Three Tales of Three Scales in Epitaxial Growth: Lecture II:

Reconciling step motion with crystal facet evolution

Dionisios Margetis*

Department of Mathematics, and Institute for Physical Science & Technology (IPST), and Ctr. for Scientific Computation And Math. Modeling (CSCAMM) Univ. of MD, College Park

*Research supported by NSF DMS-1412769

Symposium on: Mathematical Aspects of Surface and Interface Dynamics
University of Tokyo, Japan
Thursday, 18 October 2018

"Classical" shape relaxation by surface diffusion

[Herring, 1950, 1951; Mullins, 1957]

(Naive) Scaling prediction:
$$\tau \sim c(T) L^4$$
 size
$$c(T) = CT/D_s(T) - D^0 e^{-E_a/(k_BT)}$$

On surface relaxation by the Mullins model

Is surface flux driven by the chemical potential or the adatom density?

Much less developed view [Mullins, 1957]: ${f J}=-D_s
abla_\Gamma
ho$ (Gibbs-Thomson relation) $ho=
ho_s\exp\left(rac{\mu}{k_BT}
ight)$

On surface relaxation by the Mullins model

[Nichols, 1976; DM, Nurnberg, Sudoh, in prep.] $V_n = \nabla_{\Gamma} \cdot (b(\kappa) \nabla_{\Gamma} \kappa)$ $b(s) = 1 \qquad b(s)$ hole Pinch-off times versus aspect ratio Initial shape $\ell:1:1$ cigar $-t_{\text{OVUL}}$ SD $-5.5 t_{\text{OVUL}} \text{ expSD}$ 0.8 $0.15 t_{\text{OVUL}} \text{ expSD (hole)}$ 0.6 $0.\bar{2}$ 10 15 25 20 3/25

Crystal facets (macroscopic plateaus)

Mesoscale: Step flow: BCF model

[Burton, Cabrera, Frank, 1951]

Local coordinates (η, σ) ; descending steps of height a; i-th step at $\eta = \eta_i$

Step normal velocity:

$$v_{i,\perp} = a^2(J_{i-1,\perp} - J_{i,\perp})$$

 Adatom diffusion on *i*-th terrace:

$$\mathbf{J}_i = -D_s \nabla \rho_i, \ D_s \Delta \rho_i + F = \frac{\partial \rho_i}{\partial t} \approx 0 \quad \eta_i < \eta < \eta_{i+1}$$

Robin-type boundary conditions at bounding step edges:

$$-J_{i,\perp}^{+} = q_{+}[\rho_{i}^{+} - \rho_{i}^{\text{eq}}(\sigma, t)], \quad \eta = \eta_{i}; \quad J_{i,\perp}^{-} = q_{-}[\rho_{i}^{-} - \rho_{i+1}^{\text{eq}}(\sigma, t)], \quad \eta = \eta_{i+1}$$

$$\rho_i^{\rm eq} = \rho_s e^{\mu_i/T}$$

Gibbs-Thomson relation

[Rowlinson, Widom, 1982...]

 $\mu_i(\sigma,t)$: step chemical potential: change of *i*-th step energy per atom

From step motion laws to PDEs

[Sample of studies in physics/math. physics: Spohn, 1993; Selke, Duxbury, 1995; Chame, Rousset, Bonzel, Villain, 1996; Israeli, Kandel, 1999; Chame, Villain, 2001] [Rigorous analysis: Al Hajj Shehadeh, Kohn, Weare, 2011; Gao, Ji, Liu, Witelski, 2018]

Scope

Facets are special regions of the crystal surface.

We need to understand how microscale step motion influences facet evolution.

```
Issues: 

PDE away from facet?

Boundary conditions at facet?
```

[DM, Aziz, Stone, 2005; DM, Kohn, 2006; Fok, Rosales, DM, 2008; Bonito, Nochetto, Quah, DM, 2009; DM, Nakamura, 2011; Nakamura, DM, 2013; Schneider, Nakamura, DM, 2014; Liu, Lu, DM, Marzuola, *submitted*]

Relaxation PDE in 2+1 dimensions, outside facets

Total step energy

a
ightarrow 0 III-defined on facet

[DM, Kohn, 2006]

 $\frac{dE_N^{\text{st}}}{dt} = \sum_{i} \int_{step \, i} v_{i,\perp} \, \mu_i \, ds \Longrightarrow \mu_i \to \mu = \left(\frac{\delta E}{\delta h}\right)_{L^2}$

Step chemical potential

step veloc.

