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Crystal surfaces out of equilibrium: A sample

"Non-classical” smoothening of
Si surface corrugations (T=667° C)

10

nm (
-10

0

Thermal grooving in Ag (temp. T=920° C)

—— ~200pm —

[Chalmers, King, Shuttleworth, 1948]
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[Erlebacher, Aziz, Chason, Sinclair, Floro, 2000] oal: To model sur'face
Real-time observation of : : . . .
L-cystine crystal growth in solution or hOIOQ'Cal evolution—omic step formation on sapphire
Step
height ~1nm

100 nm

[ Shtukenberg, Zhu, An, Bhandari, Song,

Xie, Pan, 201 1/26
Kahr, Ward, 2013] [Wang, Guo, Xie, Pan, 2018] /



“Classical” shape relaxation by surface diffusion
[Herring, 1950, 1951; Mullins, 19571
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(Naive) Scaling prediction: 7 ~ C(T)L‘{Size

‘D0~ Ba/(ksT)
Making smaller yet stable structures implies using lower temperatures.

[Gruber, Mullins, 1967 Rettori, Villain, 1988; Ozdemir, Zangwill, 1990 ...]
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Below the "roughening h Macroscale
transition temperature™: s
Steps and terraces

7 /{
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Classical-atomistie ’scale . i
h /,/ [Imaging : B. S. Swartzentruber, 2002] /1(\‘\
/'y I, )( \Q
/ (DS

! (Normal) Step velocity

How can one reconcile models
&' across these scales?
What is a suitable macroscale description?
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Defects on elemental cubic (Kossel) crystal
[Kossel, 1927; Stranski, 1928]

Idealized surface of cubic elemental crystal. Adsorbed atoms: "adatoms”.
Prominent microstructural features: terraces, steps (ledges), kinks.
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[Bonzel, 2003]

Surface evolution: Burton, Cabrera and Frank (BCF) model, 1951.
We need some equilibrium concepts.
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Equilibrium Concepts: A Review
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[Frenkel, 1945; Jayaprakash, Rottman, Saam, 1984; Zangwill, 1988; Saito, 1996; Tsao, 1993]

x -
wandering step l,| 17
Surfaces contain steps : energetics include Aink excitations.
Tendencies: 0 S
« Entropy increase due to kink-induced step wandering Key assumptions:
_ . Isolated step.
* Step energy decrease since kinks cost energy Kinks cause step motion by 1 lattice site.
Toy model: Probabilities p; (left-facing kinks), p, (right-facing kinks), py (no kinks):
energy of
step energy straight step
free  for = ust — T'sst = Est + (01 + Pr)Ekink + kT (prInp; + pr Inp, + po In po)
energy entropy
pr+pr+po =1, p = pr=tand =: pex; Pin := P1+ Pr — Pex = 2Py
o fixed
Equilibrium:

Minimize fg; with respect to p;, for fixed ¢ and T
Let f5; := min{fy ’ fixed ¢, fixed T'}
Pin

Roughening transition temperature, T'p s for=0 at T =Tg s




fu [Saito, 1996; Tsao, 1993; Jeong, Williams, 1999]

® =0, Est = 2Ekink :

Crude approximation; e.g.,
by neglect of step interactions, noncrossing.

A |

0 -
0o 02 04 D& o8

2
More advanced treatments account for: kinks moving steps by more than 1 lattice unit; step noncrossing.

= Pr = D1

These are based on analogy between noncrossing steps & 1D spinless Fermion gases (Pauli exclusion principle).

[Jayaprakash, Rottman, Saam, 1984; Kosterlitz, Thouless, 1973; Schulz, 1985]

Mean field approaches are known to offer incomplete understanding; fluctuations are important.

[Jackson, 1975; Chui, Weeks, 1976; Nozieres, Gallet, 1987...]
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I'
Free energy of surface I' C §
S

El'l = /Fq/(y) dA = / A (Vh) dxdy h = h(x,y) : graph (height)

~

I’ frec energy per projected area

e ' > Tgr: smooth 4(p) [Herring, 1950; Mullins, 1957, 1959]

o T' < Tg: singular 4(p) [Gruber, Mullins, 1967; Jayaprakash, Rottman,
Saam, 1984|

positive slope or step density,

step energy step-step interaction:
(line tension)  entropic, elastic-dipole

Side view:
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Discrete surface energy and limit, 7<T% : Heuristics
[DM, Kohn, 2006]

N
B =3 a | ds (gt i)
i=1 Lz’/

Entropic & elastic-dipole

step line’tension ~ nearest-neighbor

step-step interactions (step as smooth curve)

Continuum limit: a>0, fixed surface slope ‘—\g\ﬁ
Za — /dh ; Coarea formula: /dh/ ds - = // dx dy |[Vh|-
EY — EIh] Usually convex
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* Gruber and Mullins considered step wandering via kink formation.

