## Introduction to differential cohomology

#### Mayuko Yamashita

#### Research Institute for Mathematical Sciences, Kyoto University

### Introduction

### 2 Ordinary differential cohomology

- Hermitian line bundles with connection
- Differential characters
- Differential cocycles
- 3 Differential *K*-theory
  - Review : Topological K-theory
  - Chern-Weil constructions
  - The model by vector bundles with connections
- Additional topics
  - Generalized differential cohomology
  - Differential extension of the Anderson duals

## Motivation : Topological terms in Lagrangans

Differential cohomology is a mathematical framework which refines generalized cohomology with differential geometric data on manifolds. They are deeply related with physics. See [FMS07], [Fre00], [HS05] and [HTY20] for example.

For mathematical accounts, see [BS12] and [Bun12] for example.

Differential cohomology accounts for "topological terms" in Lagrangians in physics. Examples of "topological terms" are,

- Holonomy for U(1)-connections,
- Chern-Simons invariants,
- Wess-Zumino-Witten terms,
- Reduced eta invariants.

Mathematically, they are called secondary invariants.

Let us look at the following examples of "topological terms".

- Holonomy for U(1)-connection.
  - Let  $(L, \nabla) \to X$  be a hermitian line bundle with U(1)-connection over a manifold. For a closed curve  $f: S^1 \to X$  in X, we get its *holonomy*  $\operatorname{Hol}(L, \nabla)(f) \in \mathbb{R}/\mathbb{Z}$ .

If L is trivialized and abla = d + A for  $A \in \Omega^1(X; \sqrt{-1}\mathbb{R})$ , we have

$$\operatorname{Hol}(L, 
abla)(f) = \int_{S^1} f^* \frac{A}{2\pi\sqrt{-1}} \pmod{\mathbb{Z}}.$$

Chern-Simons invariants.

Let  $(E, \nabla) \to X$  be a hermitian vector bundle with connection. For  $f: M^3 \to X$  with M: 3-dimensional closed oriented manifold, we get its *Chern-Simons invariant*  $CS(E, \nabla)(f) \in \mathbb{R}/\mathbb{Z}$ .

If E is trivialized and  $\nabla = d + A$  for  $A \in \Omega^1(X; \mathfrak{u}(n))$ , we have

$$\mathrm{CS}(E,\nabla)(f) = \int_M f^* \frac{\mathrm{Tr}(dA \wedge A + \frac{2}{3}A \wedge A \wedge A)}{4\pi} \pmod{\mathbb{Z}}.$$

## Poroperties of "topological terms"

(A) They are expressed as

$$\int_{\mathcal{M}^{n-1}} f^* \alpha \pmod{\mathbb{Z}}$$

for some  $\alpha \in \Omega^{n-1}(X)/\operatorname{im}(d)$  when the topology is trivial. But in the presence of nontrivial topology, they CANNOT be expressed by differential forms.

$$\operatorname{Hol}(L,\nabla)(f) = \int_{S^1} f^* \frac{A}{2\pi\sqrt{-1}} \pmod{\mathbb{Z}},$$
$$\operatorname{CS}(E,\nabla)(f) = \int_M f^* \frac{\operatorname{Tr}(dA \wedge A + \frac{2}{3}A \wedge A \wedge A)}{4\pi} \pmod{\mathbb{Z}}.$$

But for general X, we cannot take such A globally.

Problem

What is the object  $\hat{x}$  giving the topological terms by " $\int_{M^{n-1}} f^* \hat{x}$ " for general X? Where does it live?

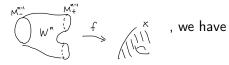
Mayuko Yamashita

(B) They are NOT topological invariants. Rather, they depend on the geometry. The variation under bordisms is measured by

$$\int_{W^n} f^* R(\widehat{x}) \pmod{\mathbb{Z}}$$

for some  $R(\hat{x}) \in \Omega_{clo}^n(X)$  ("field strength").

