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Abstract: This is a lecture note on a physical interpretation of the geometric family

index theorem. The main focus is on the structure of partition functions of chiral fermions

in d dimensions and massive fermions in d+1 dimensions. These are described by Pfaffians

of some Dirac operators.
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1 Introduction

Fermions are one of the most basic and important ingredients in physics. The reason is

simply that the matter of our world, including ourselves, consists of fermions, such as

electrons and quarks. So I hope there is no need to motivate the reader why we have to

understand their mathematical structure better. Index theorems are such mathematics.

There are more specific reasons why index theorems related to fermions are important.

One of the reasons is that properties of some material, which are called topological material,

are direct consequences of some index theorems. Examples include integer quantum Hall

systems and topological insulators. The properties of electric currents on the boundaries

of these materials are consequences of the family index theorem, which is the main subject

of this note.

Index theorems also appear in various places in string theory and play important roles.

Fortunately, we can describe both topological material and string theory by using the same

mathematics, at least in effective field theory approach. (I do not explain what effective
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field theory is.) The purpose of this note is to describe this mathematical structure of

fermions.

I am a physicist and I will not try to make the discussions mathematically rigorous

which may make this note difficult to understand for mathematicians. But at the same

time, I also give somewhat abstract discussions which make it difficult to understand for

physicists. I am also not sure what common knowledge to assume for the physics or

mathematics side of the audience, so I may use some facts without explanation which may

not be familiar to some readers. I apologize for them in advance.

2 Basic setup

2.1 Symmetry group

Throughout the note we will use the language of relativistic quantum field theory. Space-

times are Riemannian geometry, so they are manifolds with a metric tensor. Unless other-

wise stated, we work with a Wick-rotated metric, so a metric is positive definite.

However, more detailed structure is sometimes necessary. For example, fermions usu-

ally require spin structure on spacetime manifolds. Also, electromagnetic fields are de-

scribed by U(1) fiber bundles.

To accommodate a broad class of cases, we follow Freed and Hopkins [1]. We notice

that a metric reduces the structure group of the tangent bundle to the orthogonal group

O(d), where d is the dimension of the manifold. We will define H structure on manifolds,

which is a generalization of structure such as spin structure and U(1) bundles.

We consider a sequence of compact Lie group groups Hd for d = 1, 2, · · · with the

following properties. First we require that there is a homomorphism for each d,

ρ : Hd → O(d) (2.1)

such that its image contains the connected part of the orthogonal group, SO(d) ⊂ ρ(Hd).

We require that spacetime manifolds are equipped with a principal Hd bundle P such

that its image under ρ (or more precisely the bundle P ×ρ O(d)) is isomorphic to the O(d)

frame bundle associated to the tangent bundle. In such a case, we say that the manifold

has an Hd structure (or more simply an H structure). We call a manifold equipped with

an H structure as an H manifold.

Let us give a few examples. If Hd = SO(d) and ρ : SO(d) → O(d) is the obvious

inclusion map, then an H structure is just an orientation of a manifold. If Hd = Spin(d),

an H structure is a spin structure. We can also take Hd = [Spin(d) × U(1)]/Z2, where

the nontrivial element of Z2 is the product of the center −1 ∈ Spin(d) and the order 2

element −1 ∈ U(1). In this case it is called a spinc structure of a manifold. Nonorientable

cases ρ(Hd) = O(d) are also important. For example, topological superconductors are

characterized by the group Hd = Pin+ or Pin−, where Pin± are some double covers of O(d)

such that its connected component is Spin(d). Topological insulators are characterized by

Hd = Pin±(d) n U(1) (or [Pin±(d) n U(1)]/Z2) We omit details.

Physically, the group Hd is the symmetry group of the physical system. We always

have the Wick-rotated version of the Lorenz symmetry SO(d), but we may have more
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symmetries depending on the system. For example, if there is a U(1) symmetry of the

electromagnetic field, the symmetry group contains U(1) at the level of Lie algebra. Thus

a fermion coupled to a U(1) gauge field has the Lie algebra hd ⊃ so(d)× u(1) where hd is

the Lie algebra of Hd. But the global structure of Hd can be complicated, as in the case

of a spinc structure mentioned above.

We also need the following requirement when we consider manifolds with boundaries.

We can consider an inclusion

· · · ⊂ O(d) ⊂ O(d+ 1) ⊂ · · · (2.2)

in an obvious way. Then we require that there is a corresponding inclusion

· · · ⊂ Hd ⊂ Hd+1 ⊂ · · · (2.3)

such that there is a commutative diagram

· · · // Hd

��

// Hd+1

��

// · · ·

· · · // O(d) // O(d+ 1) // · · ·

. (2.4)

where horizontal lines are the inclusions mentioned above, and vertical lines are ρ : Hd →
O(d). Moreover, we assume that each square is a pullback diagram, meaning that if we

have h ∈ Hd+1 and o ∈ O(d) such that ρ(h) = o, then h is actually an element of Hd.

This requirement is imposed so that if a (d+1)-dimensional manifold with a boundary

has an Hd+1 structure, then its boundary has a canonical Hd structure. The reason is as

follows. We can take (say) the outward normal vector field to the boundary. It reduces

the structure group from O(d + 1) to O(d). Then by the above assumption about the

diagram, the structure group Hd+1 is reduced to Hd on the boundary. Whether we use

the outward or inward normal vector fields depend on the context. (See e.g. Sec. 3.1.)

By changing from the outward to inward vectors, we can define the opposite H structure,

whose simplest example is the orientation reversal for Hd = SO(d). See [1, 2] for details.

2.2 Clifford module

To describe fermions, we need Clifford modules in the language of mathematics or gamma

matrices in the language of physics. First let us describe it locally.

A vector space S is a Clifford module associated to the vector space Rd if it has the

following properties. For any vector v ∈ Rd, we have an action of v on S as a linear map.

We denote the corresponding linear map by putting a hat on a vector as v̂ ∈ End(S). Thus

we have a map

(Rd, S) 3 (v, s) 7→ v̂s ∈ S, (2.5)

and it is required to be linear in both variables. Moreover, the above action is required to

have the property that

v̂v̂ = v21, (2.6)
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where 1 here is the identity map and v2 is the squared length of v computed by the standard

metric of the vector space Rd.
In physics, it is more common to use an explicit basis. Let

(ea) = (e1, · · · , ed) (2.7)

be the standard orthonormal basis of Rd. We denote the linear map êa corresponding to

ea as γa,

γa = êa. (2.8)

A general vector v can be expanded in terms of the basis (ea) as v =
∑

a vaea. Following

Einstein, we omit the summation symbol
∑

a when we sum over indices which appear

repeatedly in a single term. For example, we write v = vaea. In the orthonormal frame,

we have v2 = vava. Therefore, the condition v̂v̂ = v2 implies that

{γa, γb} := γaγb + γbγa = 2δab (2.9)

where δab is Kronecker delta. We call γa as gamma matrices.

We want to incorporate the symmetry group Hd in the above story. We often omit

the subscript d since it just implies the dimension and we write the group as H.

We require the vector space S to be not only a Clifford module, but also a representa-

tion space of the group H under some representation r. Now we have the action of both

v ∈ Rd and h ∈ H on S. They are required be compatible in the sense that

r(h)v̂s = ρ̂(h)v r(h)s, (2.10)

where ρ : Hd → O(d) is the homomorphism which we have discussed before in the definition

of H. In other words,

r(h)v̂r(h)−1 = ρ̂(h)v. (2.11)

This gives some restriction on the representation r.

Practically, in most cases (except for gravitinos in supersymmetric theories and non-

unitary fields such as bc ghost fields in string theory), this condition is achieved as follows.

The Lie algebra h of the compact Lie group H can be decomposed into simple factors

and u(1) factors. Moreover, there is a surjective map ρ : h → so(d). These facts imply

that there is a subalgebra so(d) ⊂ h which is mapped isomorphically to so(d) under ρ.

Corresponding to generators Tab of so(d) with Tab = −Tab and

[Tab, Tcd] = δbcTad − δacTbd − δbdTac + δadTbc, (2.12)

it is possible to construct a representation r such that

r(Tab) =
1

4
(γaγb − γbγa). (2.13)

One can check that the right hand side satisfies the above algebra of Tab by using (2.9). This

gives a spin 1/2 representation in the physics language. More general representations can be
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constructed by taking a tensor product of this representation with another representation

on which γa acts trivially.

For physical theories, we need two products in S : an invariant antisymmetric bilinear

form, and an invariant positive definite hermitian form. A bilinear form is necessary to

write down a Lagrangian. A hermitian form follows from unitarity of physical theories as

explained in e.g. [3]. In this note we simply assume that both of them exist.