Wandering is constrained: step does not pass neighboring steps
(to first approximation, neighb. steps are treated as straight walls)

Step configurational entropy between walls of separation 2w:
S(w;T) = So(T) — §(T) /w?

« Same behavior if walls are replaced by neighb. steps; w — a/[tanf)|
g1 039
F(tan0;T) = go(T) + [(fo — T'So)/al| tan 8| *+[Tg(T)/a’]| tan 0>

free energy cost
per isolated step [Jayaprakash, Rottman, Saam, 1984]
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T [Gruber, Mullins, 1967; Saito, 1996]

2w \ Energy of system (model Hamiltonian):
XLy step \ L/a ‘ ‘
Tit ' L/a Li — Lj—1
; 1 ‘. H{zi},Z) =Ho+ J Z
n , 2w—a )
Wa|/|S" xi/a =1,... 0 ! due to kink formation
, >
0 va L Y (2w—a)/a (2w—a)/a
Partition function: 7 = Z . Z e~ H{=z:i})/(kpT) _ o~ Ho/(kBT)¢, [TN]
. * (2w — aj‘\ (2w — a) tri-diagonal, pos. symmetric matrix
(2w—a)/a (V=1L/a>1) a 8 a depending on ¢~/ (ksT)

tr[TN] = }: M AAY (Ak—1 > A all k); Ag o eigenvalues of T
T AR = 14 2¢77/(kBT) cos(WQk a) | tan 6| = hd

w w

Step free energy kgTlnz Ho kT
(per unit step length): | B(0) = - T~ TO - % In Ay ~ By + PBa(tan )
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Elastic properties of crystal surfaces

V. I. Marchenko and A. Ya. Parshin

S. 1. Vavilov Institute of Physics Problems, Academy of Sciences of the USSR, Moscow
{Submitted 11 January 1980)
Zh. Eksp. Teor. Fiz. 79, 257-260 (July 1980)

The general properties of the surface stress tensor, describing elastic properties of crystal surfaces, are
determined. The boundary conditions are obtained for the bulk stress tensor on the surface of a crystal of
arbitrary shape. The elastic interaction between point and line defects on crystal surfaces is considered.

PACS numbers: 68.25. + j, 61.70.Yq

It is well known that the thermodynamic properties of face stress tensor, We shall determine the general
a liquid surface are governed entirely by one quantity properties of this tensor and find the boundary condi-
which is the work done in reversible changes of the sur- tions replacing in our case the familiar Laplace formu-
face area, As pointed out long ago by Gibbs,! in the la for the capillary pressure.
case of a solid we have to distinguish the work done in
forming the surface and in deforming it. Thus, in de- In the second section we shall consider the elastic in-
scribing the properties of crystal surfaces we have to teraction of surface defects over distances which are
introduce not only the surface energy but also the sur- large with the atomic separations, As in the case of
129 Sov. Phys. JETP 52(1), July 1980 0038-5646/80/070129-03$02.40 © 1981 American Institute of Physics 129

- Each step is modeled as a force dipole.
Dominant dipole moment is along step edge, parallel to terrace.

[For a thorough exposition, see book by Pimpinelli & Villain, 1998]
Elastic-dipole interaction energy of infinitesimal step segments 1 and 2:
dly - dls

. . RS . dEznt ) w
Interaction energy per unit length for straight step: — Xw

d2E12 X

Continuum limit: Energy density o |tan 6|?| tan 6| 12/26



- 2 g3
Y¥(p) = g91lp| Q%@ +3 p|® D

Against p? term :

Vh .

e Direct derivation of 4 for entropic or elastic-dipole step-step
interactions [Gruber, Mullins, 1967; Jayaprakash, Rottman, Saam, 1984].
e Experimental evidence:cequilibrium Pb crystal shapes [Bonzel, 2003]

e Some DFT computations on S , Bonzel, Scheffler, 2006]

e Theoretical argument by reductio ad absurdum for specific 1D geometry
[Najafabadi, Srolovitz, 1994] .

