Mathematical Approaches to Kobayashi–Warren–Carter type models of grain boundary motions

Speaker: Shirakawa, Ken (Chiba Univ., Japan)
Based on jointworks with: Watanabe, Hiroshi (Oita Univ., Japan) Moll, Salvador (Univ. Valencia, Spain) Yamazaki, Noriaki (Kanagawa Univ., Japan)

"Mathematical Aspects of Surface and Interface Dynamics 14", FMSP Tutorial Symposium / Symposium on Mathematics for Various Disciplines 19, Oct. 26 (2017), Tokyo, Japan

0. Contents of this talk

1. Kobayashi–Warren–Carter model of grain boundary motion

Keywords: Derivation method of Kobayashi–Warren–Carter model, physical background, settings and assumptions

2. Mathematical approach when $\nu > 0$ (regular case)

Keywords: Dirct subdifferential approach / extended gradient formalism, mathematical results [Ito–Kenmochi–Yamazaki](2008–2011), anisotropic model [Moll–S.–Watanabe](2017)

3. Mathematical approach when $\nu = 0$ (singular case)

Keywords: weighted total variation, variational formulation, mathematical results [Moll, S., Watanabe, Yamazaki](2012–), time-discretization approach

4. Problems in future

Keywords: Structural observations (for steady-state, in time-evolution), further advanced issues (anisotropic singular model, uniqueness)

1. Kobayashi–Warren–Carter model of grain boundary motion

Situation: in a time-interval $(0,\infty)$, a spatial domain $\Omega \subset \mathbb{R}^2$ is occupied by a polycrystal (e.g. Ceramics).

Target: the movement of
grain boundaries, i.e. grain
boundary motions

Kobayashi–Warren–Carter model. [K.–W.–C.](2000) Physica D System of parabolic equations in $Q := (0, \infty) \times \Omega$, described by:

 $- \theta = \theta(t, x), \ (t, x) \in Q,$ orientation angle.

← Micrograph (Si₃N₄): UBE Scientific Analysis Laboratory (http://www.ube-ind.co.jp/usal/)

1.1. Derivation of the model

Gradient flow of the free-energy $[\eta, \theta] \in L^{2}(\Omega)^{2} \mapsto \mathscr{F}_{\nu}(\eta, \theta) := \Psi_{0}(\eta) + \Phi_{\nu}(\eta; \theta) \quad \text{Interfacial energy}$ $- \eta \mapsto \Psi_{0}(\eta) := \frac{1}{2} \int_{\Omega} |D\eta|^{2} dx + \int_{\Omega} G(\eta) dx$ $- [\eta, \theta] \mapsto \Phi_{\nu}(\eta; \theta) := \int_{\Omega} \alpha(\eta) |D\theta| dx + \frac{\nu^{2}}{2} \int_{\Omega} |D\theta|^{2} dx$ $\text{Total variation} \quad \text{Relaxation}$

Note that: $\nu = 0 \implies D(\mathscr{F}_{\nu}) = H^{1}(\Omega) \times BV(\Omega) \cap L^{2}(\Omega)$

Kobayashi–Warren–Carter model $(KWC)_{\nu}$:

 $\begin{cases} -\eta_t = \nabla_\eta \mathscr{F}_{\nu}(\eta, \theta) \text{ in } Q, \\ -\alpha_0(\eta)\theta_t = \nabla_\theta \mathscr{F}_{\nu}(\eta, \theta) \text{ in } Q, \end{cases} \end{cases} (B.C.)+(I.C.)$

- $\nu \ge 0$: given small const. $\alpha_0 = \alpha_0(\eta) > 0$, $\alpha = \alpha(\eta) > 0$: mobilities
- $0 \le G = G(\eta)$: potential function for the range-constraint $0 \le \eta \le 1$

Assumptions.