Let us first discuss an invariant antisymmetric bilinear form 〈 , 〉. It is a bilinear map

S × S 3 (s1, s2) 7→ 〈s1, s2〉 ∈ C. (2.14)

with the properties that

〈r(h)s1, r(h)s2〉 = 〈s1, s2〉 , 〈s1, s2〉 = −〈s2, s1〉 , 〈s1, v̂s2〉 = −〈v̂s1, s2〉 . (2.15)

The first condition is the invariance of the bilinear form under the symmetry group H.

The second condition is motivated by the fact that fermion path integrals in physics are

integration over Grassmann variables ψ, which satisfy ψ1ψ2 = −ψ2ψ1. For Grassmann

variables which take values in S, we get 〈ψ1, ψ2〉 = 〈ψ2, ψ1〉 and hence 〈ψ,ψ〉 can be

nonzero. This is used for fermion mass terms. The last condition 〈s1, v̂s2〉 = −〈v̂s1, s2〉
will be required by a similar reason that the fermion kinetic term is well-defined.

In a special case that S consists of a Clifford module S̃ and its dual space S̃∗ as

S = S̃ ⊕ S̃∗, we can always define a bilinear form as follows. We denote the standard

pairing between a vector space S̃ and its dual space S̃∗ as 〈 , 〉dual. The action of v̂ on S̃∗

is defined by the condition that 〈s̃′, v̂ s̃〉dual = −〈v̂ s̃′, s̃〉dual where s̃ ∈ S̃ and s̃′ ∈ S̃∗. For

elements s1 = (s̃1, s̃
′
1) and s2 = (s̃2, s̃

′
2) of S, we define

〈s1, s2〉 =
〈
s̃′1, s̃2

〉
dual
−
〈
s̃′2, s̃1

〉
dual

. (2.16)

This case is relevant for Dirac fermions. Dirac fermions are possible in any dimension and

for any symmetry group H. More generally, without such splitting of S as S = S̃⊕ S̃∗, the

corresponding fermions are called Majorana fermions. Majorana fermions are more general

than Dirac fermions, since Dirac fermions are the special case of Majorana fermions in which

S happens to be of the form S = S̃ ⊕ S̃∗.
We also assume to have a positive definite hermitian form h(s1, s2). The existence of

a blinear form 〈·, ·〉 and a hermitian form h(·, ·) implies that S is pseudoreal. Then there

exists an antilinear map C : S → S with C2 = −1. By changing the normalization of h(·, ·)
if necessary, we assume

h(s1, s2) = 〈C(s1), s2〉 . (2.17)

The requirement of unitarity in physics turns out to require that v̂ for real vectors v are

hermitian matrices with respect to the inner product h(·, ·), which means that h(v̂s1, s2) =

h(s1, v̂s2). Also, the representation r of H is required to be a unitary representation. By

using (2.15) and (2.17), these requirements are translated to the properties of C given by

C(v̂s) = −v̂C(s), C(r(h)s) = r(h)C(s). (2.18)
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Next let us discuss global issues on a manifold with an H structure. Let P be the

principal bundle of the H structure, and let S be a Clifford module as above. By definition

of an H structure, the tangent bundle TX is isomorphic to

TX = P ×ρ Rd. (2.19)

We define a Clifford module bundle SX as

SX = P ×r S. (2.20)

We can define an action of a vector v ∈ TpX at a point p ∈ X to elements s ∈ SpX of

the fiber SpX by using (2.5) in the obvious way. This action is well-defined (i.e. does not

depend on a choice of local trivialization of P ) due to the consistency condition (2.11).

The bilinear form at each fiber SpX is also defined by (2.14), and it does not depend

on local trivialization due to the invariance of it under H. For sections s1, s2 ∈ Γ(SX) of

SX, we can define the associated antisymmetric bilinear form as

〈s1, s2〉X =

∫
X
〈s1, s2〉 , (2.21)

where the integration measure is defined by using the Riemann metric. The antilinear map

C is also globally well defined. We can also define the positive definite hermitian form as

h(s1, s2)X = 〈C(s1), s2〉X .

2.3 Dirac operator

To describe a physical system, it is also necessary to introduce a connection (gauge field)

on the H bundle P . A connection on P induces a connection on the tangent bundle TX

and the Clifford module SX. On the other hand, the Riemann metric on TX gives the

Levi-Civita connection. We require that the connection on P is such that its induced

connection on TX is the same as the Levi-Civita connection.

One of the consequences is as follows. Let v ∈ Γ(TX) be a section of TX. Then we

get a section v̂ ∈ Γ(End(SX)). The covariant derivative D satisfies Dv̂ = D̂v. This is valid

under the condition (2.11).

More explicitly, we can regard the gamma matrices γa as a section of TX ⊗End(SX)

by combining them as γ = eaγa. Locally γ is an element of Rd ⊗ End(S). The condition

(2.11) implies that γ is an invariant tensor under the action of H. Then globally it gives

a section γ ∈ Γ(TX ⊗ End(SX)). The above condition on the connection is equivalent to

the statement that γ is covariantly constant,

Dγ = 0. (2.22)

Having introduced a covariant derivative, we can define a Dirac operator which acts

on sections of SX.

/D = γ ·D = γaDa (2.23)
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where Da is the covariant derivative in the direction ea. In more detail, the meaning of

γ ·D is as follows. For a section s ∈ Γ(SX), the covariant derivative gives a new section

Ds ∈ Γ(T ∗X ⊗SX). We can combine it with γ ∈ Γ(TX ⊗End(SX)) by using the natural

pairing between TX and T ∗X, and SX and S∗X, to get γ ·Ds ∈ Γ(SX).

By recalling (2.15), using integration by parts and the property (2.22), we obtain〈
s1, /Ds2

〉
X

=
〈
/Ds1, s2

〉
X

= −
〈
s2, /Ds1

〉
X
. (2.24)

This is valid if the manifold does not have a boundary. (The case of manifolds with

boundaries will become important later.) In other words, for a Grassmann field ψ ∈ Γ(SX),

the quantity
〈
ψ, /Dψ

〉
X

can be nonzero. This is the desired property for the kinetic term

of a fermion field.

The properties (2.18) and the fact that C is antilinear (rather than linear) implies that

C(i /Ds) = i /DC(s). (2.25)

Then i /D is self-adjoint with respect to the hermitian form h(·, ·)X on closed manifolds.

3 Fermions

3.1 Axioms

In the previous section, we have done enough preparation to discuss fermions. Before going

to the discussions of fermions, however, let us mention some general axioms.

In the discussions below, all manifolds are assumed to have an H structure with a

connection for a given symmetry group H. When we write a manifold such as X or Y , we

are also implicitly including the information of a metric and a connection on it.

A quantum field theory in D = d+ 1 spacetime dimensions is partly characterized by

the following axioms. First, to each d-dimensional closed manifold (i.e. compact manifold

without boundary) X, there is an associated Hilbert space H(X).

Next consider a (d+ 1)-dimensional compact manifold Y with boundaries

∂Y = Xout tXin, (3.1)

where t means disjoint union. We have to specify H structures on the boundaries. The

manifold Y is assumed to have an Hd+1 structure. By taking the outward normal vector

field to the boundary Xout, the structure group O(d+ 1) of the tangent bundle is reduced

to O(d). Then, the Hd+1 structure on Y induces a Hd structure on Xout as discussed in

Sec. 2.1. On the boundary Xin, we use the inward normal vector field to Xin and by using

it, a Hd structure on Xin is defined.

To each (d+ 1)-dimensional compact manifold Y with boundaries ∂Y = Xout tXin as

above (or more precisely to each triple (Y,Xin, Xout)), we associate a linear map

Z(Y ) : H(Xin)→ H(Xout). (3.2)
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Moreover, we require that these maps can be composed in the following way. Suppose we

have two manifolds ∂Y 1 = X1
out tX1

in and ∂Y 2 = X2
out tX2

in with X1
out = X2

in.1 Then we

can glue Y 1 and Y 2 at X1
out = X2

in. We assume that the manifold after gluing is smooth.

For simplicity, we guarantee the smoothness by requiring that the neighborhood of any

boundary component is of a product form

(−ε, 0]×Xout, [0, ε)×Xin (3.3)

where ε is a sufficiently small positive number. The H structure and in particular the

Riemann metric on Y is also a product of the H structures on (−ε, 0] or [0, ε) and X, with

the trivial connection on (−ε, 0] and [0, ε). Then the manifold obtained by gluing Y 1 and

Y 2 are smooth. We denote the glued manifold as Y 2 · Y 1. Then the linear map Z(Y ) is

required to satisfy

Z(Y 2 · Y 1) = Z(Y 2)Z(Y 1). (3.4)

Notice that both sides are maps H(X1
in)→ H(X2

out).

