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“Classical" shape relaxation by surface diffusion
[Herring, 1950, 1951; Mullins, 1957]
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On surface relaxation by the Mullins model

Is surface flux driven by the chemical potential or the adatom density?
Much less developed view [Mullins, 1957]:  J = — D Vp

(Gibbs-Thomson relation) p = Ps €Xp .
kT
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On surface relaxation by the Mullins model
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[Nichols, 1976; DM, Nurnberg, Sudoh, in prep.]
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Below the r‘oughening h Macroscale
transition temperature:
Steps and terraces

[Imaging of Si(001): Blakely,Tanaka, 1999 ]

How can one reconcile models
across these scales?

What is a “suitable” macroscale description?
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Crystal facets (macroscopic plateaus)

STM image: faceted Pb crystallite (top view)
[Bonzel, 2003]

Sequence of STM images: Single-layer peeling
on facet [Thurmer et al. 2001]
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(a) 0.2 min 4.7 min 8.7 min
| o [ I AN AKX
HOW can a macr'oscopic 14.7 min 17.6 min 19.7 min 21.4 min

description (PDE) outside facet uu u

be reconciled with step motion S R — £ — T Ch—
near facet? 5/25




[ Burton, Cabrera, Frank, 1951]

V
Local coordinates (n, 0); ‘
descending steps of height a; X

i-th step at n = n;

i-th terrace,

° /U .
» Step normal velocity : Gh < <t

Ui, 1 — a2(Ji—1,J_ — Ji,J_)
* Adatom diffusion

on /-th terrace: o
J;,=—DsVp,, DSAIOi + F =

Pi
— =0 m<n<n
By, Ni <1 < MNi+1

+ Robin-type boundary conditions at bounding step edges :

_Jz'—!_J_ — 4+ [pj_ o pz?q(0-7 t)]? n =1, szJ_ — _[,OZ o pz?jl—l(o-v t)]? T = Ti+1

/T Gibbs-Thomson relation
[Rowlinson, Widom, 1982...]

wi(o,t): step chemical potential: change of i-th step energy per atom
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h Macroscale
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[Imaging of Si(001): Blakely,Tanaka, 1999 ]
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[Imaging : B. S. Swartzentruber, 2002] NS

[Sample of studies in physics/math. physics: Spohn, 1993; Selke, Duxbury, 1995;
Chame, Rousset, Bonzel, Villain, 1996; Israeli, Kandel, 1999; Chame, Villain, 2001 ]

[Rigorous analysis: Al Hajj Shehadeh, Kohn, Weare, 2011; Gao, Ji, Liu, Witelski, 2018]
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Scope

Facets are special regions of the crystal surface.

We need to understand how microscale step motion influences
facet evolution.

[ PDE away from facet?
Issues: -

Boundary conditions at facet?

[DM, Aziz, Stone, 2005; DM, Kohn, 2006; Fok, Rosales, DM, 2008;
Bonito, Nochetto, Quah, DM, 2009; DM, Nakamura, 2011; Nakamura, DM, 2013;
Schneider, Nakamura, DM, 2014; Liu, Lu, DM, Marzuola, submitted]
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Relaxation PDE in 2+1 dimensions, outside facets

Totgl step energy a — 0 Tll-defined on facet [DM, Kohn, 2006]
Step
alESt OF :
. _ [ = chemical
Z / UZJ-’uzdSZ> ’uz_>’UJ_(5h potential
L2
¢ stepz
tepveloc i) = [2(V)ds = [{aVhI+ (g0/3)| VA do
. Facet: Vh =0
J, x —Vp;, div]; =0 Singular surface free energy
on terrace; ~ p°d Flux
|~ P —J = _M(Vh) -V (Fick-type law)
J; — ps(1+ s/ T) N
i i, L X P Ps Mo Tensor mobility; in diffusion-limited kinetics, M=1
gt step (linearization)
4th_order, parabolic-
5 oh like PDE for
Wi, =4Ji—1,1 — Ji,i:> En = —divdJ
| mass

| . _ . conservation
' Generally (without linearization):

CJi o p— pset/T == J o —“M(Vh)

-
-
SN_——_———
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PDE in diffusion-limited kinetics (M=1)

By linearized Gibbs-Thomson relation:

—div < + thVh>
. i

ingular at face

(%h(x, t) = CA

\

OF

i Ell = [2(Yh)dz 2(p) = [pl+ (9/3)lpl
What is the meaning of this evolution equation

(in continuum-scale framework) in presence of facets?