(A0)
$$\nu \geq 0$$
: const., $\Omega \subset \mathbb{R}^{N}$: b.d.d. domain $(N \in \mathbb{N}), \Gamma := \partial \Omega$: smooth
(A1) $0 \leq G \in C^{3}(\mathbb{R}), g = G' \in C^{2}(\mathbb{R})$ s.t. $g' > 0$ on $[0, 1]$ and $g(1) = 0$
(A2) $\alpha_{0} \in C^{1}(\mathbb{R}), \alpha \in C^{2}(\mathbb{R})$ convex, $\alpha'(0) = 0, \delta_{*} := \inf \alpha_{0}(\mathbb{R}) \cup \alpha(\mathbb{R}) > 0$
(A3) $[\eta_{0}, \theta_{0}]$ belongs to a subclass $D_{\nu} \subset D(\mathscr{F}_{\nu})$, where
 $D_{\nu} := \left\{ \left[\tilde{\eta}, \tilde{\theta} \right] \in D(\mathscr{F}_{\nu}) \middle| \begin{array}{c} \tilde{\eta} \in H^{1}(\Omega), \ 0 \leq \tilde{\eta} \leq 1 \text{ a.e. on } \Omega, \\ \tilde{\theta} \in BV(\Omega) \cap L^{\infty}(\Omega) \text{ and } \nu \tilde{\theta} \in H^{1}(\Omega) \end{array} \right\}$

Typical choices, cf. [Kobayashi–Warren–Carter](2000).

$$\alpha_0(\eta) = \alpha(\eta) = \frac{\eta^2}{2} + \delta_*, \ G(\eta) = \frac{(\eta - 1)^2}{2}, \ g(\eta) = \eta - 1, \ \forall \eta \in \mathbb{R}$$

- **†.** The presences of the constants ν and δ_* were not supposed in the original model
- **‡.** Red conditions are to lead to the range constraint $0 \le \eta \le 1$, and this range constraint enables us to suppose Lipschitz continuities for α_0, α, g , without loss of generality

2. Mathematical approach when u > 0

$$\begin{aligned} & \textbf{System (KWC)}_{\nu} \text{ with "Neumann-zero B.C." for } \theta: \\ & \left\{ \begin{array}{l} \eta_t - \Delta \eta + g(\eta) + \alpha'(\eta) |D\theta| = 0, \text{ in } Q, \\ \alpha_0(\eta) \theta_t - \operatorname{div} \left(\alpha(\eta) \frac{D\theta}{|D\theta|} + \nu^2 D\theta \right) = 0, \text{ in } Q, \\ D\eta \cdot n_{\partial\Omega} = 0, \ (\alpha(\eta) \frac{D\theta}{|D\theta|} + \nu^2 D\theta) \cdot n_{\partial\Omega} = 0, \text{ on } \Sigma := (0, T) \times \partial\Omega, \\ \eta(0, x) = \eta_0(x), \ \theta(0, x) = \theta_0(x), \ x \in \Omega. \end{aligned} \right. \end{aligned}$$

\Diamond Corresponding interfacial energy (Neumann-zero B.C. for θ)

$$[\eta,\theta] \in L^{2}(\Omega)^{2} \mapsto \Phi_{\nu}(\eta;\theta) := \begin{cases} \int_{\Omega} \left(\alpha(\eta) |D\theta| + \frac{\nu^{2}}{2} |D\theta|^{2} \right) dx, \\ \text{if } \theta \in H^{1}(\Omega), \\ \infty, \text{ otherwise.} \end{cases}$$

Note that: by the range constraint $0 \le \eta \le 1$, $\alpha'(\eta)|D\theta|$ can be L^2 -function, and $-\operatorname{div}\left(\alpha(\eta)\frac{D\theta}{|D\theta|} + \nu^2 D\theta\right) \approx \partial \Phi_{\nu}(\eta;\theta)$, where $\partial \Phi_{\nu}(\eta;\theta)$ is the L^2 -subdifferential of $\Phi_{\nu}(\eta;\theta)$ with respect to θ

2. Mathematical approach when $\nu > 0$

System (KWC)_{$$\nu$$} with "Dirichlet-zero B.C." for θ :

$$\begin{cases}
\eta_t - \Delta \eta + g(\eta) + \alpha'(\eta) |D\theta| = 0, \text{ in } Q, \\
\alpha_0(\eta)\theta_t - \operatorname{div} \left(\alpha(\eta) \frac{D\theta}{|D\theta|} + \nu^2 D\theta \right) = 0, \text{ in } Q, \\
D\eta \cdot n_{\partial\Omega} = 0, \quad \theta = 0, \text{ on } \Sigma := (0, T) \times \partial\Omega, \\
\eta(0, x) = \eta_0(x), \quad \theta(0, x) = \theta_0(x), \quad x \in \Omega.
\end{cases}$$