A special case of manifolds is the empty set X = ∅ regarded as a d-dimensional

manifold. In this case, we set H(∅) = C. Then, if a (d + 1)-dimensional manifold Y has

no boundary ∂Y = ∅, the quantity Z(Y ) takes values in C. This is called the partition

function on Y . Recall that a symbol Y also contains the information of a metric and a

connection on it, which we call as background fields. Thus Z(Y ) is a functional of the

background fields.

3.2 Massive fermions in D = d+ 1 dimensions

Now we discuss massive fermion theories in D = d+ 1 dimensional spacetime. We consider

a fermion field Ψ. A theory is specified by writing down the action S,

−S = −1

2

〈
Ψ, ( /D +m)Ψ

〉
Y
, (3.5)

where m is a real parameter. The Feynman path integral is
∫

[DΨ] exp(−S) for the Grass-

mann field Ψ.

Among other things, the above action means the following thing on a closed manifold

Y (i.e. compact and ∂Y = ∅). Let s1, s2 be sections of SX. Then by (2.15) and (2.24)

we have 〈
s1, ( /D +m)s2

〉
Y

= −
〈
s2, ( /D +m)s1

〉
Y
. (3.6)

Thus we can regard ( /D+m) (or more precisely
〈
· , ( /D +m) ·

〉
) as an antisymmetric form

on Γ(SX). Then the partition function ZΨ(Y ) is given by

ZΨ(Y ) ∼ Pf( /D +m) (3.7)

1More precisely, when we write an equation like ∂Y = Xout t Xin, we actually mean that there is an

isomorphism from boundaries of Y to Xout tXin. We will not try to be precise in this note.
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where Pf( /D + m) formally means the Pfaffian of the antisymmetric form
〈
· , ( /D +m) ·

〉
on the vector space Γ(SX).

There are some problems with the above formal Pfaffian. First, the Pfaffian of an

antisymmetric matrix A depends on a choice of a basis of the vector space. Suppose we

make change from one basis to another by a matrix B. Then the matrix A is changed

to BTAB where BT is the transpose of B. Under this change, the Pfaffian is changed to

Pf(BTAB) = Det(B) Pf(A).

Another problem is that the Pfaffian is taken in the infinite dimensional vector space

Γ(SX). For example, a similar quantity Det( /D+m) involves the product over eigenvalues

of i /D,

Det( /D +m) ∼
∏

(−iλ+m). (3.8)

where the product runs over all eigenmodes of i /D. The imaginary unit i here is put since i /D

is a self-adjoint operator so λ is real. The absolute value of this quantity may be regularized

by regularizations such as zeta function regularization and heat kernel regularization. But

for our purposes, the most significant problem is the phase of the partition function. In

the region of large eigenvalues λ → ±∞, each factor of the product has a phase factor

−i sign(λ) where sign(λ) = λ/|λ|. It is not clear how to handle the product of infinitely

many such factors. Pf is roughly a square root of Det, so it has a similar problem.

These problems can be avoided by what is called Pauli-Villars regularization in physics.

Let us consider a quantity

Pf( /D +m)

Pf( /D +M)
, (3.9)

where M is a real parameter. By taking the ratio between two Pfaffians, it is now inde-

pendent of a choice of a basis. Also, for large eigenvalues λ of i /D, we have

−iλ+m

−iλ+M
→ 1 (|λ| → ∞). (3.10)

Thus, although the product is over infinitely many eigenvalues, most of the factors are

close to 1. By using this fact, we can make the above ratio of the Pfaffians well-defined.

The denominator Pf( /D + M) is interpreted to come from a Feynman path integral of a

field called the Pauli-Villars field. More precisely, we need to do more for a complete

regularization (see Appendix A for a sketch of an example), but we neglect that issue in

this note.

The Pauli-Villars field is an unphysical field and we want to take a limit |M | → ∞.

The choice of the sign of M has an important consequence which we will discuss later, and

in this note we use M > 0. When we take the limit M → ∞, we need to include what is

called a counterterm Sc.t. which is required for renormalization in physics. A counterterm

is a local polynomial of the curvature tensors and their derivatives which is invariant under

the symmetry group H. For example, we always have the Riemann curvature tensor Rabcd,

and if there is no other curvature tensor, a counterterm is a polynomial of the form

Sc.t. =

∫ (
c1 + c2R+ c3R

2 + c4RabRab + c5RabcdRabcd + c6(DaR)(DaR) + · · ·
)
, (3.11)
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where the integral is over the spacetime manifold with the measure determined by the

Riemann metric. If there are other curvature tensors, we also include them in an obvious

way. The coefficients c1, c2, · · · are chosen by the following principle. When we take the

limit M → ∞, the quantity (3.9) diverges. However, it is expected that the divergence

can be cancelled by multiplying exp(−Sc.t.) to (3.9) if we choose the coefficients c1, c2, · · ·
appropriately. In other words, we expect to get a finite limit

ZΨ(Y ) = lim
M→∞

[
Pf( /D +m)

Pf( /D +M)
exp(−Sc.t.)

]
(3.12)

by appropriately choosing the coefficients of the counterterm. The partition function Z(Y )

is defined by this limit.

The above requirement for the existence of a finite limit does not uniquely specify the

coefficients c1, c2, · · · . We can always shift them by some values which are independent

of M or at least finite in the limit M → ∞. There are some physical restrictions on

them (such as unitarity of quantum theory), but it is unavoidable that a certain amount

of ambiguities remain. Usually a choice of them is a part of the data of the physical theory

which specifies physical parameters, such as the strength of gravitational force. But for

the purposes of the present note, it will be convenient to choose them by some different

requirement which we will discuss later.

3.3 Chiral fermions in d dimensions

Next we discuss chiral fermions in a d-dimensional manifold X. The reason why we have

considered massive fermions in D = d+1 dimensions above and we consider chiral fermions

in d dimensions rather than D dimensions will become clear later.

To define chiral fermions, it is important to introduce a Z2-graded Clifford module S.

In addition to gamma matrices γa (a = 1, · · · , d) and action of h ∈ H, we introduce an

additional operator γ, which we call a chirality operator, acting on S. It is required to

satisfy

γ2 = 1, {γ, γa} = 0, r(h)γr(h)−1 = γ. (3.13)

The first equation implies that γ has eigenvalues ±1 which is used for Z2 grading. The

second equation means that γ anticommutes with gamma matrices and hence gamma

matrices change the eigenvalue of γ. The third equation means that γ is invariant under

H.

We also require that

〈s1, γs2〉 = −〈γs1, s2〉 . (3.14)

This condition is necessary to define chiral fermions below.

By using γ, we decompose S as

S = S+ ⊕ S−, (3.15)
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where S± are eigenspaces with eigenvalues γ = ±1, respectively. Then we can define the

corresponding bundles S±X. We say that elements of S+ (or the corresponding bundle)

as having the positive chirality and S− as having the negative chirality.

Let s1, s2 be sections of SX. Then we have〈
s1, /Dγs2

〉
X

= −
〈
s1, γ /Ds2

〉
X

= +
〈
γs1, /Ds2

〉
X

(3.16)

where we have used (3.13) and (3.14). This means that
〈
s1, /Ds2

〉
X

is automatically zero

if s1 and s2 have different chiralities, but it can be nonzero if they have the same chirality.

Let ψ be a Grassmann field which is a section of Γ(S+X). This ψ is a chiral fermion.

We can have a nonzero action

−S = −1

2

〈
ψ, /Dψ

〉
X
. (3.17)

However, there is a crucial difference from the previous case. (3.14) implies that 〈s1, s2〉
is automatically zero if s1 and s2 have the same chirality. This means that the mass term

of a simple form m 〈ψ,ψ〉X is not possible. In some cases there may be more invariant

antisymmetric bilinear forms in S other than 〈·, ·〉 depending on the representation r of

H, and mass terms may be possible in those cases. However, for the purposes of general

argument, we proceed without mass terms.

There is a big problem if a mass term is not possible. The partition function of ψ on

a closed manifold X is supposed to be

Zψ(X) ∼ Pf( /D+) (3.18)

where /D+ is the restriction of /D to positive chirality sections Γ(S+X). However, without

a mass term, the Pauli-Villars regularization is not possible. The absolute value of this

Pfaffian may be defined by e.g. zeta function or heat kernel regularization, but we cannot

determine its phase.