However...
e Garcia and Serena [1995] link p? term to electronic surface states.
However: Another calculation gives term |p|°/2 sin(qra/|p|+00), gr: Fermi
wavenumber [Hyldgaard, Einstein, 2005; DM, Bonzel, Scheffler, unpub.]
Strong quantum coherence is required (difficult at T" > 0)
e Special networks of crossing steps [Carlon, van Beijeren, 1996; Vilfan, 1996]
e Special case of local strain on Si(001) [Swartzentruber et al., 1993]
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[Wulff, 1901; Hilton, 1903; Herring, 1951; Landau, Lifshitz, 1958; Taylor, 1974; Andreev, 1982]

Wulff problem: Given v(v), find the crystal shape S that
minimizes FE[S] for fixed volume enclosed by S

Wulff construction: The crystal shape R(«) or z(x) satisfying the Wulff
problem is formed by the inner envelope of hyperplanes normal to radial
vector of polar plot (r, 0, ¢) of v; r =, (6, ¢): angular coordirzlates of v

X
ﬁ Y(v(0))

e

Example: 1D case of vicinal surface [Bonzel, 2003]: y Y

of an associated Riemann problem for hyperbolic conservation law
[Peng, Osher, Merriman, Zhao, 1999]

1D aspect: Normal vector to Wulff shape is time self-similar solution (L o)

Legendre transform (“Andreev construction”) In 1D, the equilibrium

crystal shape is the Legendre transform of the projected free energy density,

4 = ~v/ cos 8, in the variable m = tan #. This can be extended to 2D.

For approp. cont. differentiable 7, the shape is described by x +— z where
1 04 1 07

= 1—38—;, z = E(’y —m (’9_73/7)’ 3 : Lagrange mult.
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Below the roughening temperature, T, (corner) singularities of 7, as a function of slope

m=tan@ , correspond to planar macroscopic surface regions of the equilibrium crystal shapes,

called facets. 5. T <Tgr

0 "tan 6

Singularity

1D: By Legendre transform of 5(p) = g1|p| + (93/3},|pl®,

1/2
<£> (z — l’f@Jr O((x —zy5)*) x— ay

g3

facet

[Jayaprakash, Saam,1984; Rottman,Wortis,1984]

Good agreement with experimental data for Pb crystallites [Bonzel,2003] 15/26



Surface Motion near Equilibrium:

An Introduction
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 Early theories of crystal surfaces invoke concepts of continuum thermodynamics.

« Advantage: direct use of large scales.

 Disadvantage: Below the roughening transition temp., the relation of steps to continuum
is tricky.

One of our goals is to illuminate connection of full continuum (PDEs for surface height)
to step motion (BCF model). Lecture IT

By use of a 1D model for the random motion of individual atoms, we will heuristically
show the plausible emergence of a simplified BCF-type model (in 1+1 dimensions).

Lecture IIT
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““Macroscale’’; scale )

20 ym

[Imaging of Si(001): Blakely,Tanaka, 1999 ]

PDE for height &
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Nanoscale [same material/orientation]