 $E[h] = \int \gamma(\nabla h) \, \mathrm{d}x = \int \{g_1 | \nabla h| + (g_3/3) | \nabla h|^3 \} \, \mathrm{d}x$ Facet: $\nabla h = 0$ Singular surface free energy

 $\mathbf{J}_i \propto -\nabla \rho_i$, $\operatorname{div} \mathbf{J}_i = 0$ on terrace; $\left| J_{i,\perp} \propto \rho_i - \rho_s (1 + \mu_i/T) \right|$ (linearization) at step

 $\mathbf{J} \approx
ho_i^{\mathrm{eq}} \mid \Longrightarrow \mid \mathbf{J} = -\mathbf{M}(\nabla h) \cdot \nabla \mu \mid$ (Fick-type law)

Tensor mobility; in diffusion-limited kinetics, M=1

 $|v_{i,\perp} = J_{i-1,\perp} - J_{i,\perp}| \Longrightarrow$

4th-order, paraboliclike PDE for h

conservation

mass

Generally (without linearization):

 $J_{i,\perp} \propto \rho_i - \rho_{\rm s} e^{\mu_i/T} \implies \mathbf{J} \propto -\mathbf{M}(\nabla h) \nabla e^{\mu/T}$

PDE in diffusion-limited kinetics (M=1)

By linearized Gibbs-Thomson relation:

$$\partial_t h(x,t) = C\Delta \left[-\text{div} \left(\frac{\nabla h}{|\nabla h|} + g |\nabla h| \nabla h \right) \right]$$
 singular at facet
$$\frac{\delta E}{\delta h} \; ; \quad E[h] = \int \gamma(\nabla h) \, \mathrm{d}x, \; \gamma(\mathbf{p}) = |\mathbf{p}| + (g/3) |\mathbf{p}|^3$$

What is the meaning of this evolution equation (in continuum-scale framework) in presence of facets?

[Aspects of analysis: Kobayashi, Giga, 1999; Spohn, 1993; Odisharia, Thesis, 2006; Kashima, 2004; Giga, Giga, 2010; Giga, Kohn, 2011...]

PDE: Extended-gradient formalism, typical settings

Evolution PDE is everywhere replaced by the rule that $-\partial_t h$ is an element of subdifferential $\partial_{\mathcal{H}} E[h]$ with minimal norm in Hilbert space \mathcal{H} .

$$\partial_{\mathcal{H}} E[h] := \{ f \in \mathcal{H} : E[h+g] - E[h] \ge (f,g)_{\mathcal{H}} \quad \forall g \in \mathcal{H} \}$$

Typically: $\mathcal{H} = L^2, H^{-1}$

reflects kinetics

diffusion:

"Natural" boundary conditions at facet edges follow.

What should the above rule amount to, practically?

Suppose the facet is smoothed out via regularization of E[h] by some parameter, ν . Then, in the limit as ν approaches 0, one should recover the evolution of the above formalism.

DL kinetics

Diffusion-limited kinetics: Radial geometry

[Schneider, Nakamura, DM, 2014]

PDE:

$$\frac{\partial h}{\partial t} \propto \Delta \frac{\delta E}{\delta h}$$

 H^{-1} gradient flow

$$E[h] = \int \left[|\nabla h| + (g/3)|\nabla h|^3 \right] dx; \quad g = \frac{g_3}{g_1}$$

$$\dot{E} = \left(\frac{\delta E}{\delta h}, h_t \right)_{L^2} = -\|\Delta \frac{\delta E}{\delta h}\|_{H^{-1}}^2 \le 0$$

Discrete scheme for steps:

$$\frac{\mathrm{d}r_i}{\mathrm{d}t} = -\frac{D_{\mathrm{s}}\rho_{\mathrm{s}}a^2}{k_{\mathrm{B}}T}(J_{i+1} - J_i)$$

$$J_i = \frac{1}{r_i} \frac{\mu_{i-1} - \mu_i}{\ln(r_i / r_{i-1})},$$
 Linearized Gibbs-Thomson rel.

$$\mu_{i} = \frac{a^{3}g_{1}}{r_{i}} + \frac{a^{3}}{2\pi r_{i}}g_{3}\frac{\partial}{\partial r_{i}}[V(r_{i}, r_{i+1}) + V(r_{i}, r_{i-1})]$$

