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Epitaxial growth in industry and scientific research

= Epitaxial growth is an important physical process for forming solid
films or other nano-structures.

= |t is the only affordable method of high quality crystal growth for
many semiconductor materials.  from Wiki

= |t is also an important tool to produce some single-layer films to
perform experimental researches, highlighted by the recent
breakthrough experiments on the quantum anomalous Hall effect and
superconductivity above 100 K leaded by Qikun Xue 13, "15.
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Multi-scale Modeling: length, time, temperature
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Understanding and prediction of epitaxial growth.




A simple broken-bond models for crystals — SOS model

Crystals consists of height columns h;,7 = 1,... N with screw-periodic BC
hiwn = h; +aaN, « average slope, a side length .

h; derived into h;/a boxes with an atom in center, connect to the nearest
neighbor atoms with a bond from up, down, left and right. These bonds
contain almost all the energy of the system.

E(h) = —v - (# of bonds),
~ energy per bond. Negative sign represents atoms prefer to stay together.

Simple algebra shows E = E, + E_, bulk and surface energy

2
E, = —% Z hﬁ—?]\f independent of time, drop from energy computatiol
=1

/N
S—?;fz—h e

1
E(h) = - / |Vh|Pdx, or some linear combinations of those
p



Mesoscale step dynamics: Discrete Burton, Cabrera, Frank
(BCF) 1951

5 [Imaging of Si(001):
Blakely,Tanaka, 1999 |

[Imaging : B. S. Swartzentruber,
Sandia Lab, 2002]
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k: attachment/detachment rate
D: diffusion rate
w: chemical potential
No evaporation and deposition

[Lu, Liu, Margetis, Physical Review E 2015]: derive BCF step dynamics from an
atomistic broken-bound model.



Mesoscale mobility: Diffusion Limit (DL) regime vs
Attachment Detachment Limit(ADL) regime

[Kohn, 2012] linear Gibbs-Thompson relation, p = p%e* ~ p°(1 + Bu)

0F
h,+V-J=0, Flux J=—MV/L:—MVE.

Dynamic equation for the surface height h(t, z)

oh , §F

a =V (M (5)).
with

E(h):/a|Vh|+%|Vh|3 dz.

h,=-V- {M(Vh)v [v : (a% + gIVhWhﬂ }

In DL regime, M(Vh) = 1. [Giga, Kohn, 2011]
In ADL regime, M(Vh) = |Vh| !, [Kohn, Abel Symposium 2010]: open question.



Continuum Limit of step dynamics: N — oo
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[Gao-Liu-Lu, J. Nonlinear Sci. '17]
Step velocity: v; = % = J. | —J,.

dt
By quasi-static approximation, Dp_ = % = 0, then on i-th terrace, J, is a constant

_DPi(miﬂ) — pi(®;)

Tit1 — L4

—k(pi(z; ) — p;?) for BC at z = z;
B k(pi(z;y ) —pity) forBCat z =,
k k., . e
= 5(:%(%41) —pi(@;)) — 5(02‘31 —pi?)
P

2D *
Tip1 — %y + 57




[Gao-Liu-Lu, J. Nonlinear Sci. '17]
From Gibbs-Thompson relation

péq:pek%’r,\,p@_’_ Mi)
3 s s kBT

Non-dimensionalized BCF model [Burton, Cabrera, Frank, 1951]:

£ = =
* ka2

D Hiv1 — My By — Py ,
( itl Ly — L 1] for1<i<N.
Tig — T+ T, =T+

Diffusion Limit (DL regime), 2 << z,,, — z,

PRl

2 = D (i —Hi B — Hia
" ka?

LTit1 — L4 LTy — L1

) for1 << N.

Attachment Detachment Limit (ADL regime), £ >> ., , — x;

. 1 )
"L’i:;(l‘iﬂ—zﬂi“'ﬂiq) for1<i< N.