\diamond Corresponding interfacial energy (Dirichlet-zero B.C. for θ)

$$[\eta,\theta] \in L^{2}(\Omega)^{2} \mapsto \Phi_{\nu}(\eta;\theta) := \begin{cases} \int_{\Omega} \left(\alpha(\eta) |D\theta| + \frac{\nu^{2}}{2} |D\theta|^{2} \right) dx, \\ \text{if } \theta \in H_{0}^{1}(\Omega), \text{ i.e. we suppose } \theta = 0 \text{ on } \partial\Omega, \\ \infty, \text{ otherwise.} \end{cases}$$

Note that: by the range constraint $0 \le \eta \le 1$, $\alpha'(\eta)|D\theta|$ can be L^2 -function, and $-\operatorname{div}\left(\alpha(\eta)\frac{D\theta}{|D\theta|} + \nu^2 D\theta\right) \approx \partial \Phi_{\nu}(\eta;\theta)$, where $\partial \Phi_{\nu}(\eta;\theta)$ is the L^2 -subdifferential of $\Phi_{\nu}(\eta;\theta)$ with respect to θ

2.1. Direct subidfferential-approach to $(KWC)_{\nu}$ when $\nu > 0$

Vectorial variable $v \in H$ on a Hilbert space H:

 $H:=L^2(\Omega)^2$ and $v:=[\eta,\theta]\in H$

Operator $\mathcal{A}: H \to L^2(\Omega)^{2 \times 2}$ of mobility:

$$v = [\eta, \theta] \in H \mapsto \mathcal{A}(v) := \begin{bmatrix} 1 & 0 \\ 0 & \alpha_0(\eta) \end{bmatrix}$$

"Total convex energy" $\mathcal{J}_{\nu}: H \to [0,\infty]$ with the subdifferential $\partial \mathcal{J}_{\nu} \subset H^2$:

$$v = [\eta, \theta] \in D(\mathscr{F}_{\nu}) \subset H \mapsto \mathcal{J}_{\nu}(v) := \frac{1}{2} \int_{\Omega} \left[|D\eta|^2 + \left(\nu |D\theta| + \frac{1}{\nu} \alpha(\eta) \right)^2 \right] dx$$

Lipschitz perturbation $\mathcal{G}: H \to H$:

$$v = [\eta, \theta] \in H \mapsto \mathcal{G}(v) := {}^{\mathrm{t}} \left[g(\eta) - \frac{1}{\nu} \alpha(\eta) \alpha'(\eta), 0 \right]$$

Reformulation of (KWC)_{ν} by a doubly-nonlinear evolution equation on *H*:

(E)_{ν} $\mathcal{A}(v(t))v'(t) + \partial \mathcal{J}_{\nu}(v(t)) + \mathcal{G}(v(t)) \ni 0 \text{ in } H, t > 0$

- **†.** The general theories of [Brézis, Barbu](1972–) are avaliable for the existence result and the uniqueness when $\alpha_0 \equiv \text{Const.}$
- **‡.** The direct subdifferential approach is **NOT** available when $\nu = 0$

2.2. Mathematical results when $\nu > 0$, cf. [Ito–Kenmochi–Yamazaki](2008–2011)

For simplicity, we suppose the Dirichlet-zero B.C. for θ

Theorem I (Solvability, energy-dissipation and large-time behavior) Under (A0)–(A3) with $\nu > 0$, the system (KWC)_{ν} admits a solution [η , θ], defined as follows.

$$(\mathbf{S1})_{\boldsymbol{\nu}} \quad [\eta, \theta] \in W^{1,2}_{\text{loc}}([0, \infty); L^2(\Omega)^2) \cap L^{\infty}_{\text{loc}}([0, \infty); H^1(\Omega) \times H^1_0(\Omega));$$

$$0 \leq \eta(t) \leq 1 \text{ a.e. in } \Omega \text{ and } |\theta(t)|_{L^{\infty}(\Omega)} \leq |\theta_0|_{L^{\infty}(\Omega)}, \forall t \geq 0;$$

$$[\eta(0), \theta(0)] = [\eta_0, \theta_0] \in D_{\boldsymbol{\nu}}, \text{ in } L^2(\Omega)^2$$