The most essential problem is the following. Let us first discuss the case of a finite

dimensional vector space V . Let A be an antisymmetric bilinear form on V . If we take an

explicit basis (vα), we can represent A as an antisymmetric matrix A
(v)
αβ . Then

Pf(A(v)) =
1

2nn!
εα1···α2nAα1α2 · · ·Aα2n−1α2n , (3.19)

where dimV = 2n, and εα1···α2n is the totally antisymmetric tensor with ε12···2n = 1. If we

change the basis as

wα = vβB
β
α, (3.20)

Then A is changed as A
(w)
αβ = A

(v)
γδ B

γ
αBδ

β. Pfaffian changes as

Pf(A(w)) = Det(B) Pf(A(v)). (3.21)
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This transformation implies that Pf(A) can be most naturally regarded as an element of a

one dimensional vector space as follows. Given a vector space V , we denote its top exterior

power as DetV ,

DetV = ∧dimV V = V ∧ · · · ∧ V. (3.22)

This is a one-dimensional vector space. Let V ∗ be the dual space to V , and let (ṽα) be the

dual basis to (vα). DetV ∗ has a basis ṽ1 ∧ · · · ṽ2n. We find that

Pf(A) := Pf(A(v))ṽ1 ∧ · · · ∧ ṽ2n (3.23)

is independent of a choice of a basis. Therefore, we can most naturally regard Pf(A) as an

element of DetV ∗.

Let us return to the problem of chiral fermions. Based on the above discussion, we can

most naturally regard Pf( /D+) as an element of a one dimensional vector space called the

Pfaffian line,

LX = Det Γ(S+X)∗. (3.24)

Therefore, Pf( /D+) is not a number, but an element of a vector space and hence there is

no natural phase of it unless some canonical trivialization of Det Γ(S+X)∗ is given.

The vector space Γ(S+X)∗ is infinite dimensional, and hence one may wonder how to

define a space like Det Γ(S+X). This can be defined as follows. Let us consider eigenfunci-

tons sα ∈ Γ(S+X) with nonzero eigenvalues of (i /D)2,

(i /D)2sα = λ2
αsα. (3.25)

We have

λ2
β 〈sα, sβ〉 =

〈
sα, (i /D)2sβ

〉
=
〈
(i /D)2sα, sβ

〉
= λ2

α 〈sα, sβ〉 . (3.26)

Therefore, we have 〈sα, sβ〉 = 0 unless λ2
α = λ2

β. This means that we can decompose

Γ(S+X) into subspaces

Γ(S+X) =
⊕
λ2

Vλ2 (3.27)

where Vλ2 is spanned by eigenmodes sα with the eigenvalue λ2
α = λ2.

Within each subspace Vλ2 with λ2 6= 0, we can take a canonical trivialization of DetVλ2

as follows. On this subspace, there is a non-degenerate antisymmetric bilinear form

J
(λ2)
αβ =

1√
λ2

〈
sα, /Dsβ

〉
X
. (3.28)

The fact that this is non-degenerate for λ2 6= 0 can be shown by taking sα = C( /Dsβ) for

arbitrary sβ, where C is the antilinear map introduced around (2.17). We take a basis in

which this J
(λ2)
αβ takes the standard form

(J
(λ2)
αβ ) =

(
0 1

−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
. (3.29)
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Such a choice is not unique, but any choice leads to the same trivialization of DetVλ2 . The

reason is as follows. Suppose that we change the basis by a matrix U . To preserve J (λ2),

we require UTJ (λ2)U = J (λ2). Taking the Pfaffian of both sides, we get Det(U) Pf(J (λ2)) =

Pf(J (λ2)) or Det(U) = 1. Therefore, the basis of DetVλ2 is invariant under this change.

We can use the canonical trivialization of DetVλ2 above for all spaces Vλ2 with λ2 6= 0.

Then we define

Det Γ(S+X)∗ =
⊗
λ2≤Λ

DetVλ2 . (3.30)

where Λ is an arbitrary positive number. Because of the trivialization DetVλ2 ∼= C, the

only important factor is that of λ2 = 0. So the value of Λ is irrelevant. However, the above

expression may be more illuminating in later discussions. The right hand side of (3.30) is

constructed from finite dimensional vector spaces and hence it is well-defined. Notice that

if there are no modes with zero eigenvalue λ2 = 0, then we have Det Γ(S+X)∗ ∼= C. In this

case, Pf( /D+) ∈ Det Γ(S+X)∗ is just given by Pf( /D+) =
∏

Pf(
√
λ2J (λ2)). If Vλ2 is odd

dimensional, we simply set Pf( /D+) = 0.2

We must be concerned with zero modes (i.e. modes with λ2 = 0) by the following

reason. If there is no particular reason from index theorems of the Dirac operator i /D,

there are generically no zero modes for a generic background field. Here, a background

field means the data of a manifold X with an H structure and an explicit metric and a

connection on it. However, physically we are interested not only in a single background

field, but the space of all possible background fields. Let M̃ be the moduli space of

all background fields, and M be the space M̃ divided by the diffeomorphism and gauge

transformation groups. This means that a point on M is given by X, which includes

the information of a metric and a connection on it, up to diffeomorphisms and gauge

transformations. (This description is not rigorous but we do not try to be precise.) When

we vary X ∈ M, the Dirac operator i /D changes. Then at some point in M, we may get

zero modes. The space M is huge and hence we expect the appearance of zero modes at

some points of M. Near such points, we cannot trivialize Vλ2 for the eigenvalue λ2 which

becomes zero at the point. Then we have to use the expression (3.30) near those points.

By varying X, the Pfaffian lines LX defined in (3.24) are combined to a line bundle L on

M whose fiber at X ∈ M is LX . This is called a Pfaffian line bundle. Then Pf( /D+) is a

section of this Pfaffian line bundle.

Now we can ask whether the Pfaffian line bundle L can be trivialized or not on M.

For example, if the first Chern class c1(L) is nontrivial, it is impossible to trivialized L.

Then Pf( /D+) cannot be regarded as taking values in C. Thus the chiral fermion ψ is not

a “quantum field theory” in the sense of Sec. 3.1.

In fact, we will determine an explicit differential geometric connection on the Pfaffian

line bundle L. This is studied mathematically by Bismut and Freed (see [4] and references

therein) which was partly motivated by Witten’s global anomaly formula [5]. We will give

a physical argument for it [3, 6]. As a corollary, we can derive the curvature from the

2 dimVλ2 mod 2 is a Z2 index of /D+ .
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connection and hence get an explicit differential form expression for the first Chern class

c1(L). This is called an anomaly polynomial in physics and it contains the information

of perturbative anomalies of ψ [7–10]. However, L contains more topological structure

than just the differential form expression for c1(L). Moreover, it is not sufficient to ask

whether there exists a trivialization of L or not. We must ask whether there is a canonical

trivialization which satisfies physical principles. This is studied by Wittten [11–13], based

on a theorem by Dai and Freed [14]. We discuss some of these points in the next section

based on the understanding of the situation in terms of the physics of massive fermions

in D = d + 1 dimensions [3, 6]. This understanding is along the lines of the study of

topological material.

4 Fermions and the geometric family index theorem

4.1 Massive fermions on a manifold with boundary

First let us make the following simple observation. In the case of chiral fermions, we have

the Z2-graded Clifford algebra generated by γ and γa for a = 1, · · · , d. Their algebra is

{γ, γ} = 1, {γ, γa} = 0, {γa, γb} = δab. (4.1)

If we simply set γ0 = γ, they are just (d + 1)-dimensional Clifford algebra {γa, γb} = δab
for a, b = 0, 1, · · · , d. Also notice that under the subgroup Hd ⊂ Hd+1, the matrix γ0

is invariant and hence the identification γ = γ0 is valid including the action of H. We

would like to see that there is indeed a relation between chiral fermions in d dimensions

and massive fermions in d+ 1 dimensions.

To see the relation, we consider a (d + 1)-dimensional manifold Y with a boundary

∂Y = X, and study massive fermions on it.

Near the boundary, we assume that Y is of the form Y ⊃ (−ε, 0]×X with the standard

metric and the trivial connection on (−ε, 0], for some small positive constant ε. We denote

the standard coordinate of (−ε, 0] as τ ∈ (−ε, 0]. Then we impose a boundary condition

on a massive fermion Ψ given by

L : (γ0 − 1)Ψ|∂Y = 0. (4.2)

In more detail, the meaning of this boundary condition is as follows. γ0 is the gamma

matrix in the direction (−ε, 0]. Since γ2
0 = 1, it has eigenvalues ±1. The above boundary

condition means that the components of Ψ with the negative eigenvalue γ0 = −1 are set

to zero at the boundary.

