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Motivation : Topological terms in Lagrangans

Differential cohomology is a mathematical framework which refines
generalized cohomology with differential geometric data on manifolds.
They are deeply related with physics. See [FMS07], [Fre00], [HS05] and
[HTY20] for example.
For mathematical accounts, see [BS12] and [Bun12] for example.

Differential cohomology accounts for “topological terms” in Lagrangians in
physics. Examples of “topological terms” are,

• Holonomy for U(1)-connections,
• Chern-Simons invariants,
• Wess-Zumino-Witten terms,
• Reduced eta invariants.

Mathematically, they are called secondary invariants.
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Let us look at the following examples of “topological terms”.
• Holonomy for U(1)-connection.

Let (L,∇) → X be a hermitian line bundle with U(1)-connection over
a manifold. For a closed curve f : S1 → X in X , we get its holonomy
Hol(L,∇)(f ) ∈ R/Z.
If L is trivialized and ∇ = d + A for A ∈ Ω1(X ;

√
−1R), we have

Hol(L,∇)(f ) =

∫
S1

f ∗
A

2π
√
−1

(mod Z).

• Chern-Simons invariants.
Let (E ,∇) → X be a hermitian vector bundle with connection. For
f : M3 → X with M : 3-dimensional closed oriented manifold, we get
its Chern-Simons invariant CS(E ,∇)(f ) ∈ R/Z.
If E is trivialized and ∇ = d + A for A ∈ Ω1(X ; u(n)), we have

CS(E ,∇)(f ) =

∫
M
f ∗

Tr(dA ∧ A+ 2
3A ∧ A ∧ A)

4π
(mod Z).
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Poroperties of “topological terms”
(A) They are expressed as ∫

Mn−1
f ∗α (mod Z)

for some α ∈ Ωn−1(X )/im(d) when the topology is trivial. But in the
presence of nontrivial topology, they CANNOT be expressed by
differential forms.

Hol(L,∇)(f ) =

∫
S1

f ∗
A

2π
√
−1

(mod Z),

CS(E ,∇)(f ) =

∫
M
f ∗

Tr(dA ∧ A+ 2
3A ∧ A ∧ A)

4π
(mod Z).

But for general X , we cannot take such A globally.

Problem

What is the object x̂ giving the topological terms by “
∫
Mn−1 f

∗x̂” for
general X? Where does it live?
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(B) They are NOT topological invariants. Rather, they depend on the
geometry. The variation under bordisms is measured by∫

W n

f ∗R(x̂) (mod Z)

for some R(x̂) ∈ Ωn
clo(X ) (“field strength”).

If we have a bordism like , we have

Hol(L,∇)(f |M1
+
)− Hol(L,∇)(f |M1

−
) =

∫
W 2

f ∗
F∇

2π
√
−1

,

CS(E ,∇)(f |M3
+
)− CS(E ,∇)(f |M3

−
) =

∫
W 4

f ∗ch2(F∇).

Moreover, when the topology is trivial, we have R(α) = dα.
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(C) The “field strength” R(x̂) is integral (R(x̂) ∈ Ωn
clo(X )Z), i.e., for all

f : W n → X where W is oriented and closed (compact without
boundary), we have ∫

W n

f ∗R(x̂) ∈ Z.

Actually this follows from (B).
Called “Dirac charge quantization”.
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(D) If we know the value “
∫
Mn−1 f

∗x̂” for all f : Mn−1 → X , we can
recover the topology, including torsions.

Indeed,
• The collection of values of Hol(L,∇)(f ) for all f recovers L up to

isomorphism (i.e., c1(L) ∈ H2(X ;Z)), not just c1(F∇) ∈ H2(X ;R).
• The collection of values of CS(E ,∇)(f ) for all f recovers

ch2(E ) ∈ H4(X ;Z), not just ch2(F∇) ∈ H4(X ;R).
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The properties (A) – (D) suggests that, x̂ is an element in a group ??
fitting into a commutative diagram like

0

Hn(X ;Z)

55

⊗R
))

??

I 88

R
&&

Hn(X ;R)

Ωn−1(X )

a 88

d // Ωn
clo(X )Z

Rham 55

where the diagonal sequence is exact.
• (A) corresponds to a and the exactness at ?? (Trivial topology implies
x̂ comes from Ωn−1(X )).

• (B) and (C) correspond to R .
• (D) corresponds to I .
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The answer : differential cohomology
Actually, the ordinary differential cohomology Ĥn(X ;Z) is such a group.
We have the ordinary differential cohomology hexagon

0
++

0

Hn−1(X ;R/Z) Bock //

**

Hn(X ;Z)

55

⊗R
((

Hn−1(X ;R)

33

**
Ĥn(X ;Z)

I 66

R
((

Hn(X ;R)

Ωn−1(X )/Ωn−1
clo (X )Z

a 44

d // Ωn
clo(X )Z

Rham 66

))0
33

0

which is commutative and diagonal sequences are exact. We have “higher
holonomy function” for oriented closed (n − 1)-dimensional manifolds,∫

M
: Ĥn(Mn−1;Z) → R/Z,

which satisfy all the required properties.
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The main message of these lectures are,

The answer to Problem 1
We can interpret x̂ as an element in (generalized) differential cohomology
theories Ê ∗(X ).
The “topological terms” are interpreted as the images of integration maps
in differential cohomology.