Continuum limit N — oo, a =1/N — 07



Continuum Limit of Discrete Model: N — oo

Free energy and chemical potential:

N-1
T, — X, 10FE 1 Ty — T, T, —T,;_
Ey=ay f(EL5) g o 28 Sl p( BTy (T )]
i=0

a@w a

For the DL regime, [Yang Xiang-Weinan E '02,'04] consider

N—-1 N-1

EN_azfl T8 a2y N (),

i=0 j=0,j#i

where f,(r) = 51 (elastic-dipole interactions), f,(r) = In|r].
[Theorem, Gao-Liu-Lu, J. Nonlinear Sci. '17] continuum limit for this step dynamics

he = (~H(h,) - (hi +3h,)hs)

x

[Dal Maso-Fonseca-Leoni, Arch. Ration. Mech. Anal. '14] variational inequality solution
[Dal Maso et al., Comm. Partial Differential Equations '15] global weak solution.

[Theorem, Gao-Liu-Lu, SIMA '17] Global weak solution in ADL regime
(partially solved this problem proposed by Kohn).



Exponential PDE h, = A e 20"

Fick's law for diffusion
hy,+V-J=0, FluxJ=-Vp,
Gibbs-Thompson relation,

dilute adatoms p = e P~ = p0eBr ~ pO(1 + Bu), B=p°=1.

oF
B = [ 3IVhP do, p= 5 =

Dynamic equation for the surface height h(¢,x)

g?::Ae“::AeAph::—(V~AJV)Aph, M = e o0

—A,h

Mobility depends on curvature. Asymmetric for concave/convex part.
[Krug-Dobbs '95], [Marzuola-Weare '13]



Facet solution for exponential PDE A

\

[Giga-Giga '10], H~! total variation flow
ht = _8mww(hz/‘hw‘) —old —r(t)

[Liu-Lu-Margetis-Marzuola '18]

r(1)

= facet location and hight: r(t), h(t)
= dynamics of top facet

2 /TT X2 (X(1) + I T X20) — 2X(1) = /20,

= dynamics of bottom facet

2/T= X2(t) (arctan VIS — 2) 42X (1) = /2,

/4



Facet solution for exponential PDE h, = 0, e 9«("a/Ihal)

Crystal Height

Figure: Snapshots of evolving surface height profile, h(x,t), under initial data
h(0, x) = sin(z) (top panel) by fourth-order total variation flows given by:
exponential PDE with regularization parameter v = 103 on a time scale

T = 10~* (bottom left panel); and by usual PDE with regularization parameter



Facet solution for exponential PDE h, = 0, e 9«("a/Ihal)

097

Figure: (Color Online) Plots of facet height h () versus time ¢ (top left panel),
facet position x ;(t) versus t (top right panel) and facet height versus facet
position (x 4(t), h(t)) (bottom panel) for exponential PDE.



Global weak solution for h, = Ae=4"

[Liu, Xiangsheng Xu (Mississippi State), SIMA '16]

= Recast as
p,=—pA%p,  p=ehh

= A stationary singular solution. Let 2 = (—1, 1). Define

f —(z+1)? if-1<z<0
h(x)_{—(:r—l)Z if0<a<l.

An elementary calculation shows that
Ah = —2+45,, e A"t =¢27

= How to make sense of e=2" for Ah € M(Q)?
Decomposition with respect Lebesque measure

Ah = Ahy+ Al (1)



Global weak solution for h, = Ae=4"

= A beam type free energy ®(h) == [, e 2" du,
dP(h) _ _/ A AH
dt o ’
1 _ N _
AR I, < [ ean da < [ e ANTHAN do— a(h) < ()
p: Q Q

= Notion of the solution: Ah € M(Q),
hy = Ae 2™, ae on Qx (0,T).
Vh-v=Ve ?".v=0, onTl

= If hg € W2:°°(Q) N W*2(Q), then there is a global weak solution.



Global weak solution for h, = Ae=4"

Let T' > 0 be given. We divide [0, T] into N equal subintervals with time step
T=At= % For n =1,--, N, we solve the following coupled nonlinear elliptic system

with some low order regularization,

hn+1 _ hn n
=" = Aer" —rpmtt inQ
g
Nn+1 — _Aphn+1 + Thn+1 in Q,
Vet .y =Vh"l.y = 0 ondQ.

IAR]e < 2¢(R°), (Ah)” < L4

= using the second order operator to regularize the fourth order equation.

= the 7 — 0 limit is indeed given h, = Ae 2"

= | will explain later this notion of weak solution can also be derived by the Legendre
transformation in a gradient flow [Gao-Liu-Lu, ESAIM: COCV '18].