Under the above boundary condition L, the Dirac operator i /DY on Y is not self-

adjoint. The reason is as follows. Recall that the positive definite hermitian form is given

by 〈C(s1), s2〉 as discussed in Sec. 2.2. We consider integration by parts as∫
Y

〈
C(s1), i /DY s2

〉
=

∫
Y

〈
C(i /DY s1), s2

〉
+

∫
X
〈C(s1), iγ0s2〉 . (4.3)

The second term is a surface term. Now, suppose that s2 satisfies the boundary condition

γ0s2 = s2 on ∂Y = X. Then we ask what boundary condition on s1 makes the surface
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term vanish. If we take the same boundary condition for s1 and s2, the surface term is not

guaranteed to vanish. We can easily demonstrate it by taking s1 = s2, and use the fact

that 〈C(s), s〉 is positive definite. The boundary condition which guarantees 〈C(s1), s2〉 = 0

for arbitrary s2 with γ0s2 = s2 is to require that γ0s1 = −s1. This is because

〈C(s1), γ0s2〉 = 〈C(γ0s1), s2〉 . (4.4)

Thus 〈C(s1), s2〉 vanishes if s1 and s2 have different eigenvalues under γ0.

We can still consider the eigenvalue problem for the operator

∆m = ( /DY +m)†( /DY +m), (4.5)

where ( /DY +m)† is the adjoint of ( /DY +m) with respect to the hermitian form 〈C(s1), s2〉
for γ0s1 = −s1 and γ0s2 = +s2. This suggests that for the eigenvalue problem for ∆m, we

should impose the boundary condition such that

(1− γ0)s|∂Y = 0, (1 + γ0)( /DY +m)s|∂Y = 0. (4.6)

Then we expect to get well-defined engenfunctions and eigenvalues.

We denote the partition function of the massive fermion on Y with the boundary

condition L given in (4.2) as Z(Y, L);

ZΨ(Y ) = lim
M→∞

[
Pf( /DY +m)

Pf( /DY +M)
exp(−Sc.t.)

]
, (4.7)

where now Sc.t. may include an integral of a local polynomial of curvatures not only in Y

but also on ∂Y . The absolute value of the Pfaffian is interpreted as

|Pf( /DY +m)| = (Det ∆m)1/4, (4.8)

where the exponent 1/4 = (1/2) · (1/2) comes from the fact that Pf ∼ (Det)1/2 and

( /DY + m) ∼ ∆1/2. The right hand side may be regularized by e.g. zeta function or heat

kernel regularization. We define the absolute value of the Pauli-Villars contribution in the

same way.

Including the phase, the ratio of the Pfaffians is determined as follows. We have a

complete set of eigenfunctions s
(m)
α for ∆m, and another complete set of eigenfunctions

s
(M)
α for ∆M . We can define matrices

A
(m)
αβ =

〈
s(m)
α , ( /DY +m)s

(m)
β

〉
, A

(M)
αβ =

〈
s(M)
α , ( /DY +M)s

(M)
β

〉
. (4.9)

They are related by some unitary matrix Uαβ such that

s(M)
α = s

(m)
β Uβα. (4.10)

Then we formally get

Pf( /DY +m)

Pf( /DY +M)
=

Pf(A(m))

Pf(A(M))
Det(U). (4.11)

where the property of Pfaffian (3.21) is used. The matrices appearing here are infinite

dimensional, but physically we expect that this formal expression can be regularized to

get a well-defined value. The intuition is that for engenvalues λ2 of ∆ which are very

large, λ2 �M2,m2, we expect that eigenfunctions s
(m)
α and s

(m)
α coincide s

(m)
α → s

(M)
α for

λ2 →∞.
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4.2 Chiral fermions as boundary modes of massive fermions

The crucial point for the physics of chiral fermions is as follows. A chiral fermion appears

on the boundary of a massive fermion with the boundary condition (4.2) if we take m to

be negative. (We will take M to be positive so that there is no chiral fermion from the

unphysical Pauli-Villars field.)

For concreteness, let us first consider a manifold

Y = (−∞, 0]×X. (4.12)

A quick way to see the appearance of a chiral fermion is as follows. In this paragraph

only, we take X to have a Lorentz signature metric. Then we consider time evolution of

the quantum field Ψ, now regarded as a quantum mechanical operator in the Heisenberg

picture. The equation of motion is given by

0 = ( /DY +m)Ψ = ( /DX + γ∂τ +m)Ψ, (4.13)

where τ is the coordinate of (−∞, 0], γ = γ0 is the gamma matrix in this direction, and

/D =
∑d

a=1 γaDa. This equation has solutions of the form

Ψ = ψ exp(−mτ), γψ = ψ, /DXψ = 0, (4.14)

where ψ depends only on the coordinates of X. The equations γψ = ψ and /DXψ = 0

imply that ψ satisfies the equations required for a chiral fermion on X with the chirality

operator γ. This class of solutions is exponentially localized near the boundary τ = 0 if

m is negative. On the other hand, if m is positive, this is exponentially growing and not

normalizable at all. In this sense, these solutions exist only for m < 0.

To see more about localized modes, let us study eigenvalues of ∆m given in (4.5) on

the space (4.12) with a Euclidean signature metric on X. ∆m can be written as

∆m = m2 − ∂2
τ − /D

2
X . (4.15)

Also, the boundary condition (4.6) for the eigenvalue problem of ∆m can be rewritten as

(1− γ)s|∂X = 0, (1 + γ)(m+ ∂τ )s|∂X = 0 (4.16)

where we have used γ0 = γ, {γ, /DX} = 0, and (1+γ)γ = (1+γ). Therefore, the eigenvalues

of ∆m are just of the form

∆m = m2 + ω2 + λ2
X , (4.17)

where λ2
X represents eigenvalues of − /D2

X , and ω2 represents eigenvalues of −∂2
τ with the

boundary condition (4.16). Eigenmodes of −∂2
τ with eigenvalue ω2 are explicitly given by

s =
(
(m− iω)eiωτ − (m+ iω)e−iωτ

)
s+ + (eiωτ − e−iωτ )s− (4.18)

where s± are independent of τ and γs± = ±s±. One can check that this satisfies the

boundary condition. We require that these modes do not grow at τ → −∞. Then ω must
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be real, or ω = ±im for m < 0. Solutions for ω = im and −im are just equivalent, so we

only need to consider one of them. In this case, we get

s ∝ e−mτs+, ∆ms = λ2
Xs. (4.19)

Therefore, we obtain the following conclusion. There are two types of eigenvalues of ∆m

for m < 0. One type is of the form m2 + ω2 + λ2
X for real ω. This is always greater than

or equal to m2, and the corresponding modes do not decay at τ → −∞. The other type of

eigenmodes is the form λ2
X , and the corresponding modes are localized near the boundary

by the exponential factor e−mτ . On the other hand, if m > 0, only the type of eigenvalues

m2 + ω2 + λ2
X ≥ m2 exists.

We want to obtain a boundary chiral fermion, so we take m < 0. On the other hand,

we do not want the unphysical Pauli-Villars field to have such a boundary chiral field, so

we take M > 0. If we use a different boundary condition (1 + γ0)Ψ|∂Y = 0 rather than

(1−γ0)Ψ|∂Y = 0, we can realize chiral fermions with negative chirality γψ = −ψ for m > 0

and M < 0.

For more general manifolds Y , we have assumed that the neighborhood of the boundary

∂Y = X is of the form (−ε, 0] ×X. Although the above analysis is not exactly valid, we

expect that there are small eigenvalues of order λ2
X if we take |m|ε� 1. The reason is that

the eigenmodes with ω = im found above are exponentially localized near the boundary, so

it is exponentially small at τ = −ε by a factor e−|m|ε. By taking |m| → ∞, the approximate

eigenvalues λ2
X are expected to become exact. Based on this consideration and physical

intuition, we might expect the following. If we take the counterterm −Sc.t. appropriately,

the absolute value of the partition function Z(Y, L) is given by

|ZΨ(Y, L)| m→−∞−−−−−→ |Pf( /DX)| = |Zψ(X)| (4.20)

where we have defined Zψ(X) = Pf( /DX) which takes values in the Pfaffian line LX . A

physical intuition behind this claim is that eigenvaluesm2+ω2+λ2
X with real ω go to infinity

in the large mass limit |m| → ∞, so they are high energy or in other words short distance

contributions, and hence they may be cancelled by choosing an appropriate counterterm

Sc.t.. This is not exactly true for the phase part of ZΨ(Y, L) and that point will be crucial

later, but for the absolute value we have (4.20).