In the examples of Hol and CS, we use E = HZ.
But for some cases we should use other cohomology theories such as
E = K ,KO. The choices correspond to different “charge quantization
conditions”.
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Hermitian line bundles

Recall the following classical fact.

Theorem
For any CW-complex X , we have

H2(X ;Z) ≃ {L → X : Hermitian line bundle}/ ∼isom

The corresponding class c1(L) ∈ H2(X ;Z) is called the first Chern class.
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Connections and Curvatures

Given L → X , how do we detect c1(L) ∈ H2(X ;Z) ? One way is to take a
connection.
Assume X is a (smooth) manifold. Take a U(1)-connection ∇ on L
(locally, ∇ = d + A for A ∈ Ω1(X ;

√
−1R)).

The curvature is F∇ := ∇2 ∈ Ω2
clo(X ;

√
−1R) (locally, F∇ = dA).

We have

c1(L)R = c1(F∇) :=
1

2π
√
−1

[F∇] ∈ H2(X ;R).

Here c1(L)R is the image of c1(F∇) under the R-ification
H2(X ;Z) → H2(X ;R). I.e., the curvature recovers c1(L) up to torsion.
In particular,

c1(F∇) ∈ Ω2
clo(X )Z (closed forms with Z-periods).

Physically : “Dirac charge quantization”.
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Flat line bundles

However, there are nontrivial line bundles which cannot be detected by the
curvature : flat ones.
Example : X = RP2 = S2/Z2. The trivial bundle C× S2 → S2 admits a
Z2-action by −(z , x) 7→ (−z ,−x), preserving the trivial connection d .
Taking quotient we get L → RP2 with a flat connection ∇.
L is nontrivial : c1(L) = −1 ∈ H2(RP2;Z) ≃ Z2.
The nontriviality is detected by the holonomy. π1(RP2) ≃ Z2 and the
holonomy of (L,∇) gives the nontrivial element

Hol(L,∇) ∈ Hom(π1(RP2),U(1)) ≃ Z2.
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Holonomy

Holonomy Hol(L,∇) remembers the isomorphism (=gauge equivalence)
class of (L,∇).
Fix an orientation on S1. Holonomy function for (L,∇) :

Hol(L,∇) : C∞(S1,X ) → U(1)

In the case ∇ = d + A we have Hol(L,∇)(f ) = exp(
∫
S1 f

∗A).

Theorem
Assume we have (L1,∇1) and (L2,∇2) on X . We have

Hol(L1,∇1) = Hol(L2,∇2) ⇒ (L1,∇1) ≃ (L2,∇2).

In particular, Hol(L,∇) remembers c1(L) ∈ H2(X ;Z) completely.
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Characterization of holonomy
Holonomy functions cannot be arbitrary maps C∞(S1,X ) → R/Z. What is
the condition?

If we have , we have

Hol(L,∇)(f |∂W ) ≡
∫
W

f ∗c1(F∇) (mod Z).

Conversely, the equation

φ(f |∂W ) ≡
∫
W

f ∗ω (mod Z)

can be regarded as a compatibility condition for a pair (ω, φ) consisting of
ω ∈ Ω2

clo(X ) and φ : C∞(S1,X ) → R/Z. Hol(L,∇) should arise as φ for
such a pair.
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The first definition of Ĥ2(X ;Z) : Geometric model
Let X be a manifold. Let us define the geometric model of Ĥ2(X ;Z) by

Definition

Ĥ2
geom(X ;Z)
:= {(L,∇) → X : Hermitian line bundle with U(1)-connection}/ ∼isom

We define structure maps

R : Ĥ2
geom(X ;Z) → Ω2

clo(X ), [L,∇] 7→ 1
2π

√
−1

F∇

I : Ĥ2
geom(X ;Z) → H2(X ;Z), [L,∇] 7→ c1(L)

a : Ω1(X )/im(d) → Ĥ2
geom(X ;Z), α 7→ [X × C, d + 2π

√
−1α].

For a smooth map ϕ : X → Y between manifolds, we get the pullback

ϕ∗ : Ĥ2
geom(Y ;Z) → Ĥ2

geom(X ;Z), [L,∇] 7→ [ϕ∗L, ϕ∗∇].
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The hexagon for Ĥ2
geom

We get the commutative diagram

0
**

0

H1(X ;R/Z) Bock //

**

H2(X ;Z)

55

⊗R
((

H1(X ;R)

44

**
Ĥ2(X ;Z)

I 66

R
((

H2(X ;R)

Ω1(X )/Ω1
clo(X )Z

a 44

d // Ω2
clo(X )Z

Rham 66

))0
44

0

The diagonal sequences are exact.
This implies that

(
Ĥ2

geom(−;Z),R, I , a
)

is a differential extension of

H2(−;Z).

