Tutorial Lecture

The variational principle formulated by Onsager (1931)

Reciprocal relations for irreversible processes: Heat transport

The heat flux J induced by temperature gradient VT is given by the constitutive
equations

3
Ji==24V,T (i=1273).
j=1

The 4; are coefficients of heat conductivity. The heat conductivity tensor is symmetric
even in crystals of low symmetry (Stokes 1851).

Onsager’s reciprocal relations derived from microscopic reversibility

For a closed system, consider the fluctuations of a set of (macroscopic) variables
a, (i=1,...,n) with respect to their most probable (equilibrium) values. The entropy of

the system S has a maximum S, at equilibrium so that AS =S —S, can be written in the
quadratic form

AS(eymsr) = =2 Y e
2 ij=1
where g is symmetric and positive definite. The probability density at ¢; (i=1,...,n) is

given by

f(ay,...a,) = f(0,...,0)e*"

where kg is the Boltzmann constant. The forces conjugate to ¢; (i=1,...,n) are defined
by

i _ 288

aai j:lﬂ” J
which are linear combinations of ¢, (i =1,...,n) not far from equilibrium.

Following the above definition of the forces, the equilibrium average (over the
distribution function f(«,...,,)) of ;X is given by

(X )=k
Microscopic reversibility leads to the equality
(e (V) (t+7)) = (&; (V)ez; (t+7))

for time correlation functions. In a certain domain not far from equilibrium, the
macroscopic variables ¢, (i =1,...,n) satisfy the linear equations

%ai ®= —Zn: M, (t) = Zn: L X (1)



Here the Onsager coefficient matrix L is related to the (rate) coefficient matrix M via
the relation L=M 8.

Onsager’s hypothesis is that fluctuations evolve in the mean according to the same
macroscopic laws. Therefore, in evaluating the correlation function <ai Da; (t +r)> for a

short time interval z (a hydrodynamic time scale which is macroscopically short but
microscopically long), «;(t+7) is given by

a;(t+7)=q; (t)+r%0:j O =¢;(t) +rz Ly X, (1) -
k=1
It is worth pointing out that z is macroscopically short for the linear expansion but

microscopically long for the applicability of the macroscopic laws. It follows that
(e ()er; (t+7)) is given by

(e(Der; (t+7)) = (e (D (1)) + rzn: L (o () X, (0) = (@ (O); (1)) — 7Kg L

similarly, (e (t)e; (t+7)) is given by
(o (et (t+7)) = (e (D) (1)) - Tk ;-

Comparing the above two time correlation functions, we obtain the reciprocal relations
Li =Ly
from microscopic reversibility. Note that (e (t)er; (t)) = (a; (t)e; (t)) by definition.

Onsager’s variational principle governing irreversible processes

Consider the heat transport in a crystal. The “forces” and “rates” (“velocities”) are related
by the constitutive equations
1 3
— VT =X = Zl: R;J
J=

ijv ]

where X; (1=1,2,3) are the forces and the components of the heat flux J; (j=1,2,3)

are the rates. Here the matrix R is the inverse of the Onsager coefficient matrix L,
which is also symmetric. The dissipation function ¢(J,J) is introduced in the form of

_1ls
$(3,9)=— DRI,

ij=1
It is worth emphasizing that ¢ can be defined in this quadratic form because of the
symmetry in the matrices R and L. It is observed that substituting the constitutive
equations into the quadratic expression for ¢ yields

2¢(3,J) E%Zs: RjJid; :Tli‘]ixi :i‘]ivi (%)

ij=1
which equals the rate of entropy production per unit volume due to heat transport.



Let s denote the local entropy density in the system. Then, under the assumption of local
equilibrium, the rate of change of s is given by

E zi(_v.J) ,

dt T

where —V -J is the rate of local accumulation of heat. The rate of change of the total
entropy S is the volume integral

§—[Lav :j(—lv-J]dv .

dt T
The rate of the entropy given off to the surrounding environment is given by the surface
integral

S*= j(%jdA,

where J is the outward normal component of the heat flux at the boundary. It follows
that

Sese=f(-vealave][3 pa=f(-Fvalave v T v fav( .

It can be shown that the constitutive equations for heat transport can be derived from the
variational principle

®(J,J)—[S(J)+S*(Jn)] = minimum,

where the temperature distribution is prescribed, and the rates, i.e., the heat flux J, are
varied. Here ®(J,J) is defined by

®(J,J) = jqﬁ(J J)V = j{ Ry J; JJdv
S(J) is defined by

S(J)zj(_%vq)dv ,

and S*(J,) is defined by

S*(Jn)zj(%jdA

with
$(3)+S$*(J )sz-v(ljdv.
" T
The variation of @(J,J)—[S(\J) +S*(J, )] is given by

5{@(3,3)—[S(J)+S*(Jn)]} IZ{—W J)-v ( H&J av,

from which we have

0 1
acﬁ(J,J)—Vk (;)



according to the variational principle. We note that these are exactly the constitutive
equations

1 1 X
?;Rkj‘]j :Vk (?j:?k

As shown already, inserting the constitutive equations into the quadratic expression for ¢
yields the equality

200.9=5 9, 500,935

k k k

and hence the integral form

20(J1,J)=S(A)+S*(J,).

Note that S(J)+S*(Jn) is the rate of change of the entropy in the system and the
surrounding environment. Therefore, the rate of entropy production 2d(J,J) is equal to

the rate of change of the entropy S(J)+S*(J,) in an irreversible process governed by
the constitutive equations.

If the system is isothermal and in thermal equilibrium with the environment, then

S*(Jn) = J.(%jdA: —%Q = _$U )

where Q =— I J.dA is the rate of heat transfer from the environment into the system, U

is the rate of change of the energy of the system, and Q =U according to the first law of

thermodynamics. Note that the temperature distribution is uniform here. It follows that
the variational principle becomes

®(J,3)-[$(I)+S$*(J,) |= CD(J,J)+$[U' (9)-TS(J) | = minimum,

where U(J)=-TS*(J,) has been used for the rate of change of the energy. As
U@J)-TS(J) is the rate of change of the Helmholtz free energy F=U -TS , the
variational principle becomes
CD(J,J)+%F'(J)=minimum,

where F(J) is the rate of change of the Helmholtz free energy. Note that ®(J,J) is
positive definite and quadratic in the rates while F(J) is linear in the rates. Minimizing
®(J,J)+F(J)/T with respect to the rates yields the equality

2Td(J,J) =-F(J),

which shows that 2Td(J,J) is the rate of free energy dissipation in an irreversible
process governed by the variational principle.