 $(S2)_{\nu}$ [η, θ] solves the following variational inequalities:

$$\begin{split} \int_{\Omega} & \left(\eta_t(t) + g(\eta(t)) + \alpha'(\eta(t)) | D\theta(t) | \right) \varphi \, dx + \int_{\Omega} D\eta(t) \cdot D\varphi \, dx = 0, \\ & \int_{\Omega} \alpha_0(\eta(t)) \theta_t(t) \left(\theta(t) - \psi \right) \, dx + \nu^2 \int_{\Omega} D\theta(t) \cdot D\left(\theta(t) - \psi \right) \, dx \\ & + \int_{\Omega} \alpha(\eta(t)) | D\theta(t) | \, dx \leq \int_{\Omega} \alpha(\eta(t)) | D\psi | \, dx, \\ & \forall \varphi \in H^1(\Omega), \ \psi \in H^1_0(\Omega) \ \text{a.e.} \ t > 0 \end{split}$$

to be continued ...

... rest of the statement

 $(S3)_{\nu}$ (Energy dissipation) $\mathscr{F}_{\nu}(\eta(\cdot), \theta(\cdot))$ is absolutely continuous in time, and

$$|\eta_t(t)|^2_{L^2(\Omega)} + |\sqrt{\alpha_0(\eta(t))}\theta_t(t)|^2_{L^2(\Omega)} + \frac{d}{dt}\mathscr{F}_{\nu}(\eta(t),\theta(t)) = 0, \text{ a.e. } t > 0.$$

Moreover, the following convergence holds in the large-time.

$$[\eta(t), \theta(t)] \rightarrow [1, 0]$$
 in $L^2(\Omega)^2$ as $t \rightarrow \infty$

In particular, if $\alpha_0 \equiv \text{Const.}$, then the solution $[\eta, \theta]$ is unique.

†. The convergent point [1,0] is the (unique) solution to the steady-state problem $(S_{\infty})_{\nu}$

$$\begin{cases} (\mathbf{S}_{\infty})_{\nu}: \\ \begin{cases} -\Delta \eta_{\infty} + g(\eta_{\infty}) + \alpha'(\eta_{\infty}) | D\theta_{\infty} | = 0 \text{ in } \Omega, \text{ with Neumann-zero B.C.} \\ -\operatorname{div} \left(\alpha(\eta_{\infty}) \frac{D\theta_{\infty}}{|D\theta_{\infty}|} + \nu^2 D\theta_{\infty} \right) = 0, \text{ with Dirichlet-zero B.C.} \end{cases}$$

A Relevant previouis works

- **μ1) Neumann-zero B.C. for θ:** [Moll, S., Watanabe, Yamazaki](2012–)
- **μ2) Inhomogeneous Dirichlet B.C. for θ:** [Moll, S., Watanabe](2016–2017)

#3) Anisotropic system (A-KWC)_{ν}, cf. [Moll–S.–Watanabe](2016–2017):

$$\eta_{t} - \Delta \eta + g(\eta) + \alpha'(\eta)\gamma(R(\theta)D\theta) = 0, \text{ in } Q,$$

$$\alpha_{0}(\eta)\theta_{t} - \operatorname{div}\left(\alpha(\eta)R(-\theta)\partial\gamma(R(\theta)D\theta) + \nu D\theta\right) + \alpha(\eta)\partial\gamma(R(\theta)D\theta) \cdot R(\theta + \frac{\pi}{2})D\theta \ni 0 \text{ in } Q,$$

(B.C.)+(I.C.)

- $\Omega \subset \mathbb{R}^2$: b.d.d. domain
- $\partial \gamma$: subdifferential of an anisotropic norm $0 \leq \gamma \in W^{1,\infty}(\mathbb{R}^2)$

•
$$R(\vartheta) := \begin{bmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{bmatrix}, \ \forall \vartheta \in \mathbb{R}$$

(rotation angle)

Anisotropic interfaical energy:

$$[\eta,\theta] \in H^1(\Omega)^2 \mapsto \Phi_{\nu}(\eta;\theta) := \int_{\Omega} \alpha(\eta) \gamma(R(\theta)D\theta) \, dx + \frac{\nu^2}{2} \int_{\Omega} |D\theta|^2 \, dx$$

#3) Anisotropic system (A-KWC)_{ν}, cf. [Moll–S.–Watanabe](2016–2017):

$$\eta_{t} - \Delta \eta + g(\eta) + \alpha'(\eta)\gamma(R(\theta)D\theta) = 0, \text{ in } Q,$$

$$\alpha_{0}(\eta)\theta_{t} - \operatorname{div}\left(\alpha(\eta)R(-\theta)\partial\gamma(R(\theta)D\theta) + \nu D\theta\right) + \alpha(\eta)\partial\gamma(R(\theta)D\theta) \cdot R(\theta + \frac{\pi}{2})D\theta \ni 0 \text{ in } Q,$$

(B.C.)+(I.C.)