Mayuko Yamashita Differential cohomology 19 / 67



Pros and cons of Ĥ2
geom(X ;Z)

Advantage :
• Intuitive.

Disadvantage :
• Hard to analyze directly.
• Difficult to generalize to Ĥn

geom(X ;Z).
We seek for alternative definitions.
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The second definition of Ĥ2(X ;Z) : Cheeger-Simons’ model

Let us abstractize the property of the pair of curvature and holonomy as
follows.

Definition (Second differential characters [CS85])
A second differential character on X is a pair (ω, φ) consisting of

• A closed 2-form ω ∈ Ω2
clo(X ),

• A group homomorphism φ : Z∞,1(X ;Z) → R/Z,
such that, for any c ∈ C∞,2(X ;Z) we have

φ(∂c) ≡
∫
c
ω (mod Z). (6)

Here C∞,n and Z∞,n is the group of smooth singular chains and cochains
(a slight generalization of “oriented Mn with f : M → X with/without
boundaries”)
(6) automatically implies ω ∈ Ω2

clo(X )Z. (why?)
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Definition (The Cheeger-Simons’ model [CS85])
Let us define

Ĥ2
CS(X ;Z) := {(ω, φ) : second differential character on X}.

Theorem
We have an isomorphism

Ĥ2
geom(X ;Z) ≃ Ĥ2

CS(X ;Z),

by mapping [L,∇] to (c1(F∇),Hol(L,∇)).
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The first definition of ĤZ
∗

: Differential characters
The definition of Ĥ2

CS(X ;Z) easily generalize as follows.

Definition (The Cheeger-Simons’ model [CS85])
Let n be a nonnegative integer. An n-th differential character on X is a
pair (ω, φ) consisting of

• A closed n-form ω ∈ Ωn
clo(X ),

• A group homomorphism φ : Z∞,n−1(X ;Z) → R/Z,
such that, for any c ∈ C∞,n(X ;Z) we have

φ(∂c) ≡
∫
c
ω (mod Z).

Definition (The Cheeger-Simons’ model [CS85])
Let us define

Ĥn
CS(X ;Z) := {(ω, φ) : n-th differential character on X}.
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Structure maps

For a smooth map ϕ : X → Y between manifolds, we get the pullback

ϕ∗ : Ĥn
CS(Y ;Z) → Ĥn

CS(X ;Z), (ω, φ) 7→ (ϕ∗ω, ϕ∗φ).

We define structure maps

R : Ĥn
CS(X ;Z) → Ωn

clo(X ), (ω, φ) 7→ ω

I : Ĥn
CS(X ;Z) → Hn(X ;Z), (ω, φ) 7→ [ω − φR ◦ ∂]

a : Ωn−1(X )/im(d) → Ĥn
CS(X ;Z), α 7→ (dα,

∫
α (mod Z)).

Here φR is any R-valued lift of φ.
(Check : I is well-defined. )
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The hexagon for Ĥ∗
CS

We get the commutative diagram

0
++

0

Hn−1(X ;R/Z) Bock //

**

Hn(X ;Z)

55

⊗R
((

Hn−1(X ;R)

33

**
Ĥn

CS(X ;Z)

I 55

R
((

Hn(X ;R)

Ωn−1(X )/Ωn−1
clo (X )Z

a 44

d // Ωn
clo(X )Z

Rham 66

))0
33

0

The diagonal sequences are exact.
This implies that

(
Ĥ∗

CS(−;Z),R, I , a
)

is a differential extension of
H∗(−;Z).
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Exercises

Ĥn(pt;Z) are :

Ĥ0(pt;Z) = H0(pt;Z) ≃ Z,

Ĥ1(pt;Z) ≃ R/Z,

Ĥn(pt;Z) = 0 (n ≥ 2).

We have

Ĥ0(X ;Z) = H0(pt;Z),

Ĥ1(X ;Z) ≃ C∞(X ,R/Z).
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The higher holonomy function

Mn−1 : closed oriented (n− 1)-dimensional manifold. We define the higher
holonomy function denoted by

∫
M ,∫

M
: Ĥn

CS(M;Z) → R/Z, (ω, φ) 7→ φ(id : M → M).

Note that Ĥ1
CS(M;Z) ≃ R/Z, so it is like integration.

One important property is :

Proposition (The Bordism formula)
Suppose (W n, ∂W ) is an oriented compact n-dimensional manifold. For
any x̂ ∈ Ĥn(W ;Z), we have∫

∂W
x̂ |∂W ≡

∫
W

R(x̂) (mod Z)

This is clear by the definition of differential characters.
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Actually, for fiber bundle p : N → X whose fibers are oriented and closed
manifold, we can define the differential integration map∫

N/X
: Ĥn(N;Z) → Ĥn−r (X ;Z), (12)

where r = dimN − dimX .
Differential integration is a refinement of integrations in HZ∗ and Ω∗ in the
sense that the following diagram commutes.