4.3 Pfaffian lines and physical Hilbert spaces

Now we make an important observation. In Sec. 3.1, we discussed some axioms of quantum

field theory. Massive fermions are expected to satisfy these axioms. In massive fermions,

there is a one-dimensional subspace H0(X) ⊂ H(X) of the Hilbert space on X which is

spanned by the ground state (i.e. the lowest energy state). Moreover, in the large mass

limit |m| → ∞, all other states have very high energies and we can neglect these states

for low energy (long distance) physics. Therefore, we just think H(X) to be the space of

the ground state in the following, and omit the subscript 0. This approximation becomes

exact in the limit |m| → ∞. In particular, dimH(X) = 1 in this approximation.

One of the axioms of Sec. 3.1 states the following. Suppose we have a manifold Y with

a boundary ∂Y = X whose H structure is determined by using the outward normal vector
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to ∂Y . Then we have a map ZΨ(Y ) ∈ Hom(H(∅),H(X)) ∼= H(X) where we have used

H(∅) ∼= C. Let us denote it as |Y 〉,

|Y 〉 = ZΨ(Y ) ∈ H(X). (4.21)

We have introduced a boundary condition (4.2). In the language of the Hilbert space, it is

interpreted as an (unbounded) linear map from H(X) to C, which we denote as 〈L|,

〈L| : H(X)→ C, (4.22)

such that the partition function Z(Y, L) with the boundary condition L is given by

Z(Y, L) = 〈L|Y 〉 ∈ C. (4.23)

We mentioned that we can focus on the ground state, which we denote as |Ω〉. This is a

basis vector of H0(X), and it is unique up to phase since a physical state is determined by

a ray in the Hilbert space and we can take the absolute value as 〈Ω|Ω〉 = 1. Therefore, we

have |Y 〉 ∝ |Ω〉 in the limit |m| → ∞. So we can write

Z(Y, L) = 〈L|Ω〉〈Ω|Y 〉. (4.24)

Thus the partition function consists of the inner product of two vectors,

|Y 〉 = |Ω〉〈Ω|Y 〉 ∈ H, 〈L|Ω〉〈Ω| ∈ H∗. (4.25)

They are defined to be independent of a choice of the phase of |Ω〉.
By definition, we have |Y 〉 = ZΨ(Y ). On the other hand, we have seen in the previous

subsection that the boundary condition L leads to the chiral fermion ψ which is localized

near the boundary. The chiral fermion has Zψ(X) = Pf( /DX) which is an element of the

Pfaffian line LX . This is determined completely on the boundary. The quantity 〈L|Ω〉〈Ω|
is also determined on the boundary.

Based on the above observations, we claim the following. First, we claim that the

Pfaffian line is actually isomorphic to H∗(X) (regarded as a one-dimensional vector space

in the limit |m| → ∞),

LX ∼= H∗(X). (4.26)

Under this isomorphism, we claim

Zψ(X) = 〈L|Ω〉〈Ω|. (4.27)

Then we have (under an appropriate choice of the counterterm Sc.t.),

ZΨ(Y, L) = Zψ(X)ZΨ(Y ), (4.28)

where the limit m → −∞ is implicit. These are the main claims. This is based on the

analysis of the previous subsection that ψ appears as a boundary mode of Ψ. See [3] for

more details.
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Let us check the above idea. We mentioned that the absolute value of ZΨ(Y, L) is

proportional to ∆m(Y )1/4 as in (4.8). It contains a product
∏

(λ2
X)1/4 = |Pf( /DX)| =

|Zψ(X)| which comes from the eigenvalues of the localized modes. Thus, both sides of

(4.28) contains this product of eigenvalues. Other eigenvalues of ∆m are all greater than

or equal to m2, and they are included in the part ZΨ(Y ). We claim that we can take

|ZΨ(Y )| = 1 by choosing the counterterm Sc.t. appropriately in the limit |m| → ∞.

The mathematics corresponding to the above claims is known as the Dai-Freed theo-

rem [14].

4.4 Connection on the Pfaffian line bundle

Using the identification between the Pfaffian line L and the dual of the Hilbert space H,

we can now discuss a connection on the line bundle L over the moduli space of metrics and

connections M which we have introduced in Sec. 3.3.

The Hilbert spaces form a bundle H over M by combining H(X) for all X ∈M as in

the case of the Pfaffian lines.

On M, we also take a universal fiber bundle

X // F
π
��
M

(4.29)

Namely, a fiber at X ∈ M is the manifold X itself. Since the notation is now quite

confusing, we represent points on M as pX . Then, the fiber at pX is X = π−1(pX)

where X is just regarded as a manifold, while pX contains the information of a metric and

connection on X.

We take a metric and connection on the total space F such that its restriction on each

fiber X = π−1(pX) is the metric and connection specified by the point pX ∈M. We do not

try to make these discussions rigorous, but just notice that we can model the situation by

considering a finite dimensional manifold M and a fiber bundle X → F → M . Thus the

infinite dimensionality and singularities of M can be avoided in the following discussion.

Once we specify such a metric and connection on F , we can define a canonical connec-

tion on the bundle H ∼= L∗ as follows. We consider a path γ on M,

γ : [0, 1]→M. (4.30)

The pullback of F by γ, γ∗F , is a bundle whose total space is a (d+1)-dimensional manifold.

Let us set Y = γ∗F . We have a metric and connection on Y by pullback from F . Y has

boundaries ∂Y = Xin t Xout, where Xin = π−1(γ(0)) and Xout = π−1(γ(1)). One of the

axioms discussed in Sec. 3.1 says that for such Y , we have an associated map

ZΨ(Y ) : H(Xin)→ H(Xout). (4.31)

This is independent of reparametrization of [0, 1], since the metric and connection is de-

termined by the pullback from F . We claim that this defines parallel transport and a
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unitary connection on the Hilbert space bundle H onM, if we choose the counterterm Sc.t.

appropriately. We demonstrate it by explicitly computing its curvature 2-form below.

The holonomy of the connection associated to a loop

γ : S1 →M (4.32)

can be computed as the partition function ZΨ(Y ) on the closed manifold Y = γ∗F . This

holonomy is called a Berry phase of the ground state |Ω〉 in physics. Let us determine this

holonomy.

More generally, we compute the partition function ZΨ(Y ) on any closed manifold Y .

It is defined by (4.7) and we also take the limit m→ −∞. We assume that we can freely

take the limits in any order so that on closed manifolds we have

ZΨ(Y ) = lim
M→∞

[
Pf( /DY −M)

Pf( /DY +M)
exp(−Sc.t.)

]
, (4.33)

where we have set m = −M . Each eigenvalue of i /DY appears twice due to the existence

of the antilinear map C discussed in Sec. 2.2. The reason is as follows. Let s be a section

with eigenvalue i /DY s = λs. Then, by using C(i /DY s) = i /DY C(s), we see that C(s) is also

an eigenfunction with eigenvalue λ. It is not possible to have C(s) ∝ s because if C(s) = αs

for some α ∈ C then C2(s) = C(αs) = αC(s) = |α|2s, but this contradicts with C2 = −1.

Therefore, s and C(s) are different eigenfunctions with the same eigenvalue. Then the ratio

of the Pfaffians above is simply given by

Pf( /DY −M)

Pf( /DY +M)
=
∏′

(
−iλ−M
−iλ+M

)
(4.34)

where the product
∏′ is over all pairs (s,C(s)). Namely, we take only one λ from two

eigenfunctions (s,C(s)). Notice that the absolute value of each factor (−iλ−M)/(−iλ+M)

is 1, so it is a phase. This justifies the claim that ZΨ(Y ) can be taken to have absolute

value 1 under an appropriate choice of the counterterm Sc.t. (at least if Y is closed.) We

can just take Sc.t. to be pure imaginary, such as Sc.t. = 0, in the above equation.

We define s(λ) as

−iλ−M
−iλ+M

= exp(−2πis(λ)), −1

2
< s(λ) ≤ 1

2
. (4.35)

This has a limit

s(λ)
M→∞−−−−→

{
+1

2 λ ≥ 0

−1
2 λ < 0

(4.36)

We define the Atiyah-Patodi-Singer (APS) η invariant [15] of a Dirac operator i /DY as

η(i /DY ) = lim
M→∞

∑
s(λ) (4.37)
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where the sum is taken over all eigenmodes, i.e., two contributions from two modes (s,C(s)).

This infinite sum requires regularization, and we assume some appropriate regularization

has been done. Then we get∏′
(
−iλ−M
−iλ+M

)
= exp

(
−2πi

∑′
s(λ)

)
= exp

(
−πi

∑
s(λ)

)
→ exp

(
−πiη(i /DY )

)
. (4.38)

We finally get

ZΨ(Y ) = exp
(
−πiη(i /DY )− Sc.t.

)
. (4.39)

This is valid for general closed manifolds Y .

In particular, if we take Y = γ∗F , then we obtain the formula for the holonomy of the

unitary connection on H ∼= L∗ around a loop γ : S1 →M.