Step curvature

Nearest-neighbor, force-dipole step-step interactions _{12/25}

Free-boundary approach: Boundary conditions

Natural BC's in radial setting

- Height continuity: $h(r_f^+, t) = h_f(t)$
- Slope continuity
- (Normal) Mass-flux $e_r \cdot \mathbf{J}$: cont.
- $\mu = -\text{div}\boldsymbol{\xi}$: extended continuously onto facet
- $e_r \cdot \boldsymbol{\xi} = \boldsymbol{\xi}$: continuous

Alternative:

Collapse times t_n

Keep

$$\mu(r_f(t)^-, t) = Q(t)^{-1} \mu(r_f(t)^+, t)$$

$$\xi(r_f(t)^-, t) = Q(t) \, \xi(r_f(t)^+, t)$$

$$Q(t) = \frac{1}{2} \left\{ \frac{r_{n+2}(t_n) + r_{n+1}(t_n)}{2r_{n+2}(t_n)} + \frac{r_{n+1}(t_n) + r_n(t_n)}{2r_{n+1}(t_n)} \right\}$$

$$t_n \le t < t_{n+1}$$

In close agreement with step simulations;

$$Q(t) \approx \text{const.}, \qquad n \gg 1$$

[Schneider, Nakamura, DM, 2014]

13/25

n-th step collapse

Numerics: Conical initial data; self-similar regime

Discrete slopes behave as self-similar for long times

Ansatz:
$$m(r,t) \approx \mathfrak{M}(rt^{-1/4})$$

Rel. step interaction strength: *g*=0.1

Can we reconcile these two scales via resolving only few top steps?

"Hybrid" iterative scheme: Algorithm

Top view

- 1. Compute slope profile via natural bc's.
- 2. Simulate M top steps, typically M=3, terminated by

$$r_{n+M+l+1} = r_{n+M+l} + \frac{a}{m(r_{n+M+l}, t)}$$
; $l = 0, 1, \tilde{t}_{n_0} < t \le \tilde{t}_{n_*}, n_0 \le n < n_*$

Initiation:
$$n_0 = 0 , n_* \ge 1 ; \tilde{t}_0 = 0$$

- 3. Re-compute slope using jump conditions at: $t=t_{n_{*}}$
- 4. Go to 2, and iterate (advancing time).

Numerics (conical initial data)

Open questions:

Can one *derive* jump conditions from step motion? How about other kinetic regimes? Non-radial geometry?

PDE from full Gibbs-Thomson relation for steps

[Liu, Lu, DM, Marzuola, *subm*.]

$$\partial_t h = \Delta \exp\left[-\beta \operatorname{div}\left(\frac{\nabla h}{|\nabla h|} + g|\nabla h|\nabla h\right)\right] ; \quad \beta = T^{-1}, \ g \ge 0$$
$$\beta \frac{\delta E}{\delta h} ; \quad E[h] = \int \gamma(\nabla h) \, \mathrm{d}x, \ \gamma(\mathbf{p}) = |\mathbf{p}| + (g/3)|\mathbf{p}|^3$$

PDE plausibly comes from scaling limit of atomistic dynamics [Marzuola, Weare (2013)]

Open issue: Rigorous formulation of appropriate gradient flow

What plausible predictions for facets can be made by this PDE (in a full continuum-scale framework)?

Reduction to 1+1 dimensions; periodic profile

$$\partial_t h = \partial_{xx} \exp \left[-\partial_x \left(\frac{\partial_x h}{|\partial_x h|} \right) \right]$$
Neglect of $|h_x| h_x$ term

Goal:

Formulate a system of ODEs for facet height and position via free-boundary view

Note: If $\partial_x h \neq 0$ then $\partial_t h = 0$.

Claim: BC's at facet:
$$\begin{cases} \text{Facet speed by mass conservation} \\ \mu(x,t) = -\partial_x \tilde{\xi}(x,t) \text{ and } \tilde{\xi}(x,t) \text{: continuous in } x \end{cases}$$

Free-boundary approach (construction of a solution)

Assumptions:

- Facet is symmetric; h(-x,t) = h(x,t).
- Facet has zero slope; $\partial_x h = 0$.
- $\xi(p) = p/|p|$ (p: slope) is extended onto facet as odd function on \mathbb{R} ; set $\xi(x,t) = \xi(\partial_x h)$.