Ωn−1(N)/im(d)
a //

∫
N/X

��

Ĥn(N;Z)∫
N/X
��

I //

R

**
Hn(N;Z)∫

N/X

��

Ωn
clo(N)∫

N/X

��
Ωn−r−1(X )/im(d)

a // Ĥn−r (X ;Z) I //

R
44

Hn−r (X ;Z) Ωn−r
clo (X )

.
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Application : Chern-Simons invariants
An example of differential character is constructed from Chern-Simons
invariants. The basic setting (G = U(n)) is :
Let (E ,∇) → X be a hermitian vector bundle with connection. For
f : M3 → X with M : 3-dimensional closed oriented manifold, set

CS(E ,∇)(f : M → X ) := CS(f ∗E , f ∗∇)

=

∫
M
f ∗Tr(dA ∧ A+

2
3
A ∧ A ∧ A) (mod Z).

Here CS(f ∗E , f ∗∇) ∈ R/Z is the Chern-Simons invariant.
The second Chern character form is

ch2(F∇)= Tr((dA ∧ A+ A ∧ A)2) ∈ Ω4
clo(X ).

We get

(ch2(F∇),CS(E ,∇)) ∈ Ĥ4
CS(X ;Z).
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Definition of the Chern-Simons invariants

Actually, the definition of the Chern-Simons invariants uses ĤZ
∗
.

Generally, take a compact Lie group G (gauge group).
Fix n ∈ 2Z and λ ∈ Hn(BG ;Z) : the level (If G is simple and simply
connected, H4(BG ;Z) ≃ Z).
The characteristic polynomial for λ ∈ Hn(BG ;Z) is its R-ification,

λR ∈ Hn(BG ;R) ≃ (Symn/2g∗)G .

Let (P,∇) → X be a principal G -bundle with connection.
The characteristic form associated to λR is

λR(F∇) ∈ Ωn
clo(X ).
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Choose a n-classifying manifold for G -connection Bn
∇G (appropriate

approximation of BG by manifold with “universal connection” ∇univ).
There exists a unique element λ̂ ∈ Ĥn(Bn

∇G ;Z) such that

I (λ̂) = λ ∈ Hn(Bn
∇G ;Z) ≃ Hn(BG ;Z),

R(λ̂) = λR(F∇univ).

(Why? Hint : use n ∈ 2Z. )
Let (P,∇) → Mn−1 be a principal G -bundle with connection with closed
oriented M. Take a classifying map f : M → Bn

∇G of (P,∇).

Definition (The Chern-Simons invariant)
The Chern-Simons invariant with level λ of (P,∇) is

CSλ(P,∇) :=

∫
Mn−1

f ∗λ̂ ∈ R/Z. (14)

(14) does not depend on the choice of Bn
∇G .

Mayuko Yamashita Differential cohomology 31 / 67



Let (P,∇) → X be a principal G -bundle with connection.
For f : Mn−1 → X with M : (n − 1)-dimensional closed oriented manifold,
set

CSλ(P,∇)(f : M → X ) := CSλ(f
∗P, f ∗∇).

Proposition
We get an element

(λR(F∇),CSλ(P,∇)) ∈ Ĥn
CS(X ;Z).

It satisfies (f : X → BG : a classifying map for P)

f ∗λ = I (λR(F∇),CSλ(P,∇)) ∈ Hn(X ;Z).
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Pros and cons of the Cheeger-Simons model

Advantages :
• More algebraic than Ĥ2

geom.
• The higher holonomy can be directly evaluated.

Disadvantages :
• Not realized in terms of cochain complexes (as opposed to H∗

dR,
H∗

sing...).
For example, what is the “trivialization” of a differential character?
(c.f., We can talk about trivializations of (L,∇). )

• Does not generalize to other cohomology theories (actually, the
Anderson self-duality of HZ is hidden behind the definition of
Ĥ∗

CS(−;Z). ).
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The second definition of ĤZ
∗

: Differential cocycles
Let X be a manifold. An n-th differential cocycle on X is an element

(c , h, ω) ∈ Zn
∞(X ;Z)× Cn−1

∞ (X ;R)× Ωn
clo(X )

such that

ω − cR = δh. (16)

Here C ∗
∞ and Z ∗

∞ denotes the groups of smooth singular cochains and
cocycles. We introduce the equivalence relation ∼ on differential cocycles
by setting

(c, h, ω) ∼ (c + δb, h − bR − δk , ω)

for some (b, k) ∈ Cn−1
∞ (X ;Z)× Cn−2

∞ (X ;R).

Definition (Ĥ∗
HS(X ;Z) [HS05])

Set

Ĥn
HS(X ;Z) := {(c , h, ω) : differential n-cocycle on X}/ ∼
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Ĥ∗
HS(X ;Z) ≃ Ĥ∗

CS(X ;Z)

Proposition
We have an isomorphism

Ĥn
HS(X ;Z) ≃ Ĥn

CS(X ;Z)

by mapping [c , h, ω] to (ω, h mod Z).

