for a fixed parameter § € [0, 1],
and the difference equation (1) is explicit for u™*?! if § = 0, while implicit if
0<6s1..

We can prove a sufficient condition for the L*° stability of maximum
principle type for the difference scheme (1), as the following

Theorem 1. The difference scheme (1) Is stable in the sense of [|[u™||e <
|[u®||oo if either § = 1 or4r(1/h2 +1/R2) S 1/(1~6) when 0 £ 6 < 1, where
4[| = SUp; & |u?k|'

It is sometimes convenient and economic to deal with a surface of rotation

in a lower dimension space. Here, to compute the motion of a surface with
axisymmetry in R3, i.e., surfaces of rotation, we rewrite (E) into

(E;) |Vu|dzv <qu ) + %ur, (t,7,2) € @ = (0,00) X (0,00) x R

V|

where 7 = /22 4+ y2 for (z,y,2) € R®, and the differential operators ¥ and

dwv are those with respect to (r,z) € [0,00) x R.
For this equation, our difference scheme is constructed as

uor U Daugt® ) | 2upt? —ugi)
T [(95%)7 + ¢] 1
k=0,:i:1,:i:2,---;n:0,1,2,---;
n+6 n -8 n 8
—:gijDi T 77 — h ,
T i=1 [(gjk) +5] J 1
k:O’:h17:t27.";j:1)2)..';n:0)1)2)..‘;
ul = uo(zj,yx), k=0,+£1,£2,-;7 =012 .

where u7, is the approximation of u(tn,7j,25),(r5,zk) = (Jh1, kh2), and D,
and D, denote the difference operators for 9, and J.. Here, the last term of
the first equation is used for the apprommatlon of 2= on the points of j =0
so that r; = 0. The limit relation lim, o2 = u,.r and the symmetricity
ul, , = ul, which follows from u(t,r,2) = u(t,—r,z) and thus u.(¢,0,z) = 0
are also applied so that
+8 n+8 | . n+6 8 +6
ury” = 2ugy Full; _ 2uly’ —ugy ")

¥ - P2
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On the other hand, the last term of the second equation is derived by the
upwind difference approach (with forward difference approximation here) to
2z for 7 > 0.

This type of difference approximation is also used in [C] in the discretiza-

tion of the Laplacian for the axisymmetric solutions.

It both cases, the schemes (1) and (2), the computation is carried out
in a restricted domain, say, a rectangular domain. When the initial value
function has a negative constant value —C for large |z|, so dose the solution
u(t,z) with a same constant value. Then we can use this convenient property
in our computation to make the work simpler. We have only to compute the
value in a (sufficiently large) finite domain, on the boundary of which the
solution has a negative constant value. So, we can deal with the boundary

condition either as the Dirichlet condition or as the Neummann condition.

The stability condition for the difference scheme (2) is given by
Theorem 2. The difference equation (2) is stable if either

1
;S—— when 0 S 6 < 1.
h; —

g=1 6— +4
= or h—?—f— 1—9;

It can be seen from Theorems 1 and 2 that the "linearly” full implicit
scheme (the case when 6 = 1) is absolutely stable, with no restriction to the

mesh size and the time increment.

§3. The proof for the stability of the difference scheme.

Here we give the proof of Theorem 2, and Theorem 1 can be proved in the

same way.
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The difference equations (2) can be rewritten as

n n n-+ n n+9 n.+9
ugy | —uf _ a2 u]:g_uOlj.g .1 Yo, k+1 ~ Yok
r Gok h% . o l/cr.-r- h% N o 1/o
(s74) +9 (550s3) +¢]
n n n+8 n+8
uoje_uo'—ze_l )} 2 (ulk —U'O,k )
- o /o h2
[(s5-y) +9] 1
(n=0,1,2,---; k=0,£1,£2,--.),
n+1 n n+8 n+8 ’ n+8 n+4
(3) Yik TUik A J 1 Uirnk T Uik I L W
r =Gjk h? . o 1/o n o /o
(oa3) +8] {(g7g) +4]
n+4 n+46 n+4 n+8
1 uj,-lf:-f-l Uk e | R 1 2
+ ;{2—- o 1/o 4 1/o
SN (G IEL/ (CAIEY)
9jk+} k-4
n+6 n+8
1 uj-:-l,k T Uk
T'J' hl
(n:0)1a271]:1)2))k:0)i17i27))
where the values of g at the fraction points are defined by
n 1 n n n ’ 1 n n
(4) Jixt e = i(gjk +gj;t1,k)w 9jkxy = 5(91',1: + gj,k:tl)'