20/25

• Mass flux J(x,t) is extended onto facet; and J(x,t) = J(-x,t).

Top facet $\dot{h}_f \leq 0$

 $-x_f(t)$ 0 $x_f(t)$

PDE structure:
$$\partial_t h = -\partial_x J, \ J = -\partial_x e^\mu, \ \mu = -\partial_x \tilde{\xi}; \ h(x,0) = h_0(x)$$

On top facet, $-x_f(t) \le x \le x_f(t)$:

$$\begin{cases}
\dot{h}_f = -\partial_x J \Rightarrow J(x,t) = -x\dot{h}_f + C_1(t); \ C_1(t) = 0 \text{ (by symmetry)} \\
\partial_x e^{\mu} = -J \Rightarrow \mu(x,t) = \ln\left[\frac{x^2}{2}\dot{h}_f + C_2(t)\right]; \\
\partial_x \tilde{\xi} = -\mu \Rightarrow \tilde{\xi}(x,t) = -\int_0^x \ln\left[\frac{s^2}{2}\dot{h}_f + C_2(t)\right] ds + C_3(t); \ C_3(t) = 0
\end{cases}$$

Apply: Mass conservation:
$$\dot{x}_f[h_0(x_f) - h_f] = h_f x_f$$

Continuity of $\tilde{\xi}(\cdot,t)$, $\mu(\cdot,t) \Rightarrow C_2(t) = 1 - x_f^2 \dot{h}_f/2$, and extra relation between x_f , \dot{h}_f .

Free-boundary approach: ODEs

ODE system for
$$(x_f, h_f)$$
, **top** facet $(\dot{h}_f \leq 0)$:
$$2\sqrt{1 + X_f^2} \ln\left(\sqrt{1 + X_f^2} + X_f\right) - 2X_f = \sqrt{\frac{|\dot{h}_f|}{2}}; \quad X_f := x_f \sqrt{\frac{|\dot{h}_f|}{2}}$$

$$\dot{x}_f[h_0(x_f)-h_f]=\dot{h}_f\,x_f$$
 The top facet expands

The bottom facet behaves differently:

ODE system for (x_f, h_f) , **bottom** facet $(h_f \ge 0)$:

$$h = \begin{cases} \psi_f \left(\arctan \psi_f - \frac{\pi}{2} \right) + 1 = \frac{1}{2x_f} ; & \psi_f := \frac{\sqrt{1 - X_f^2}}{X_f} , X_f := x_f \sqrt{\frac{\dot{h}_f}{2}} \\ \psi_f \left(\inf X_f \neq 0 \right) \end{cases}$$

$$\dot{x}_f [h_0(x_f) - h_f] = \dot{h}_f x_f$$

No evolution if facet size is below a "critical" value

Numerical simulations of PDE and ODEs solutions

[Liu, Lu, DM, Marzuola, *subm*.]

Numerics for PDE: Via regularization of E[h]

Exp. PDE (regularized):

$$\partial_t h = \partial_{xx} e^{-\partial_x \left(\frac{\partial_x h}{\sqrt{(\partial_x h)^2 + \nu^2}}\right)}; \quad h(x, t = 0) = \sin(2\pi x)$$

$$h(x, t = 0) = \sin(2\pi x)$$

PDE by linearized exponential

Numerical simulations of PDE and ODE solutions (cont.)

[Liu, Lu, DM, Marzuola, subm.]

Facet height

Open question: How does this prediction compare to step motion?

Numerical simulations of PDE vs ODEs (cont.)

Conclusion and Outlook

- Boundary conditions for PDE at facets need step microstructure.
 Proposal: jump discontinuities of thermodynamic variables.
 Can the jump conditions emerge from limits of step flow?
- Thus far, progress has been made in radial setting, DL kinetics, self
 -similar regime. Boundary conditions have been speculated (empirically),
 motivating a hybrid iterative scheme (few steps).
 Extensions to earlier times: richer kinetics, fully 2D setting?

Extensions to earlier times; richer kinetics, fully 2D setting? Does the hybrid scheme really converge? Why?

 Full Gibbs-Thomson formula in step flow model yields an "exponential PDE" as formal continuum limit. This expresses top-bottom asymmetry in relaxation of height profile. Connection of continuum prediction to (discrete) step flow?