A regularized Euler scheme

n+l__ . n

Denote p = e*, and use linear approximation In p*1 ~ Inp™ + 2 pnp
thrl — "
— = Ap™t —7lnp"*tt inQ,
-
lnanrl - V. (|hn|p72vfbn+1) +Thn+1 in Q,

Vprtl.v=Vh™t.v = 0 on 9.
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Fig. 1. Snapshots of evolving surface height profile, h(z,t), under initial data
h(z,0) = sin(z) (top panel) by fourth-order total variation flows given by the
method in Section 4 as a p-Laplacian implementation of the Liu-Xu algorith. (Top
left) p = 1.0, (Top Right) p = 1.1, (Bottom Left) p = 1.5, (Bottom Right) p = 1.9.



Global classic solution and decay h, = Ae™2" in R?

[Liu-Strain '18], [Granero-Belinchén & Magliocca '18]
= Global classic solution: For hy € L?(R?), |ARg||aRe) < 1/10. Then
there exists a global unique solution, h(t) € C (0,7;W2:°°(R4)),
t

ARG D) aga) + ¢ / |AZ Rl gay (T)dT < [Ahg]pwe
0

where Wiener Algebra | f||,ga) = [, |f(§)| d¢
= Optimal large time decay rates: If hy € F°,s > —min(2,d),
ho € H? then

(0l = (100 = [ (eI de
R4
= Uniform gain of analyticity: In addition if |hg]_4 o < o0, hg € Fe
for s > 0, then there exists a positive increasing function v(t) > 0

such that v(t) ~ t'/4 for large t = 1. h(t,x) is analyticity and decays

(e, < (148D | (1) 2 / el tel (e, 1)|de,
|Rd



Gradient flow u, = Ae 2% € —9®(u), & = [e A
[Gao-Liu-Lu, ESAIM: COCV '18]
Let Hilbert space

H:{ueLQ(Q):/ﬂudm:O}, (u,v)

Take d < p < o0, % + % = 1. Define Banach space

V ={ue H; Vue LI(Q), Au € M(Q), / pd(Au) = / Vu-Ve,Vo e WHP(Q)}
Q
Endow with the norm

lulg = lullp2o) + [Au] A q)-
Decompose Radon measure p = Aw with respect to the Lebesgue measure,

M=yt g

®(u) I, e AWHAYT L iy e T and (Au)” < £9,
+o00 otherwise,

(o) i 0 if ue V, |Aulyq < C. =26(u,) +1,
" l+o0o0 otherwise.

The main issue is to show the weak-* lower semi-continuity for functional @ in V.



weak-* lower semi-continuity for functional ® in V'
Let u,, u € V. If Au,—Au in M(RQ), we have

liminf ®(u,,) > ®(u).

n—+oo

[Goffman & Serrin, '64], Sublinear functions of measures and variational integrals.
Recall the conjugate convex function of f(x):=e ® for x > 0'is

[ y) = sgg(my —f@)=zy—f@)|,__ , =v-yhn(-y, -1<y<0.

Given some positive measure p, define the convex functional of
Dy (p) = sup {/ wdu—/f*(w)dw}, (2)
—1<¢<0,9eCe () Lo Q

Lemma

Assume p € MT(Q2). Then

P, (p)= [ eMidx.

S~




weak-* lower semi-continuity for functional ¢ in V

Given N > 0 and a sequence of measures j,, such that p,, < £%, observe
that
Ky = min{un, N} + ma‘x{u'nﬂ N} -N

Hmm{,u,N}HLz(Q <4eN/e“+2|Q\N2.
Q

Lemma

Assume p1,, < £, ¢(u,,) < A, p,, — . Then for any N > 0, there exist
Hdowns Hup € M(S2) and subsequence pu,,, such that

min{lun’ N} — Hdowns  Hdown K ’Cdv Hdown < MH?

maX{:“’n? N} — Hup> (Mup)H > N,

/e_“ dx < / e Hdown .
Q Q




weak-* lower semi-continuity for functional ¢ in V

Denote f,, := Au,, and f := Au. ¢(v) := [, e "z is lower-semicontinuous on L' ()
and hence ¢ (v) l.s.c on L1() with respect to the weak topology.