By introducing

T T
a = ’h_'_lzy /B '}Ey
_ agly
(5) :ai = afjk = Jg 1/a’
(55) +9
b = 6%, i
njk [(g;ki%)a +6]1/o'
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at each (tn,r;, 2x), the equations (3) can be changed to

el ={1-(1—-6)2a" + b7 + b7 +24)}udy

uok =
+(1- 9){(2a+ + 2a)uly + b+ug{k+1 + b_ug,k_l}

+60{(2a* + 20)ulft +bTug ) + b_ugil_l‘
—(2at + 67 +b7 + 2a)ug

(n=071a21"' ) k=0,i1,:t2,),

W = {(1-(1=8)(a" +a™ +b5T +b7 + %)}u?k

-1

(6)
(07 n — n n -, n
+(1—9){(a++]—-)“j+1,k+a uj—l,k+b+uj,k+l+b uj,k—l}

+ . %\ a4l -, n+1 +_ n+1l - n+l
+6{(a T Ui T e F 0Tk 6T

(07
GRS I ST
(n:071,2,;]:1,2,’k:[),i]_’-_l_-Q,)’

uly =uo(rj,zx) (j=0,1,2,-;k=0,%£1,4£2,---).

Noting that g%, 2 0 and § > 0-we can get the following

Lemma 1.

= —pE <28,

Thus, we can show the following maximum results as

Lemma 2. If the values of 8, a* = a:"jk and b* = bfjk satisfies

(7 1-(1-8)(a" +a” +b67 +b7 +2a) 20,

then the difference solution of (2) satisfies

inf u?, 2 inf u?k,
ik TE T Gk
mz}cxu?k §ma}cxu?k, n=12--.
7 J
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Proof of Lemma 2. Rewriting the difference equations (6) and noting that
at =a~ for j =0, we get
{1+6(a™ +a= +bT +b7 +2a)}uf!
={1-(1-6)(a"+a™ +b7 +b~ +2a) }uy,
+(1- 8){(a+ +a” +2a)uly + b+u6‘k_,_1 -+ b_ug,k_l}
+8{(a™ +a” +2a)ul + l)*”u(’;'+1 +b7u 341;11}
(TZ=0,1,2,"' )k :Oyi'lvi'Q"”)a
{1 +6(at +a”+ bt + b7 + 3)}@‘;‘1
(8) !
(1= (1—6)at +a + bt +b + %)}u}"k
a n —_ n N n - n
+(1-8){(a* + 7)“j+1,k +aTull e+ bl 07U

84 — n n -, n
+9{(a+—+——_)u'7‘+1 +a"u +1k+b+ ]ﬂ_l—kb ujj;il},

J+1,k
(TZ_O,].,Q,' )]:11‘-‘7 k—Oil :JCQ )
ue =uo(rj,2x) (7 =0,1,2,- - ;k=0,£1,£2,---).

Note that we have done our computation in a certain finite domain and
on the boundary of the domain the value of the solution is a constant —C.
Here, we claim that the maximum and minimum value of the difference
solution u7, are reached on the boundary, or the initial plane (i.e. n = 0).
This is shown in the following way. If 7 > 0, since a/7 < 2a, we have
{1-(1—-8)(at +a=+bT+b" + %)} 2 0 and in a inner (mesh) point of the
domain, say (t.,r;,z2x), the difference solution satisfies

{1+6(a™ +a™ + b7 + b7 + 7)}u;‘,j”
S{1-(1-6)(at+a" +bT +b7 + ?—.)}IIU"H
+(1-0){(e* + ‘j—.)uu"u +a” ]+ 5 [+ b [}
£0{(a% + ) um |+ e [+ 5,

=[u™| +6(a* +a” + 0T +b7 + )Hu”“ll
(n=0;1a2)'”1]_1:“7' rk:O)ﬁ:l):{:21)
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where || - || = || - |0 here and hereafter. So, we get
{1+0(at+a™ +b7 +07 + j‘—.)}nu"“]l
S [l +0(a* +a7 45 457 4 S,

which leads to
u™ ] < ).

While if ; = 0, then the estimates become

{146(2at + 0% + b7 + 2a) Jug?
S{1-(Q-8)(2a* +b% +b7 + 2a)}||u"|
+ (1= 6){(2a™ + 2a)[u™|| + 6T ||u”|| + 57 [u]]}
+6{(2a* +2a)u | + 6T (T + 67 [T}
= [Ju"]| +8(2a* + 6T + 57 + 20)|[u |
(Tl = 0)1127"' )k = O,:tl,:t?,"‘),
which also leads to
S fun]

Here, if we take max instead of || - || in the above argument, then we can
obtain

0
a.XuJ-k.

maxu’, £ m
ik ;&

J

And similarly we can show another inequality.

. . 0
infuly 2 infuj,.
ik T Tk

Thus we have completed the proof of Lemma 2.

From Lemma 2, we can obtain our stability condition. Either of the fol-
lowing conditions leads to (7), the condition § =1 or

1 .
(9) a++a—+b++b_+2a§—l—9 f0S6<1.

While in virtue of Lemma 1, (9) holds true if

1
<
60:—{—4,8_1 7
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is satisfled. This completes the proof for Theorem 2.
To prove Theorem 1, we have only to make a little change in the estimates:
simply omit the terms 2« and ;5 in the statements.