- $\Omega \subset \mathbb{R}^2$: b.d.d. domain
- $\partial \gamma$: subdifferential of an anisotropic norm $0 \leq \gamma \in W^{1,\infty}(\mathbb{R}^2)$

•
$$R(\vartheta) := \begin{bmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{bmatrix}, \ \forall \vartheta \in \mathbb{R}$$

(rotation angle)

Note that:

Due to the difference of γ and $|\cdot|$, we can **NOT** apply the direct sudifferentialapproach for $(A-KWC)_{\nu}$, and we need another approach based on the mathematical analysis when $\nu = 0$

3. Mathematical approach when u = 0

System (KWC)₀ with "Neumann-zero B.C." for θ :

$$\begin{array}{l} \left(\begin{array}{l} \eta_t - \Delta \eta + g(\eta) + \alpha'(\eta) | D\theta | = 0, \ \mbox{in } Q, \\ \alpha_0(\eta) \theta_t - {\rm div} \left(\alpha(\eta) \frac{D\theta}{|D\theta|} \right) = 0, \ \mbox{in } Q, \\ D\eta \cdot n_{\partial\Omega} = 0, \ (\alpha(\eta) \frac{D\theta}{|D\theta|}) \cdot n_{\partial\Omega} = 0, \ \ \mbox{on } \Sigma := (0,T) \times \partial\Omega, \\ \eta(0,x) = \eta_0(x), \ \theta(0,x) = \theta_0(x), \ x \in \Omega. \end{array}$$

\diamond Corresponding interfacial energy (Neumann-zero B.C. for θ)

$$[\eta, \theta] \in L^{2}(\Omega)^{2} \mapsto \Phi_{0}(\eta; \theta) := \begin{cases} \int_{\Omega} \alpha(\eta) |D\theta| \text{ (weighted total variation),} \\ \text{ if } \eta \in H^{1}(\Omega) \cap L^{\infty}(\Omega) \text{ and } \theta \in BV(\Omega), \\ \infty, \text{ otherwise.} \end{cases}$$

Mathematical focus: $\theta \in BV(\Omega) \Longrightarrow |D\theta|$ **:** measure (not function)

(MF1) Meaningful mathematical expression of $\alpha(\eta)|D\theta|$, $\alpha'(\eta)|D\theta|$, e.t.c., i.e. the expressions of weighted total varitaions

3. Mathematical approach when u = 0

System (KWC)₀ with "Dirichlet-zero B.C." for θ :

$$\begin{array}{l} \eta_t - \Delta \eta + g(\eta) + \alpha'(\eta) |D\theta| = 0, \ \text{in } Q, \\ \alpha_0(\eta) \theta_t - \operatorname{div} \left(\alpha(\eta) \frac{D\theta}{|D\theta|} + \nu^2 D\theta \right) = 0, \ \text{in } Q \\ D\eta \cdot n_{\partial\Omega} = 0, \ \theta = 0, \ \text{on } \Sigma := (0, T) \times \partial\Omega, \\ \eta(0, x) = \eta_0(x), \ \theta(0, x) = \theta_0(x), \ x \in \Omega. \end{array}$$

Expected interfacial energy (Dirichlet-zero B.C. for θ)

$$[\eta,\theta] \in L^{2}(\Omega)^{2} \mapsto \widetilde{\Phi}_{0}(\eta;\theta) := \begin{cases} \int_{\Omega} \alpha(\eta) |D\theta| \text{ if } \eta \in H^{1}(\Omega) \cap L^{\infty}(\Omega), \\ \theta \in BV(\Omega) \text{ and } \theta = 0 \text{ on } \partial\Omega, \\ \infty, \text{ otherwise.} \end{cases}$$

Mathematical focus: $\theta \in BV(\Omega)$ may have jumps bet. values on Ω and $\partial \Omega$

 \implies the B.C. " $\theta = 0$ on $\partial \Omega$ " is meaningless in mathematics