o) J
~~~~~~~~~~~ 'y = = lg} ~1] atom;
= : ")
- e, .
\ height a
|Imaging : B. S. SwartZentruber, Sandia Lab, 2002]
Steps modeled by

smooth curves [BCF, 1951]
Motion of steps: Discrete scheme

S ith step [;V
A |
: In terms of step \HOVIIZ X

positions ?
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[Burton, Cabrera, Frank, 1951]

(Asymmetrically with
ES=Ehrlich-Schwoebel barrier;
rates k, & k;)

Steps move by mass conservation as atoms attach/detach at them.

Combination of thermodynamic and kinetic effects.
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Step motion and continuum limit (heuristics): Example in 1D

[Nozieres, 1987; Rettori, Villain, 1988; Ozdemir, Zangwil, 1990]

a | i-terrace

X; Li+1 :LIZ' :LU
SEQP vai.oa&v Iylass flux on i-th terrace a— Ol 8 8
ij; = CL(Jf,;_l — Jz) at ©r = X; h o J .
Mass cownservakion
Diffusion; Attachment/detachment —
~Ji=qlp; — piY) atx=2x D,
_ (i-th terrace) J = — 0,9
{ Ji=qlpi —pify) atz=wmz, — = 1 Dy =f
Adatom density T —
S Diffusion-limited kinetics qa

DOpepi = 0ipi =0, Ji = =DsOppi @ < T < Tiy1 — “Fick’s law” for surface diffusion

Step chemical potential, near equilibrivum—

Gibbs-Thomson eq " /T Total step eq _ e,u,/T

rel. P; = Ps€ N energy (N steps) o) P Ps SE[h
step chem\ st nw=a
potential 5E oh

i = 5% Near-equilibrium condition 20/26



« Step density is assumed to vary slowly across terraces.

« Formally, discrete variables are expanded in Taylor series, e.q.,

a 1
X, ~ X(Ljyi) : X = X(h) + (ne) Xy (h) + §(n6)22(hh +... ase—0
h

* More careful treatment invokes weak formulation [DM, Kohn, 2006]

« In 2D, the continuum-scale surface mobility emerges from step flow kinetics as
a 2"d-rank tensor [DM, Kohn, 2006]. No 1D analog (see Lecture IT)

This approach becomes questionable, when, e.g.

« Coarse graining occurs near facets (Lecture IT)

« Parameters vary from one terrace to the next, e.q., in surface reconstructions.
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For surface relaxation (without ext. deposition) in Diffusion-Limited regime, PDE for height, h, is:

—

oh (5E>

i Y (et

ot oh ) ;2 __ Outside facets.

Structure is consistent with (discrete) step flow

E[h] :/gl\wu%ﬂvm%x B

This structure admits extensions; surprises in regard to kinetic mobility (Lecture II)

Including facets: Fully continuum framework :

Oh " " Extended-gradient formalism"

5 € —0g-1E  (subdifferential of E)

[Kobayashi, Giga, 1999; Spohn, 1993; Odisharia, Thesis, 2006; Kashima, 2004; Giga, Giga, 2010; Giga, Kohn, 2011]
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Evolution PDE is everywhere replaced by
the rule that —0:h is an element of subdifferential
Oy E'|h| with minimal norm in Hilbert space H.

OnEh:={f €N : Elh+g|—Eh >(f,9)n Vg€ H}
Typically: H = L?, H !

surface
diffusion:

"Natural” boundary conditions at facet edges follow. evaporation - DL kinetics

s . . \
reflects kinetics

What should the above rule amount to, practically?

Suppose the facet is smoothed out via reqularization
of E[h] by some parameter, v. Then, in the limit as vapproaches 0,
one should recover the evolution of the above formalism.
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[Kobayashi, Giga, 1999]
Find the continuous solution to ODE:

u(t) [ 9 :
w0 (M) lu| if w # 0

du(t
di) = —sgn(u(t));  u(0) = uo
u (What happens if u = 07) "
: d

ug \\u(t&: g — t Defme d—TZ —0ifu=0 ek slope 0
u

0 > —— > t . . . /,. .\‘\ _

uo //U(t) = up + 1 "Extended-gradient formalism" lope 1. slope -1

| wp —tsgn(ug), 0=t < |ug)
:>u(t)—{ 0, t > |ug

This result can be recovered by reqularization, e.g., consider
duc(t) us(t)

dt B \/u(t)2 + €2

; small € (e | 0)
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Subgradient formulation is in principle
not consistent with step flow

Microstructure on top of facets matters (Lecture IT)

[Israeli, Kandel, 1999; DM, Fok, Aziz, Stone, 2006; Nakamura, DM, 2013; Schneider, Nakamura, DM, 2014]

Our understanding so far relies on specific examples
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Epilogue: The regime below roughening ftransition

« Step motion is described by the BCF model [1951] and its extensions: near-equilibrium
thermodynamics and kinetics of steps.

« PDEs for crystal surfaces must be viewed as appropriate limits of step flow.
Dimensionality and kinetics affect the PDE structure crucially - see Lecture IT.

« TIssues for PDEs arise near facets, where microscale events influence continuum solutions;
see Lecture II.

« Deviations from near-equilibrium kinetics can occur in actual materials.
Extensions to far-from-equilibrium evolution of steps must account for motion of kinks.
[Caflisch, E, Gyure, Merriman, Ratsch, 1999; Filimonov, Hervieu, 2004; Balykov, Voigt, 2005-6;
Caflisch, Li, 2003; Kallunki, Krug, 2003; DM, Caflisch, 2008...]

* The BCF model, although mostly successful, is largely phenomenological.
How does the BCF model emerge from atomistic dynamics? For a toy model in 1D, see Lec. III.
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