We can compute the curvature of the above connection, by using the APS index theo-

rem [15]. (See also [16–18].) First we need to explain the setup for the APS index theorem

in our context of manifolds with H structure.

For the APS index theorem, we will consider a (d+2)-dimensional manifold, and hence

we need to construct a Z2-graded Clifford module S̃ associated to the vector space Rd+2.

S̃ is also required to be a representation of Hd+2. We take it to be

S̃ = S ⊕ S, (4.40)

where S is the Clifford module for Rd+1 that we have been using so far. A chirality (or

Z2-grading) operator Γ and gamma matrices Γa (a = −1, 0, · · · , d) acting on S̃ are defined

as

Γ =

(
1 0

0 −1

)
, Γ−1 =

(
0 i

−i 0

)
, Γa =

(
0 γa
γa 0

)
(a = 0, · · · , d). (4.41)

These gamma matrices satisfy the Clifford algebra. We also want to have an Hd+2 repre-

sentation on S̃ satisfying the condition (2.11). For example, it is possible to define an Hd+2

representation if the representation of so(d+ 1) ⊂ h on S has been constructed purely by

the Clifford algebra so that the corresponding fermion has spin 1/2. See Appendix B for

that construction. For more general spins, it is not always true that S̃ can be made into a

representation of Hd+2. But here we simply assume that S is such that S̃ is a representation

of Hd+2. By using S̃, we can define H structure on (d+ 2)-dimensional manifolds.

Now let us state the APS index theorem. We consider a (d+ 2)-dimensional manifold

Z with an H structure and a Z2-graded Clifford module bundle S̃Z. Z has a boundary

∂Z. On this manifold, we can define an index of the Dirac operator i /DZ . By the APS

index theorem, this index is given as follows. There is a certain polynomial of the curvature

tensors which is determined by the representation of H. This polynomial is the one which

appears in the usual Atiyah-Singer index theorem in d+ 2 dimensions, and we denote it as

– 21 –



Id+2, which is a (d+ 2)-form. Then the index on a manifold Z with boundary ∂Z is given

by

index(i /DZ) =

∫
Z
Id+2 + η(i /D∂Z). (4.42)

Thus, compared to the case of the Atiyah-Singer index theorem, there is a boundary

contribution η(i /D∂Z) which is determined completely on the boundary. We remark that

we need Id+2 as a differential form, rather than just as a de Rham cohomology element.

The index is even in our case. This can be seen by defining an antilinear operator C̃ as

C̃ =

(
C 0

0 C

)
. (4.43)

It satisfies C̃(i /DZs) = i /DZ C̃(s) and C̃(Γs) = ΓC̃(s) as one can check from the properties

of C given in (2.18) (at least in the case of spin 1/2 constructed in Appendix B). It also

satisfies C̃2 = −1. Thus for a zero mode s, we get another zero mode C̃(s) which has the

same chirality (i.e. the same eigenvalue under Γ) as s. This is the reason that the index is

even,

index(i /DZ) ∈ 2Z. (4.44)

Now, suppose that the boundary of Z is Y . Then by using the above facts, we get

exp
(
−πiη(i /DY )

)
= exp

(
πi

∫
Z
Id+2

)
. (4.45)

Let us consider a map from a 2-dimensional disk D2 to M,

γ̃ : D2 →M, (4.46)

such that its restriction to the boundary S1 = ∂D2 is a loop γ : S1 →M. Then we define

Z = γ̃∗F and Y = γ∗F . Applying the above formula to this case, we get

exp
(
−πiη(i /DY )

)
= exp

(
πi

∫
γ̃(D2)

∫
X
Id+2

)
, (4.47)

where we have computed the integral over Z by first integrating over fibers X and then on

γ̃(D2) ⊂M.

Recall that a counterterm Sc.t. is an integral of an invariant local polynomial of cur-

vatures and their derivatives on Y ,

Sc.t. =

∫
Y
Lc.t.. (4.48)

We restrict to the case that Lc.t. which is relevant to (4.39) is given by a characteristic

(d+ 1)-form which takes values in the orientation bundle so that its integral on Y is well-

defined. (For Sc.t. appearing in other formulas, Lc.t. need not be a characteristic class.)
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If there is no such characteristic class, we simply take Sc.t. = 0. By Stokes theorem, the

contribution of Lc.t. vanishes when Y is of the form Y = ∂Z. Thus we get

ZΨ(γ∗S1) = exp

(
−
∫
γ̃(D2)

F

)
(4.49)

where

F = −πi

∫
X
Id+2. (4.50)

F is given by an integral of a (d+2)-form on a d-dimensional manifold X (i.e. pushforward),

so it is a 2-form. Since ZΨ(γ∗S1) is the holonomy on the loop γ, the formula (4.49) implies

that F is the curvature tensor of the connection. The first Chern class of H ∼= L∗ at the

de Rham cohomology level is given by

c1(L∗)|de Rham =
iF

2π
=

1

2

∫
X
Id+2. (4.51)

This is the famous perturbative anomaly for chiral fermions as written in the language of

the family index theorem L [7–10].

4.5 Invertible topological phases

As is well-known in the theory of line bundles, a line bundle with a connection can have more

structure than the curvature. More detailed information is contained in holonomies, and

this was the understanding of global anomalies in the past [5]. Holonomies are computed

by ZΨ(Y ) = exp
(
−πiη(i /DY )

)
for Y = γ∗S1. More recently, it was recognized [11–13] that

the quantity ZΨ(Y ) is important for not only Y of the form γ∗F , but for arbitrary Y .

This is the current understanding of global anomalies of fermions, and this understanding

works very well in both topological material [11, 19] and string theory [12, 13, 20, 21]. Let

us sketch the reason why arbitrary Y is important.

We have explained in Sec. 3.3 that there is a problem in defining the partition function

of a chiral fermion Zψ(X) = Pf( /D+) because it takes values in Pfaffian lines rather than

C. However, the discussions of this section suggests the following definition. The partition

function ZΨ(Y, L) of a massive fermion on a manifold with boundary ∂Y = X with the

boundary condition L is almost the partition function of the chiral fermion ψ which appears

as the boundary mode. Therefore, we try to define the chiral fermion partition function

by ZΨ(Y, L) itself.3 However, the problem is that ZΨ(Y, L) depends not only on X, but on

a choice of Y .

Let us take another manifold Y ′ with the same boundary ∂Y ′ = X. If ZΨ(Y, L) =

ZΨ(Y ′, L) for any Y, Y ′, then it is independent of a choice of Y and we can regard it as a

3 The following discussions assume that X is such that there exists Y with X = ∂Y . If there is no such

Y , that means that X is a nontrivial element of a certain bordism group. Then the phase of the partition

function Zψ(X) depends on “generalized theta angles”, which are cobordism invariant contributions to

Zψ(X) [1, 2, 19]. Thus we need to choose the phase of Zψ(X) in each bordism class, that corresponds to a

choice of generalized theta angles. In general, there is no canonical choice.
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definition of the chiral fermion partition function on X. So let us compute the ratio between

the two partition functions. By using (4.24) and the claim that 〈Ω|Y 〉 has absolute value

1, we compute

ZΨ(Y, L)

ZΨ(Y ′, L)
=
〈L|Ω〉〈Ω|Y 〉
〈L|Ω〉〈Ω|Y ′〉

=
〈Ω|Y 〉
〈Ω|Y ′〉

= 〈Y |Ω〉〈Ω|Y 〉 = 〈Y ′|Y 〉 (4.52)

where in the last step we have used the fact that the Hilbert space is spanned by |Ω〉. By

the axioms discussed in Sec. 3.1, the last quantity 〈Y ′|Y 〉 is the partition function on a

closed manifold Yclosed obtained by gluing Y and Y ′ along the boundary W . For the gluing,

we need to change the H structure on Y ′ so that the boundary X is regarded as an ingoing

Xin, while the boundary of Y is outgoing Xout. See [1, 2] for detailed discussions of how

this can be done. Therefore, we finally get

ZΨ(Y, L)

ZΨ(Y ′, L)
= ZΨ(Yclosed). (4.53)

Therefore, if ZΨ(Yclosed) is always equal to 1, then we get ZΨ(Y ′, L) = ZΨ(Y, L). In other

words, the partition function ZΨ(Yclosed) measures the obstruction to defining the chiral

fermion partition function. This is the nonperturbative anomaly of the chiral fermion.

Notice that ZΨ(Y ) depends on a choice of a counterterm Sc.t., so the nonperturbative

anomaly is described by exp(−πiη(i /DY )) up to exp(−Sc.t.). If there exists a choice of Sc.t.

such that ZΨ(Yclosed) = 1 for any Yclosed, then the chiral fermion does not have an anomaly.