[Aspects of analysis: Kobayashi, Giga, 1999; Spohn, 1993; Odisharia, Thesis, 2006;
Kashima, 2004; Giga, Giga, 2010; Giga, Kohn, 2011...]
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Evolution PDE is everywhere replaced by
the rule that —0;h is an element of subdifferential
Oy E'|h] with minimal norm in Hilbert space H.

OnEh :={f €H : Elh+g]—Eh] > (f,9)n Vg€ H}
Typically: H = L?, g1

o surface
reflects kinetics

" 0 .y diffusion:
Natural” boundary conditions at facet edges follow. DL kinefics

What should the above rule amount to, practically?

Suppose the facet is smoothed out via reqularization
of E[h] by some parameter, v. Then, in the limit as vapproaches 0,
one should recover the evolution of the above formalism.
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Diffusion-limited kinetics: Radial geometry

[Schneider, Nakamura, DM, 2014]

PDE:
oh A\ OoF
ot oh
H~! gradient flow
Eln) = [ [[VA] + (¢/3)|VA] da ;
. oF o
E = (Eaht)lp — _HA%H%{—l <0

Discrete scheme for steps:

dr D.p.a’
L= BB (- )
dr k,T
J. — l lui—l B lui
v, In(7/7_,) Linearized Gibbs-Thomson rel.
3 3
a a 0
w="800 g V() H V()]

o 2w o
\/_/ W—/
Step curvature Nearest-neighbor,

force-dipole

step-step interactions 12/25



Free-boundary approa

Natural BC's in radial setting

Height continuity: h(r}r, t) = hf(t)\
Slope continuity >
(Normal) Mass-flux e, - J: cont.

J

1 = —divE: extended continuously -
onto facet

e, - & = £: continuous

Ity &)
(hﬁ,jé Tf(t)
¥ S\OQ 1
N 7
©
hy(t)

ch: Boundary conditions
Alternative:

> Keep

Replace by jumps:
/n(rf(t)‘,t) Q)" p(r() ™, 1)

s (07,0 = QU Elrs (07,

In close agreement with step simulations;
Q)(t) =~ const., n > 1

[Schneider, Nakamura, DM, 2014]

n-th step collapse
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Q(t’)/: 1 {Tn—i-Z( )+ 7"n+1< 7“n+1 —i-%ét/l
2 2nt2(tn) 2rn+1(t )
ty <t <tpir
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Numerics: Conical initial data; self-similar regime

Discrete slopes behave as self-similar for long times
Ansatz: oy (r ¢) &~ M(rt 14

Rel. step interaction strength: g=0.1
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Can we reconcile these two scales via resolving only few top steps? ;.5



Step trajectories
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scaled time ¢
1-th step collapse time, ¢;
(relative to initial configuration)
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L=

contintium

Top view

e =

~. _ .-

1. Compute slope profile via natural bc's.

2. Simulate M top steps, typically M=3, ferminated by
a

m(Tn+M+1,1)
Initiation: mo =0, n,>1; =0

TndMA4l+1 = T'np M1+ ; 1=0,1, tpy, <t <tn,, no <n < ny

3. Re-compute slope using jump conditions at: t =t

4. Go to 2, and iterate (advancing time).

[Schneider, Nakamura, DM, 2014] 16/25



Numerics (conical initial data)
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Open questions:
Can one derive jump conditions from step motion?
How about other kinetic regimes? Non-radial geometry?
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PDE from full Gibbs-Thomson relation for steps
[Liu, Lu, DM, Marzuola, subm.]