The corresponding structure maps for Ĥ∗
HS(−;Z) are

R : Ĥn
HS(X ;Z) → Ωn

clo(X ), [c , h, ω] 7→ ω

I : Ĥn
HS(X ;Z) → Hn(X ;Z), [c, h, ω] 7→ [c]

a : Ωn−1(X )/im(d) → Ĥn
HS(X ;Z), α 7→ [0, α, dα].

Thus
(
Ĥn

HS(−;Z),R, I , a
)

is a differential extension of Hn(−;Z).
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The differential chain complexes

Actually, Ĥ∗
HS(−;Z) can be realized as the cohomology group of the

differential cochain complex.
Fix k ∈ Z and define the cochain complex Ĉ (k)∗(X ) by

Ĉ (k)n(X ) :=

{
Cn
∞(X ;Z)× Cn−1

∞ (X ;R) n ≤ k − 1
Cn
∞(X ;Z)× Cn−1

∞ (X ;R)× Ωn(X ) n ≥ k

with the differential

d(c , h, ω) := (δc , ω − cR − δh, dω).

Let Ĥ(k)n(X ) be the n-th cohomology group of Ĉ (k)∗(X ), i.e.,

Ĥ(k)n(X ) := Ẑ (k)n(X )/dĈ (k)n−1(X ),

where Ẑ (k)n(X ) := ker d ⊂ Ĉ (k)n(X ).
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We have

Proposition

Ĥ(k)n(X ) ≃


Hn−1(X ;R/Z) n ≤ k − 1
Ĥn

HS(X ) n = k

Hn(X ;Z) n ≥ k + 1.
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One advantage of having the cochain complex is that we can talk about
trivializations. Let us look at second differential cocycles.
We have H2

HS(X ;Z) ≃ H2
geom(X ;Z) = {(L,∇)}/ ∼isom.

Given (L,∇), let us fix x̂ ∈ Ẑ (2)2(X ) = Ẑ (1)2(X ) representing it.
We can consider two types of trivializations of (L,∇).

• Topological trivialization, i.e., a section s of L (with |s| = 1).
The choices of such s are in bijection with the set

{ŷ ∈ Ĉ (1)1(X ) | dŷ = x̂}/dĈ (1)0(X ), (20)

which is a torsor over
Ẑ (1)1(X )/dĈ (1)0(X ) = Ĥ1(X ;Z) ≃ C∞(X ;R/Z).

• Flat trivialization, i.e., a flat section s of (L,∇).
The choices of such s are in bijection with the set

{ŷ ∈ Ĉ (2)1(X ) | dŷ = x̂}/dĈ (2)0(X ), (21)

which is a torsor over Ẑ (2)1(X )/dĈ (2)0(X ) = H0(X ;R/Z).
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Review : Topological K -theory

K -theory is a generalized cohomology theory which is important in both
math and physics.
There are various models for K ∗, for example there are models in terms of

• Vector bundles,
• Families of Fredholm operators,
• “Gradations” on Clifford modules.
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The vector bundle model of K ∗

K 0(X ) classifies stable equivalence classes of complex vector bundles over
X .
Let X be a finite CW-complex. Let Vect(X ) be the set of isomorphism
classes [E ] of complex vector bundles over X , with the abelian monoid
structure by ⊕.
K 0(X ) is defined to be the Grothendieck group associated to Vect(X ).
This means that K 0(X ) is a group whose elements are formal differences

[E+]− [E−] ∈ K 0(X )

and we have

[E ] = [F ] in K 0(X ) if E ⊕ G ≃ F ⊕ G for some G .
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For a finite CW-pair (X ,Y ) (i.e., Y ⊂ X ), the relative K 0-group K 0(X ,Y )
is defined by taking the Grothendieck group of the abelian monoid of
isomorphism classes of triples

(E+,E−, σ),

where E+ and E− are complex vector bundles over X and σ : E+|Y ≃ E−|Y .
We set K−n(X ,Y ) := K 0(Σn(X/Y ), pt), in particular we have

K−n(X ) := K 0(Σn(X+), pt) = K 0(Sn × X , pt × X ).
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Some facts on K ∗

Bott periodicity. We have

Kn(X ) ≃ Kn+2(X ).

K -groups on pt:

K 0(pt) ≃ Z, K 1(pt) = 0.

The (topological) Chern character. We have a natural transformation

Ch : Kn(X ) → H2Z+n(X ;R)= Hn(X ;K ∗(pt)⊗ R)

If X is a manifold, taking a unitary connection ∇ on E we have

Ch([E ]) =
[
Tr(eF∇/(2π

√
−1))

]
∈ H2Z

dR(X ;R).
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Chern-Weil constructions

Let X be a manifold and (E ,∇) be a harmitian vector bundle with unitary
connection over X . Let F∇ ∈ Ω2

clo(X ;End(E )) be the curvature.
We define the Chern chacater form by

Ch(F∇) := Tr(eF∇/(2π
√
−1)) ∈ Ω2Z

clo(X ).