3. Mathematical approach when u = 0

System (KWC)₀ with "Dirichlet-zero B.C." for θ :

$$\begin{array}{l} \eta_t - \Delta \eta + g(\eta) + \alpha'(\eta) |D\theta| = 0, \ \text{in } Q, \\ \alpha_0(\eta) \theta_t - \operatorname{div} \left(\alpha(\eta) \frac{D\theta}{|D\theta|} + \nu^2 D\theta \right) = 0, \ \text{in } Q \\ D\eta \cdot n_{\partial\Omega} = 0, \ \theta = 0, \ \text{on } \Sigma := (0, T) \times \partial\Omega, \\ \eta(0, x) = \eta_0(x), \ \theta(0, x) = \theta_0(x), \ x \in \Omega. \end{array}$$

\diamond Expected interfacial energy (Dirichlet-zero B.C. for θ)

$$[\eta,\theta] \in L^{2}(\Omega)^{2} \mapsto \widetilde{\Phi}_{0}(\eta;\theta) := \begin{cases} \int_{\Omega} \alpha(\eta) |D\theta| \text{ if } \eta \in H^{1}(\Omega) \cap L^{\infty}(\Omega), \\ \theta \in BV(\Omega) \text{ and } \theta = 0 \text{ on } \partial\Omega, \\ \infty, \text{ otherwise.} \end{cases}$$

Mathematical focus: the expected energy $\widetilde{\Phi}_0$ is **NOT** lower semi-continuous

(MF2) The exact formulation of the interfaical energy " $\Phi_0(\eta; \theta)$ " for the Dirichletzero B.C. for θ

3.1. Preliminaries for (KWC)₀ with Dirichlet-zero B.C. for θ

(MF1)Weighted total variation, cf. [Amar, Bellettini, de Cicco, Fusco](1994–) $\forall \beta \in H^1(\Omega) \cap L^{\infty}(\Omega), \theta \in BV(\Omega) \cap L^2(\Omega)$, the weighted total variation $[\beta |D\theta|]$ is a finite Radon measure on Ω , s.t.

$$\int_{\Omega} d[\beta |D\theta|] = \int_{\Omega} \beta^* |D\theta| \text{ (integral of } \beta^* \text{ w.r.t. } |D\theta|)$$

where β^* is the precise expression of β , \mathcal{H}^{N-1} -a.e. in Ω

Proposition 3.1 (Continuous dependence), cf. [Moll–S.](2014) If:

$$\begin{cases} \beta, \rho \in H^{1}(\Omega) \cap L^{\infty}(\Omega), \ \{\beta_{n}, \rho_{n}\}_{n=1}^{\infty} \subset H^{1}(\Omega) \cap L^{\infty}(\Omega), \\ \theta \in BV(\Omega) \cap L^{2}(\Omega), \ \{\theta_{n}\}_{n=1}^{\infty} \subset BV(\Omega) \cap L^{2}(\Omega) \\ \beta_{n} \to \beta, \ \rho_{n} \to \rho \text{ in } L^{2}(\Omega), \text{ weakly in } H^{1}(\Omega), \text{ as } n \to \infty, \\ \beta_{n} \geq \exists \delta_{\beta} > 0 \text{ on } \Omega, \forall n \in \mathbb{N}, \text{ and } \theta_{n} \to \theta \text{ in } L^{2}(\Omega), \text{ as } n \to \infty \end{cases}$$

then it holds that:

$$\int_{\Omega} d[\beta_n | D\theta_n |] \to \int_{\Omega} d[\beta | D\theta |] \Longrightarrow \int_{\Omega} d[\rho_n | D\theta_n |] \to \int_{\Omega} d[\rho | D\theta |], \text{ as } n \to \infty$$

(MF2)Dirichlet-zero B.C. for θ , cf. [Andreu–Ballester–Caselles–Mazón](2001) $\forall \beta \in H^1(\Omega) \cap L^{\infty}(\Omega), \ \theta \in BV(\Omega) \cap L^2(\Omega), \text{ let } [\beta | D\theta |]_0 \text{ be a measure, defined as:}$ $\int_B d[\beta | D\theta |]_0 := \int_B [\beta^*]_0^{\text{ex}} |D[\theta]_0^{\text{ex}} = \int_{B \cap \Omega} \beta^* |D\theta| + \int_{B \cap \partial \Omega} \beta |\theta| \, d\mathcal{H}^{N-1}, \forall B \subset \mathbb{R}^N: \text{ Borel}$

where $[\cdot]_0^{ex}$ is the zero-extension of a function

Interfacial energy under Dirichlet-zero B.C. for θ :

$$\Phi_0(\eta;\theta) := \int_{\overline{\Omega}} d[\alpha(\eta)|D\theta|]_0 = \int_{\Omega} \alpha(\eta^*)|D\theta| + \int_{\partial\Omega} \alpha(\eta)|\theta| \, d\mathcal{H}^{N-1}$$