O;h = A exp [-5@(32 +g!Vh]Vh)} . B=T"1 ¢g>0
\

NS |

B Bl = [2(Th)dz, 1(p) = Ipl + (9/3)lpl

PDE plausibly comes from scaling limit of atomistic dynamics
[Marzuola, Weare (2013)]

Open issue: Rigorous formulation of appropriate gradient flow

What plausible predictions for facets can be made by this PDE
(in a full continuum-scale framework) ?
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Reduction to 1+1 dimensions; periodic profile

d..h Goal:
Orh = Oz €Xp [—&E ( 5 )] Formulate a system of ODEs
|0h for facet height and position
Neglect of [h,|h, term  Via free-boundary view

Note: If 0,h # 0 then 0:h =

Facet speed by mass conservation
Claim: BC's at facet:
p(x,t) = —0,&(x, t) and &(x,t): continuous in x
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Assumptions:
h e Facet is symmetric; h(—=x,t) = h(z,1).
Top facet | hy <0 e Facet has zero slope; d,.h = 0.
/’_ i}\;“:] ’Q,;h =0 e &(p) =p/|p| (p: slope) is extended onto facet
| | as odd function on R; set {(x,t) = &(0,h).
—zp(t) O zs(t) X e Mass flux J(x,t) is extended onto facet;
and J(x,t) = J(—=x,1).

PDE structure: |0ih = —0,J, J = —0ze", = —0,&;| h(x,0) = ho(x)
On top facet, —x,(t) <z < x4(t):

—

hp=—0pJ = J(x,t) = —xzhs + C1(t); C1(t) = 0 (by symmetry)

2 .
— Ot =—J = pu(x,t) =In [%hf + C'z(t>];

2

0= —p= E(x,t) = — /O mI%hf + Cg(t)] ds 4+ C5(t); Cs(t) =0

Aoo| Mass conservation: ¢[ho(xs) — hy] = hrxy
PPY" " Continuity of £(-, #), (-, ¢) = Co(t) = 1 — 23y /2, and
extra relation between x ¢, hy. 20/25




b <0 ODE system for (z¢,hy), top facet ( hf <0):
f

—xzy(t)

tlho(zy) — hyl =hyz;  The top facet expands

The bottom facet behaves differently:
ODE system for (zf,hs), bottom facet (hy > 0):
1 — X2

T 1 ¥ hf
i t N _) l=->—3; L= , Xypi= _J
h Tﬂf (arc an 1y 2 + 2 by X; F= T
7 Q'(wf) ;  monotone, 0 < Q(q/;f) <1 (lf Xf 7é 0)
_xf‘:(t) xy(t) :;[j
~— 7 No evolution if facet size is below a “critical” value
hy 20 21/25
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[Liu, Lu, DM, Marzuola, subm.]
Numerics for PDE: Via regularization of E'|h]
Exp. PDE (regular'ized):

(9th — 8me_

PDE by linearized exponential
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Numerical simulations of PDE and ODE solutions (cont.)
[Liu, Lu, DM, Marzuola, subm.|

Facet height

T T
*x  ODE dynamics
O PDE dynamics

Facet height

Open question: How does this prediction compare to step motion?
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Numerical simulations of PDE vs ODEs (cont.)

X f
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* Boundary conditions for PDE at facets need step microstructure.
Proposal: jump discontinuities of thermodynamic variables.

Can the jump conditions emerge from limits of step flow?

« Thus far, progress has been made in radial setting, DL kinetics, self
-similar regime. Boundary conditions have been speculated (empirically),
motivating a hybrid iterative scheme (few steps).

Extensions to earlier times; richer kinetics, fully 2D setting?
Does the hybrid scheme really converge? Why?

Full Gibbs-Thomson formula in step flow model yields an
“exponential PDE" as formal continuum limit. This expresses
top-bottom asymmetry in relaxation of height profile.
Connection of continuum prediction to (discrete) step flow?
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