Its de Rham cohomology class represents the topological Chern character
of [E ],

Ch([E ]) = [Ch(F∇)] ∈ H2Z(X ;R).

In particular, the cohomology class does not depend on the choice of ∇,
i.e., if we have two connections ∇0 and ∇1, we have

Ch(F∇1)− Ch(F∇0) ∈ Im(d).
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Chern-Simons forms
For two connections ∇0 and ∇1 on E , we have
Ch(F∇1)− Ch(F∇0) ∈ Im(d). Why?
Take a homotopy ∇[0,1] between ∇0 and ∇1.
Define the Chern-Simons form for the homotopy ∇[0,1] by

CS(F∇[0,1]) :=

∫
[0,1]

Ch(F∇[0,1]) ∈ Ω2Z−1(X ).

We have the transgression formula

Ch(F∇1)− Ch(F∇0) = dCS(F∇[0,1]).

The Chern-Simons form depends on the choice of homotopy only up to
Im(d) (again, checked by taking a homotopy between homotopies). Thus

CS(∇0,∇1) :=
[
CS(F∇[0,1])

]
∈ Ω2Z−1(X )/Im(d)

is well-defined.
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The first definition of K̂ ∗ : Vector bundles with connections
Freed and Lott [FL10] gave a model K̂ ∗

FL of differential K -theory in terms
of vector bundles with connections.
Let X be a manifold. Rhoughly speaking, K̂ 0

FL(X ) is a group of hermitian
vector bundles with connections,

[E ,∇] ∈ K̂ 0
FL(X ).

The functor R is given by the Chern character forms,

R : K̂ 0
FL(X ) → Ω2Z

clo(X ), [E ,∇] 7→ Ch(F∇).

The functor a accounts for the Chern-Simons forms,

a : Ω2Z−1(X )/im(d) → K̂ 0
FL(X ), CS(∇0,∇1) 7→ [E ,∇1]− [E ,∇0].

d = R ◦ a follows by the transgression formula

Ch(F∇1)− Ch(F∇0) = dCS(∇0,∇1).
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Definition of K̂ 0
FL

Definition (The model of K̂ 0 by vector bundle with connection [FL10])

Let X be a manifold. Define V̂ect(X ) to be the set of isomorphism classes
of triples

(E ,∇, α), (23)

where (E ,∇) is a hermitian vector bundle with a unitary connection on X
and α ∈ Ω2Z−1(X )/Im(d). We introduce the abelian monoid structure by

[E ,∇, α] + [E ′,∇′, α′] := [E ⊕ E ′,∇⊕∇′, α+ α′].

We introduce the following relation ∼ on V̂ect(X ),

[E ,∇1, α] ∼ [E ,∇0,CS(∇0,∇1) + α].

Define K̂ 0
FL(X ) to be the Grothendieck group associated to V̂ect(X )/ ∼.
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Structure maps

We define structure maps

R : K̂ 0
FL(X ) → Ω2Z

clo(X ), [E ,∇, α] 7→ Ch(F∇) + dα

I : K̂ 0
FL(X ) → K 0(X ), [E ,∇, α] 7→ [E ]

a : Ω2Z−1(X )/im(d) → K̂ 0
FL(X ), α 7→ [0, 0, α].

The well-definedness of R follows by the transgression formula

Ch(F∇1)− Ch(F∇0) = dCS(∇0,∇1).
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The hexagon for K̂ 0
FL

We have the commutative diagram

0
++

0

K−1(X ;R/Z) Bock //

**

K 0(X )

55

Ch
((

H2Z−1(X ;R)

33

++
K̂ 0

FL(X )

I 77

R
''

H2Z(X ;R)

Ω2Z−1(X )/Ω2Z−1
clo (X )K

a 44

d // Ω2Z
clo(X )K

Rham 66

))0
33

0

The diagonal sequences are exact.
This implies that

(
K̂ 0

FL,R, I , a
)

is a differential extension of K 0.
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K̂ 1
FL

Freed and Lott [FL10] constructed a model K̂ 1
FL of K̂ 1.

Elements of K̂ 1
FL(X ) are represented by quintuples

(E ,∇,U, α)

where
• (E ,∇) is a hermitian vector bundle with a unitary connection on X ,
• U is a unitary automorphism on E ,
• α ∈ Ω2Z−1(X )/Im(d).

The equivalence relations are given by transgression forms as before.
We have the structure maps and the hexagon as before. We also set
K̂ 2n

FL := K̂ 0
FL and K̂ 2n−1

FL := K̂ 1
FL.
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Integrations in K ∗ and K̂ ∗

K̂ ∗ also has the differential integration maps.

First we recall the (topological) integrations in K ∗. For fiber bundles
p : N → X whose fibers are closed manifold and equipped with a fiberwise
Spinc structure gp

1, we have the (topological) integration map,

(p, gp)∗ : K
n(N) → Kn−r (X ),

where r = dimN − dimX .
c.f. for HZ∗ we only require fiberwise orientation and get∫

N/X
: Hn(N;Z) → Hn−r (X ;Z),

For more on integrations (a.k.a. pushforward, Gysin maps, ...) in
generalized cohomology theories, see [Rud98] for example.