 \diamond Dirichlet type B.C. derived from the subdifferential $\partial \Phi_0(\eta; \cdot)$ (1st variation)

$$-\alpha(\eta)\frac{D\theta}{|D\theta|} \cdot n_{\Gamma} \in \alpha(\eta)\operatorname{Sgn}(\theta) \iff \theta \in (\operatorname{Sgn})^{-1}(-\frac{D\theta}{|D\theta|} \cdot n_{\Gamma})$$

$$\begin{cases} \theta = 0, \text{ if } \frac{D\theta}{|D\theta|} \cdot n_{\Gamma} \in (-1, 1), \\\\ \theta \le 0, \text{ if } \frac{D\theta}{|D\theta|} \cdot n_{\Gamma} = 1, \\\\ \theta \ge 0, \text{ if } \frac{D\theta}{|D\theta|} \cdot n_{\Gamma} = -1, \end{cases} \text{ a.e. on } \Gamma$$

where $(Sgn)^{-1}$ is the inverse of the signal-function Sgn (set-valued)

3.2. Mathematical results when $\nu = 0$, cf. [Moll, S., Watanabe, Yamazaki](2012–)

For simplicity, we suppose the Dirichlet-zero B.C. for θ

Theorem II (Solvability, energy-dissipation and large-time behavior) Under (A0)–(A3) with $\nu = 0$, the system (KWC)₀ admits a solution $[\eta, \theta]$, defined as follows.

$$(\mathbf{S1})_{\mathbf{0}} \quad \eta \in W^{1,2}_{\mathrm{loc}}([0,\infty); L^{2}(\Omega)) \cap L^{\infty}_{\mathrm{loc}}([0,\infty); H^{1}(\Omega)), \eta(0) = \eta_{0} \text{ in } L^{2}(\Omega);$$

$$\theta \in W^{1,2}_{\mathrm{loc}}([0,\infty); L^{2}(\Omega)), |D\theta(\cdot)|(\Omega) \in L^{\infty}_{\mathrm{loc}}([0,\infty)), \theta(0) = \theta_{0} \text{ in } L^{2}(\Omega);$$

$$0 \leq \eta(t) \leq 1 \text{ a.e. in } \Omega \text{ and } |\theta(t)|_{L^{\infty}(\Omega)} \leq |\theta_{0}|_{L^{\infty}(\Omega)}, \forall t \geq 0;$$

 $(S2)_0$ [η, θ] solves the following variational inequalities:

$$\begin{split} \int_{\Omega} \bigl(\eta_t(t) + g(\eta(t)) \bigr) \varphi \, dx + \int_{\Omega} D\eta(t) \cdot D\varphi \, dx + \int_{\overline{\Omega}} d\bigl[\varphi \alpha'(\eta(t)) | D\theta(t) | \bigr]_0 &= 0, \\ \int_{\Omega} \alpha_0(\eta(t)) \theta_t(t) \bigl(\theta(t) - \psi \bigr) \, dx \\ &+ \int_{\overline{\Omega}} d\bigl[\alpha(\eta(t)) | D\theta(t) | \bigr]_0 \leq \int_{\overline{\Omega}} d\bigl[\alpha(\eta(t)) | D\psi | \bigr]_0, \\ \forall \varphi \in H^1(\Omega) \cap L^{\infty}(\Omega), \ \psi \in BV(\Omega) \cap L^2(\Omega) \ \text{a.e. } t > 0 \end{split}$$

to be continued ...

... rest of the statement

(S3)₀ (Energy dissipation) $\mathscr{F}_0(\eta(\cdot), \theta(\cdot))$ is **BV-local function** in time, and

$$\begin{split} &\int_{s}^{t} \left(|\eta_{t}(t)|^{2}_{L^{2}(\Omega)} + |\sqrt{\alpha_{0}(\eta(t))}\theta_{t}(t)|^{2}_{L^{2}(\Omega)} \right) dt + \mathscr{F}_{0}(\eta(t),\theta(t)) \\ &\leq \mathscr{F}_{0}(\eta(s),\theta(s)), \text{ a.e. } 0 < s \leq t < \infty \text{ (including } s = 0) \end{split}$$

Moreover, the following convergence holds in the large-time.