§4. For the case of generalized mean curvature flow equation.

With the above-mentioned methods, we can construct a stable difference
scheme for the so-called generalized mean curvature flow equation

(E) u,zjvu|div(%>+u|vu|, (t,z) € Q = (0,00) x RY

where v is a constant (see[CGG1]).
The difference scheme for (E') is constructed by the following two parts:

(1) the first part of the scheme is constructed as that for (E) in the
previous section;
(2) the second part of the scheme is constructed in the way of any
kind of stable difference scheme with monotonicity for the Hamilton-
Jacob equation u, = v|Vu|, such as Lax-Friedrichs scheme, Godunov
scheme, etc. (see, for example [CL]).
Then, we can show that the obtained difference scheme 1s stable if the value

of 7/h%(¢ = 1,2) are taken sufficiently small ((CGH]).

§5. Some remarks.

1. It is important to note that the stability conditions do not depend
on§>0and o 2 1. )
2. If g7 1s not positive definite for Diu;k, then the difference solution

may not converge to the solution of (Es), nor to that of (E) when
65— 0.

Example. It is easy to see that
u(t,z) = maz{l — (2t + |z[*), =1}
1s the unique viscosity solution of the level set equation (E) with initial data

uo(z) = maz{l — |z|?, -1}.

Here, if g7, in the scheme is replaced by a general central difference approx-
imation, then the value of numerical solution u7 at the origin is independent
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of n 2 0, because the symmetry forces the central difference at the origin
equal to zero.

However, the value of the analytic solution u(t,z) at the origin equals
1 — 2t(for t £ 1) which is smaller than 1 for ¢ > 0. Thus the numerical
solution u7, does not pointwisely converge to the viscosity solution.

The same remark applies to the scheme in [OS]. Since the central difference
approximation is used in [OS], the numerical solution there may not converge
to the analytic solution. In that paper, in order to avoid the problem they
shifted the grids so that non of the net points agrees with the center of
symmetry, for the case when symmetric data are started with.

3. Osher and Sethian discussed some difference constructed in a differ-
ent way with level surface approach ([OS],[S]). They computed sev-
eral interesting examples including the torus and dumbbells without
discussing the fundamental theory such as stability, etc. In [S], an
example of unstable computation of a torus was presented with a
quite large At but no condition for the stability was given there.

4. In [0S] and [S], the axisymmetric surfaces are computed urder the
rectilinear coordinates instead of the cylindrical coordinates.

With our stable difference schemes and level surface approach, we investi-
gated motions of several typical surfaces, including the shrink of a torus(sur-
face of a doughnut) and the break of a dumbbell. With this method we can
track motions of a surface even after the time when a singularity occurs.

§6. Numerical results.

We present several computation results on the evolution of axisymmetric
surfaces here: the “fat torus”and “Hamilton’s dumbbell”. The computation
is carried out by our difference scheme (2) in its explicit form (with § = 0)
while the “safety parameter”§ is taken § = 107%° and o = 2. We restricted
the domain to (r,z) € [0,1.5] x [~1.3,1.5] which is discreted into net points
with the mesh sizes hy = hy = 0.015 and the time increment = = 0.00001125.
On the axis of symmetry r = 0, the boundary condition is treated with the
symmetry property of the solution.

1. Fat Torus

As the analytic theory predicts ([SS]), no fattening occurs for generalized
solution after it collapses. According to numerical simulation, it becomes
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convex and shrinks to a point. If the torus is thin, it converges to a “marriage

ring” ([AI]).
2. Hamilton’s Dumbbell

We consider the inftia.l surface of tklle form
Ty = {(z,3,2)2% +3° = (1= 29)(1 = A+ Az%)?)
where 0 S A S 1is a parameter. We take the initial data
up = (1 —23)(1 = A+ A\3)? — 2

and select the zero level surface to observe. If X is close to 1, '} pinches
into two pieces in a finite time. Then both pieces become convex. Actually,
according to Altshuler, Angenent and Giga [AAG], no fattening occurs and
I'} becomes smooth instantaneously after it pinches. At last each of the
pieces shrinks to one point, respectively. See the cases A = 0.8 and A = 0.63.

From the numerical results we can see that I'} becomes convex and then
shrinks to a single point for A = 0.63.

In between A = 0.63 and A = 0.63, there may exists a critical value of A
for which the behavior of the shrinking dumbbell is exceptional. The surface
does not become convex rior does it pinch. It stays smooth and shrinks to a
point. The existence of such a dumbbell is proved analytically in [AAG] by
topological argument. See the picture of the case A = 0.64, which seems to
be the critical value.

Recently, Nochetto et al. [NPV] calculated the evolution of I'} by a differ-

ent method. Their calculation suggests that the critical value be A = 0.654,
which 1s very close to ours.
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