1Or more generally, proper Spinc -oriented maps (p, gp)
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Topological integration in K ∗ = Atiyah-Singer’s index

In particular if (M2n, g) is a closed even dimensional manifold with a Spinc

structure, the integration map along pM : M → pt gives the homomorphism

(pM , g)∗ : K
0(M) → K−2n(pt) ≃ K 0(pt) ≃ Z. (24)

By the Atiyah-Singer’s index theorem, the map (24) is given by

(pM , g)∗[E ] = Index( /DE ,∇),

where /DE ,∇ : C∞(M; /S ⊗ E ) → C∞(M; /S ⊗ E ) is the Dirac operator
twisted by (E ,∇).
In general for (p : N → X , gp), the integration map is given by taking the
family index of fiberwise twisted Dirac operators.
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Differerntial integration in K̂ ∗ = reduced eta invariants

In order to define differential integrations in K̂ ∗, we need geometric Spinc

structures, i.e., Spinc structures with Spinc -connections compatible with
Levi-Civita connections2.
For fiber bundles p : N → X whose fibers are closed manifold and equipped
with a fiberwise geometric Spinc structure ĝp, we have the differential
integration map,

(p, ĝp)∗ : K̂
n(N) → K̂n−r (X ),

where r = dimN − dimX .

2Actually we can drop the compatibility with Levi-Civita connections.
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In particular if (M2n−1, ĝ) is a closed odd dimensional manifold with a
geometric Spinc structure, the differential integration map along
pM : M → pt gives the homomorphism

(pM , ĝ)∗ : K̂
0(M) → K̂−2n+1(pt) ≃ K̂ 1(pt) ≃ R/Z. (25)

Fact ([FL10])
The differential integration map (25) is given by

(pM , ĝ)∗[E ,∇, α] = η( /DE ,∇) +

∫
M
α ∧ Todd(M, ĝ) (mod Z).

Here the reduced eta invariant η( /DE ,∇) is given by

η( /DE ,∇) :=
η( /DE ,∇) + dim ker( /DE ,∇)

2
∈ R. (26)
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The bordism formula and the APS index theorem
The Atiyah-Patodi-Singer’s index theorem is an index theorem for compact
manifolds with boundaries.

Fact (Atiyah-Patodi-Singer, [APS76])

Suppose (W 2n, ∂W , ĝ) is a compact even dimensional manifold with a
geometric Spinc structure. Let (E ,∇) be a hermitian vector bundle on W .
Assuming collar structure on everything, we have

IndexAPS( /DE ,∇) =

∫
W

Ch(F∇) ∧ Todd(W , ĝ)− η( /D(E ,∇)|∂W )

Here IndexAPS( /DE ,∇) is the Fredholm index with respect to the “APS
boundary condition”. In particular we have IndexAPS( /DE ,∇) ∈ Z. Thus we
get

η( /D(E ,∇)|∂W ) ≡
∫
W

Ch(F∇) ∧ Todd(W , ĝ) (mod Z). (27)
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The APS index theorem, in particular (27), implies the following Bordism
formula.

Proposition (The bordism formula)

Suppose (W 2n, ∂W , ĝ) is a compact even dimensional manifold with a
geometric Spinc structure. For any x̂ ∈ K̂ 0(W ), we have

(p∂W , ĝ |∂W )∗x̂ |∂W ≡
∫
W

R(x̂) ∧ Todd(W , ĝ) (mod Z) (29)

Indeed, if we can represent x̂ = [E ,∇, 0] ∈ K̂ 0
FL(W ), we see (29) = (27).

Then the general case follows by the Stokes theorem (check!).
Actually the bordism formula also holds in the case dimW is odd and
x̂ ∈ K̂ 1(W ).
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Generalized differential cohomology

So far we have seen the differential ordinary cohomology ĤZ
∗

and the
differential K -theory K̂ ∗.
Actually we can talk about differential extensions Ê ∗ of any generalized
cohomology theory E ∗.
Here we explain the axiomatic approach given by Bunke and Schick [BS12].
The idea is to generalize the hexagon as

0
,,

0

En−1(X ;R/Z) Bock //

**

En(X )

55

ch
((

Hn−1(X ;V •)

33

++
Ên(X )

I 77

R
''

Hn(X ;V •)

Ωn−1(X ;V •)/Ωn−1
clo (X ;V •)E

a 44

d // Ωn
clo(X ;V •)E

Rham 66

))0
33

0
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The axiom by Bunke and Schick
Suppose we are given

• a generalized cohomology theory E ,
• a Z-graded vector space V • over R (universal choice : E •(pt)⊗ R),
• a natural transformation ch : E ∗(X ) → H∗(X ;V •).

Definition (The axiom of differential cohomology, [BS12])

A differential extension of (E ∗, ch) is a quintuple (Ê ∗,R, I , a) such that
Ê ∗ : Mfdop → AbZ is a functor, and R , I and a are natural transformations
fitting into the following commutative diagram where the diagonal
sequence is exact.