Otherwise it has an anomaly.

The (d+ 1)-dimensional theory with only a single ground state on any closed manifold

is called invertible topological phases which was first introduced in [22]. See [23, 24]. Those

theories give the low energy effective field theories of the bulk of various interesting physical

systems, such as integer quantum Hall systems and topological insulators. Their partition

function characterizes the anomalies of the boundary modes, such as chiral fermions, in

the above way. We remark that although we focused on the computation of the curvature

F of the Pfaffian line bundle in the previous subsection, theories with zero curvature F = 0

is as interesting as the case of nonzero curvature. Topological insulators are examples

with F = 0. See [1, 2, 19] for classification of theories with F = 0 in terms of cobordism

invariants.
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A Remark on Pauli-Villars regularization

We do not try to be rigorous about regularization, but here we want to sketch an example

of a regularization by using the Pauli-Villars regularization only. Let us denote m = M0.
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Then we consider

Pf( /D +M0) Pf( /D +M2) · · ·Pf( /D +M2N−2)

Pf( /D +M1) Pf( /D +M3) · · ·Pf( /D +M2N−1)
, (A.1)

where the number N needs to be large enough to satisfy the condition which we will discuss

below.

Let us roughly estimate when this kind of regularization makes the partition function

well-defined. In a region of large eigenvalues |λ| → ∞, we expand

log

N−1∏
k=0

(
−iλ+M2k

−iλ+M2k+1

)
=

2N−1∑
`=0

(−1)` log

(
1 +

iM`

λ

)

=
∑
n≥1

(−1)n−1

n

in

λn

2N−1∑
`=0

(−1)`Mn
` . (A.2)

The divergence from the infinite product is a short distance divergence, so it is enough to

work in a flat space to find the leading divergent contribution since any manifold is locally

flat. Then we have Fourier modes ei k·x for flat space coordinates x ∈ RD and wave numbers

k ∈ RD. We may replace the sum over λ with the phase space integral∑
λ

→
∫

dDxdDk

(2π)D
(A.3)

Also, the eigenvalues λ behave roughly as ±|k|. The integral over x gives the volume of

the manifold. The integral over k is, after replacing λ→ ±|k|,∫
dDk

(2π)D
(±1)

|k|n
. (A.4)

This is absolutely convergent in the large |k| region if n > D. Thus, for the partition

function to be well-defined, we require

2N−1∑
`=0

(−1)`Mn
` = 0 for n ≤ D. (A.5)

We choose M` to satisfy this condition.

B Constructing a Clifford module for Rd+2 with a Hd+2 representation

Suppose that we have a Clifford module S associated to the vector space Rd+1 which is also

a representation of Hd+1 such that it satisfies the conditions discussed in Sec. 2. Moreover,

we assume that the representation of the subalgebra so(d+ 1) ⊂ hd+1 is constructed from

the Clifford algebra as follows. Let Tab (a, b = 0, · · · , d) be generators of so(d + 1) with

Tba = −Tab. They satisfy the algebra

[Tab, Tcd] = δbcTad − δacTbd − δbdTac + δadTbc. (B.1)
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We assume that their representation on S is constructed by the gamma matrices γa as

r(Tab) =
1

4
(γaγb − γbγa). (B.2)

This is the standard representation for a spin 1/2 fermion.

We define a Clifford module S̃ for Rd+2 as

S̃ = S ⊕ S. (B.3)

The gamma matrices Γa (a = −1, 0, · · · , d) acting on S̃ are defined as

Γ−1 =

(
0 i

−i 0

)
, Γa =

(
0 γa
γa 0

)
(a = 0, · · · , d). (B.4)

It is easy to check that they satisfy the (d+ 2)-dimensional Clifford algebra

{Γa, Γb} = 2δab (a, b = −1, 0, · · · , d). (B.5)

Our purpose in this appendix is to show that we can define a representation r̃ of Hd+2

acting on S̃ which satisfies the conditions discussed in Sec. 2.

Because the commutative diagram (2.4) is a pullback diagram (see the explanation

below (2.4)), we can always split an element h ∈ Hd+2 as h = h1h2, where h1 is in the

subgroup Hd+1 ⊂ Hd+2, and h2 is in the subgroup Spin(d + 2) ⊂ Hd+2 generated by the

subalgebra so(d + 2) ⊂ hd+2. Then h2 can be represented by taking the representation of

generators as

r̃(Tab) =
1

4
(ΓaΓb − ΓbΓa) (a, b = −1, 0, · · · , d). (B.6)

This defines a representation r̃(h2) of the subgroup Spin(d + 2). On the other hand,

h1 ∈ Hd+1 can be represented as

r̃(h1) =

(
r(h1) 0

0 r(h1)

)
. (B.7)

For elements h ∈ Hd+1 ∩ Spin(d+ 2) = Spin(d+ 1), the above two definitions coincide due

to our assumption (B.2). Thus we define r̃(h) = r̃(h1)r̃(h2). We will later check that this

gives a homomorphism r(hh′) = r(h)r(h′) for arbitrary h, h′.

We notice that for h1 ∈ Hd+1, we can use (2.11) and the definitions of Γa to get

r̃(h−1
1 )Γar̃(h1) = ρ(h1)abΓb (B.8)

where ρ : Hd+2 → O(d+ 2) is one of the defining data of Hd+2 as discussed in Sec. 2, and

ρ(h)ab are the matrix elements of ρ(h) as an O(d+ 2) matrix with respect to the standard

basis of Rd+2. The same equation is also valid for h2 ∈ Spin(d+2) by the standard Clifford

algebra. Therefore, for general h ∈ Hd+2, we get

r̃(h−1)Γar̃(h) = ρ(h)abΓb. (B.9)
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This is the (d+ 2)-dimensional version of the condition (2.11).

Finally, we want to show that r̃ defined above satisfies r̃(hh′) = r̃(h)r̃(h′) for arbi-

trary h, h′. Two such elements h = h1h2 and h′ = h′1h
′
2 can be multiplied as hh′ =

h1h
′
1(h′−1

1 h2h
′
1)h′2. We need to study the factor (h′−1

1 h2h
′
1).

To simplify the notation, we rename h′1 as h ∈ Hd+1. Also, we can replace h2 by

generators Tab of the Lie subalgebra so(d + 2) ⊂ hd+2. The subalgebra generated by

h−1Tabh is the same subalgebra so(d + 2) ⊂ hd+2 generated by Tab, since both of their

images under ρ : Hd+2 → O(d+ 2) generate so(d+ 2). More explicitly, by acting ρ, we get

ρ(h−1Tabh) = ρ(h−1)ρ(Tab)ρ(h) = ρ(h)acρ(h)bdρ(Tbc). (B.10)

Therefore, we get

h−1Tabh = ρ(h)acρ(h)bdTbc. (B.11)

Then by acting r̃ to this equation, we obtain

r̃(h−1Tabh) = ρ(h)acρ(h)bd r̃(Tab) = ρ(h)acρ(h)bd
1

4
(ΓaΓb − ΓbΓa)

= r̃(h−1)
1

4
(ΓaΓb − ΓbΓa)r̃(h) (B.12)

where in the last step we have used (B.9). Therefore, we have obtained

r̃(h−1Tabh) = r̃(h−1)r̃(Tab)r̃(h). (B.13)

This equation implies r̃(h−1
1 h2h1) = r̃(h−1

1 )r̃(h2)r̃(h1) for h1 ∈ Hd+1 and h2 ∈ Spin(d+ 2).

Now we can compute r̃(hh′) for arbitrary h and h′. We split them as h = h1h2 and h′ =

h′1h
′
2 for h1, h

′
1 ∈ Hd+1 and h2, h

′
2 ∈ Spin(d + 2). Then by using hh′ = h1h

′
1(h′−1

1 h2h
′
1)h′2,

(h′−1
1 h2h

′
1) ∈ Spin(d+ 2), and the definition of r̃, we get

r̃(hh′) = r̃(h1)r̃(h′1)r̃(h′−1
1 h2h

′
1)r̃(h′2) = r̃(h1)r̃(h′1)r̃(h′−1

1 )r̃(h2)r̃(h′1)r̃(h′2)

= r̃(h1)r̃(h2)r̃(h′1)r̃(h′2) = r̃(h)r̃(h′). (B.14)

This completes the construction of a representation r̃ of Hd+2 on S̃ with the desired prop-

erty (B.9).

We can also introduce a Z2 grading to the above Clifford module, defined by

Γ =

(
1 0

0 −1

)
. (B.15)

It commutes with r̃(H) and anticommutes with Γa.
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