“cross convergence":
(i) there are some f, are positive measures, i.e. f,,; #0, and f,; = g; < £4,

for —92=0and g, + g5, = f};

liminf®(u,,) = liminf/ e Iride > / e 91dx > / e fldz = ®(u)
" Q 9) Q

n

ii) all f, are absolutely continuous and f,,, = f,, may weakly-* converge to a singular

measure.
[@(u,) — @y (u,)| < e NLU{f, > N}) < e N[Q.

lim inf e’mi“{f"’N}dxz/e*fdowndxz/eff“dx:@(u).
Q Q

n—+oo Q

liminf ®(u,,) > liminf @\ (u,) — e N|Q]

n—+oo n—+oo

= liminf [ e ™l Ndg — e N|Q|
n—+oo Q

> ®(u) — e N|Q,



Global “Strong” solution to u, = Ae~ 4%

[Gao-Liu-Lu, ESAIM: COCV '18]
Given T' > 0, u® € L?(2), mean zero, such that ®(u®) < +o0, then there
is also a strong solution, i.e.,

u, = A(e”Aw)
for a.e. (t,h) € [0,T] x €. Besides, we have
ue L>([0,T];V)nCo([0,T]; L2()), u, € L>=([0,T]; L2(Q))
A(eB%h) e Lo([0,T); L*(2))
and ®(h(-,t)) decay and

E(u(t)) == ;/Q [A(e*(Au)u)]Qdfg < E(u°),

where (Au); is the absolutely continuous part of Au in the decomposition.



Global solution of exponential SOS model (p = 1) with
logarithmic correction in ADL regime (Yuan Gao)

SOS free energy (p = 1) with logarithmic correction

SE Vh
—/|Vh\ln|Vh|d:c, pi=5 = <|Vh|(ln|Vh\+1)>
ADL mobility
1
M(h) = ——

hy =V - (M(h)Vet) =V - (Wv V<%<lnw+1>>)

For one dimensional case with monotone initial data, i.e. d,hg > 0. If we
can prove h, > 0 for all the time, then we obtain a mathematical
validation for surface hight equation (26), i.e.

By =V - (M(h)Ver) = (;(e(lnhw)w)x>

x

with =2 = —(Inh,),.



Global solution of exponential SOS model (p = 1) with
logarithmic correction in ADL regime (Yuan Gao)

For T >0, h% € L?, ®(h®) < +o0, then there is a strong solution

h, = (hl (6_((1nhz)r))w)

xT

for a.e. (t,h) €[0,7] x T and

(7o () ) er=(orie

x

D(h(t)) = /Te‘(““ el dz < p(hO), t> 0.

Furthermore, if E(h?) := % j& ( ( ((nhy)y ))z> ]de < 00, then

x

E(u(t)) == ;/T[ (f; (e—(@nhm))gc) 1>dz < BE(®), t>0,

x

where ((Inh,,), ), is the absolutely continuous part of (Inh,,),) in the
decomposition.



Summery: h, = Ae 2

= Epitaxial growth is an important physical process for forming solid
films or other nano-structures.

= |t is also an important tool to produce some single-layer films to
perform experimental researches, highlighted by the recent
breakthrough experiments on the quantum anomalous Hall effect and
superconductivity above 100 K leaded by Qikun Xue '13, '15.

= |t has been a focus of research both in mathematics and physics since
50's: BCF step dynamics, KPZ eq, Spohn, Kohn, Giga, E, etc.

= A simple broken-bond counting shows the surface energy

N
1
E, = % Z |h;—h;_1|, general E(h) = » / |Vh|Pdx, linear combina
i-1

= Fick's law & Gibbs-Thompson lead naturally to an exponential PDE

hy,=—V-J =ApYePt = Ae 2vh = — (V- MV) Ayh, M= e Arh



Summery: h, = Ae 2

= For medium size initial in the Wiener algebra | hg| 4 (ga) < -, global
unique classic solution with optimal large time decay rates, and
uniform gain of analyticity.

= Numerical shows, for large data, solution develops singularity. The
natural solution space is Ah in Radon space. We constructed such
steady singularity solution.

= We introduced a new notion of weak solution and proved global
existence. We also used the method of gradient flow and maximal
monotone operator to show this notation of solution is general, we
proved global “strong” solution with energy-dissipation inequality.

= Global solution of exponential SOS model (p = 1) with logarithmic
correction in ADL regime in 1-D with monotone initial data,.

Thank You !!!