0
En(X )

33

ch **
Ên(X )

I 55

R ))
Hn(X ;V •)

Ωn−1(X ;V •)/Ωn−1
clo (X ;V •)E

a 33
d // Ωn

clo(X ;V •)E

Rham44

++0
33

0
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Remarks

• Hopkins and Singer [HS05] constructed a differential extension Ê ∗
HS of

each (E ∗, ch).
• Given (E ∗, ch), the uniqueness of its differential extension is highly

nontrivial. Bunke and Schick [BS10] investigate into this uniqueness
problem. They show the uniqueness under some (very mild)
assumptions. As far as I heard, there is no known conterexample for
the uniqueness.

• When we take the universal choice V • = E •(pt)⊗ R,

Ên
flat(X ) := ker

(
R : Ên(X ) → Ωn

clo(X ;V •)E

)
is called the flat theory. It is a homotopy invariant functor, but it is
not known that we have En−1(X ;R/Z) ≃ Ên

flat(X ) in general [BS10].
• There are variations on the axioms, such as multiplicative differential

extensions when E is multiplicative.
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The Hopkins-Singer’s model Ê ∗
HS

Hopkins and Singer [HS05] constructed a differential extension Ê ∗
HS of each

(E ∗, ch).
For this, we represent E ∗ by an Ω-spectrum E = {En}n∈Z and take a
singular cocycle ι ∈ Z 0(E ;V •) representing ch ∈ H0(E ;V •).
An element in Ên

HS(X ) is represented by a differential function

(c, h, ω) : X → (En, ιn),

consists of a continuous map c : X → En, a singular cochain
h ∈ Cn−1(X ;V •) and ω ∈ Ωn

clo(X ;V •), such that

ω − c∗ιn = δh.

We introduce an equivalence relation on differential functions coming from
differential functions on X × [0, 1].
Taking E = HZ and ι ∈ Z 0(HZ;Z) to be Z-valued fundamental cocycle,
we recover H∗

HS(−;Z) explained before.
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Differential extensions ÎΩG
dR of the Anderson duals

In Yonekura-Y [YY21], we constructed a differential extension ÎΩG
dR of the

Anderson dual to G -bordism theory IΩG .
The motivation comes from the classification of invertible QFT’s (a.k.a
invertible phases), in particular the conjecture by Freed-Hopkins [FH21]; an

element in (ÎΩG
dR)

n(X ) can be regarded as an invertible QFT on
G -manifolds.
The construction is analogous to the Cheeger-Simons’ differential character
group H∗

CS(X ;Z).
Here G is a tangential structure group such as SO, Spin, etc.
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For simplicity here we assume G is oriented.
An element in (ÎΩG

dR)
n(X ) is represented by a pair (ω, h) consisting of

• ω ∈ Ωn
clo(X ; (Symg∗)G ),

• h is a partition function, which is a map assigning

h(Mn−1, ĝ , f ) ∈ R/Z

to each closed (n − 1)-dimensional differential G -manifold with a map
f ∈ C∞(M,X ). We require the additivity under disjoint unions.

We require the following compatibility condition for (ω, h).

If we have , we have

h(∂W , ĝ |∂W , f |∂W ) ≡
∫
W

cwĝ (f
∗ω) (mod Z).
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Differential integrations and ÎΩG
dR

Important examples of elements in (ÎΩG
dR)

n(X ) comes from differential
integrations.
First we consider the case of ĤZ. Let us fix x̂ ∈ Ĥn(X ;Z). Then we can

construct the element (ωx̂ , hx̂) ∈ (ÎΩSO
dR)

n(X ) by

ωx̂ := R(x̂),

hx̂(M
n−1, ĝ , f ) :=

∫
M
f ∗x̂ (higher holonomy of f ∗x̂).

The compatibility condition follows by the bordism formula.
For example if x̂ = [L,∇] ∈ Ĥ2(X ;Z), we have
(ωx̂ , hx̂) = (c1(F∇),Hol(L,∇)).
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Next we consider the case of K̂ . Let us fix x̂ ∈ K̂n(X ). Then we can

construct the element (ωx̂ , hx̂) ∈ (
̂
IΩSpinc

dR )n(X ) by

ωx̂ := R(x̂)⊗ Todd,

hx̂(M
n−1, ĝ , f ) := (pM , ĝ)∗f

∗x̂ .

Again the compatibility condition follows by the bordism formula.
For example if x̂ = 1 ∈ K̂ 2n(pt) ≃ Z, we have (ωx̂ , hx̂) = (Todd, η).

In this way we get natural transformations

Ĥn(X ;Z) → (ÎΩSO
dR)

n(X ),

K̂n(X ) → (
̂
IΩSpinc

dR )n(X ).

Actually these are differential refinements of the combinations of Anderson
dual to multiplicative genera (universal orientation MSO → HZ and the
Atiyah-Bott-Shapiro orientation MSpinc → K , resp.) and the Anderson
self-dualities of HZ and of K [Yam21].
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