 $[\eta(t), \theta(t)] \rightarrow [1, 0]$ in $L^2(\Omega)^2$ as $t \rightarrow \infty$

†₁. When $\nu = 0$, there is no uniqueness result, yet

[†]₂. The convergent point [1,0] is the (unique) solution to the steady-state problem $(S_{\infty})_0$

$$\begin{cases} (\mathbf{S}_{\infty})_{0}: \\ \begin{cases} -\Delta \eta_{\infty} + g(\eta_{\infty}) + \alpha'(\eta_{\infty}) | D\theta_{\infty} | = 0 \text{ in } \Omega, \text{ with Neumann-zero B.C.,} \\ -\operatorname{div} \left(\alpha(\eta_{\infty}) \frac{D\theta_{\infty}}{|D\theta_{\infty}|} \right) = 0, \text{ with Dirichlet-zero B.C.} \end{cases}$$

[†]₃. In general, the solution to $(S_{\infty})_0$ is NOT unique when the Dirichlet boundary source for θ is inhomogeneous

3.3. Proof: Mathematical approach when $\nu = 0$

Keypoint: time-discretization for regular systems (KWC)_{ν} when $\nu > 0$

Approximating problem $(\mathbf{AP})_{h}^{\nu}$ with $\nu > 0$ and time-step h > 0:

$$\frac{\eta_i^{\nu} - \eta_{i-1}^{\nu}}{h} - \Delta_N \eta_i^{\nu} + g(\eta_i^{\nu}) + \alpha'(\eta_i^{\nu}) |D\theta_{i-1}^{\nu}| = 0 \text{ in } L^2(\Omega), \qquad (ap.1)$$

$$\alpha_0(\eta_i^{\nu})\frac{\theta_i^{\nu} - \theta_{i-1}^{\nu}}{h} + \partial \Phi_{\nu}(\eta_i^{\nu}; \theta_i^{\nu}) \ni 0 \text{ in } L^2(\Omega), \quad i = 1, 2, 3, \dots$$
 (ap.2)

- Δ_N : opeartor of Laplacian with Neumann-zero B.C.
- $\{[\eta_0^{\nu}, \bar{\theta_{\nu}}]\}_{\nu>0} \subset H^{\bar{1}}(\Omega)^2$: approximating sequence of $[\eta_0, \theta_0] \in D_0 \subset H^1(\Omega) \times BV(\Omega)$

Key-Lemma (Energy-estimate). There exists $h_* \in (0, 1]$, and for any $\nu > 0$ and any $h \in (0, h_*]$, it follows that:

$$\frac{1}{2h} |\eta_{i}^{\nu} - \eta_{i-1}^{\nu}|_{L^{2}(\Omega)}^{2} + \frac{1}{2h} |\sqrt{\alpha_{0}(\eta_{i}^{\nu})}(\theta_{i}^{\nu} - \theta_{i-1}^{\nu})|_{L^{2}(\Omega)}^{2} + \mathscr{F}_{\nu}(\eta_{i}^{\nu}, \theta_{i}^{\nu}) \leq \mathscr{F}_{\nu}(\eta_{i-1}^{\nu}, \theta_{i-1}^{\nu}), \ i = 1, 2, 3, \dots$$
(ap.3)

†. Analytic methods: theories of compactness (Ascoli type), theory of Γ-convergence (as $h, \nu \to 0, t \to \infty$, e.t.c.)

4. Problems in future

(I) Structural observations for steady-states

Keypoint : • one-dimensional case

- radial symmetric cases
- other various structures

(II) Structural observations in time-evolution

Keypoints: • previous works kindred to our study, e.g. [Andreu–Caselles–Mazón](2004), [Bellettini–Caselles–Novaga](2002), [Kobayashi–Giga](1999), [Giga–Giga– Kobayashi](2001), [Giga–Giga](2010), [Moll](2005–), [Rybka–Mucha](2000–), [S.](2000–) e.t.c.

- (III) Anisotropic model when $\nu = 0$
- **Status :** No advance, yet
- (IV) Uniqueness
 - **Status :** No advance, yet

Example of a 1D steady-state