If we have a bordism like



$$\begin{aligned} \operatorname{Hol}(L,\nabla)(f|_{M^{1}_{+}}) - \operatorname{Hol}(L,\nabla)(f|_{M^{1}_{-}}) &= \int_{W^{2}} f^{*} \frac{F_{\nabla}}{2\pi\sqrt{-1}}, \\ \operatorname{CS}(E,\nabla)(f|_{M^{3}_{+}}) - \operatorname{CS}(E,\nabla)(f|_{M^{3}_{-}}) &= \int_{W^{4}} f^{*} \operatorname{ch}_{2}(F_{\nabla}). \end{aligned}$$

Moreover, when the topology is trivial, we have  $R(\alpha) = d\alpha$ .

(C) The "field strength"  $R(\hat{x})$  is integral  $(R(\hat{x}) \in \Omega_{clo}^n(X)_{\mathbb{Z}})$ , i.e., for all  $f: W^n \to X$  where W is oriented and closed (compact without boundary), we have

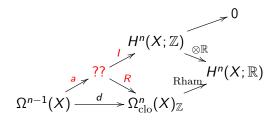
$$\int_{W^n} f^* R(\widehat{x}) \in \mathbb{Z}.$$

Actually this follows from (B). Called "Dirac charge quantization". (D) If we know the value " $\int_{M^{n-1}} f^* \hat{x}$ " for all  $f: M^{n-1} \to X$ , we can recover the topology, including torsions.

Indeed,

- The collection of values of Hol(L, ∇)(f) for all f recovers L up to isomorphism (i.e., c<sub>1</sub>(L) ∈ H<sup>2</sup>(X; Z)), not just c<sub>1</sub>(F<sub>∇</sub>) ∈ H<sup>2</sup>(X; R).
- The collection of values of  $CS(E, \nabla)(f)$  for all f recovers  $ch_2(E) \in H^4(X; \mathbb{Z})$ , not just  $ch_2(F_{\nabla}) \in H^4(X; \mathbb{R})$ .

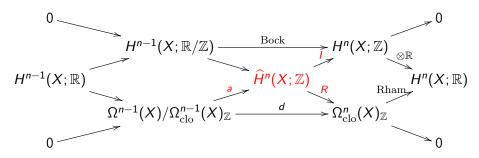
The properties (A) – (D) suggests that,  $\hat{x}$  is an element in a group ?? fitting into a commutative diagram like



where the diagonal sequence is exact.

- (A) corresponds to *a* and the exactness at ?? (Trivial topology implies  $\hat{x}$  comes from  $\Omega^{n-1}(X)$ ).
- (B) and (C) correspond to *R*.
- (D) corresponds to *I*.

The answer : differential cohomology Actually, the ordinary differential cohomology  $\widehat{H}^n(X;\mathbb{Z})$  is such a group. We have the ordinary differential cohomology hexagon



which is commutative and diagonal sequences are exact. We have "higher holonomy function" for oriented closed (n-1)-dimensional manifolds,

$$\int_{\mathcal{M}}:\widehat{\mathcal{H}}^{n}(\mathcal{M}^{n-1};\mathbb{Z})\to\mathbb{R}/\mathbb{Z},$$

which satisfy all the required properties.

The main message of these lectures are,

#### The answer to Problem 1

We can interpret  $\hat{x}$  as an element in (generalized) differential cohomology theories  $\hat{E}^*(X)$ . The "topological terms" are interpreted as the images of integration maps in differential cohomology.

In the examples of Hol and CS, we use  $E = H\mathbb{Z}$ .

But for some cases we should use other cohomology theories such as E = K, KO. The choices correspond to different "charge quantization conditions".

### Introduction

### 2 Ordinary differential cohomology

- Hermitian line bundles with connection
- Differential characters
- Differential cocycles

### 3 Differential *K*-theory

- Review : Topological K-theory
- Chern-Weil constructions
- The model by vector bundles with connections

### Additional topics

- Generalized differential cohomology
- Differential extension of the Anderson duals

Recall the following classical fact.

Theorem

For any CW-complex X, we have

 $H^2(X;\mathbb{Z}) \simeq \{L \to X : \text{Hermitian line bundle}\} / \sim_{\mathrm{isom}}$ 

The corresponding class  $c_1(L) \in H^2(X; \mathbb{Z})$  is called the *first Chern class*.

## Connections and Curvatures

Given  $L \to X$ , how do we detect  $c_1(L) \in H^2(X; \mathbb{Z})$ ? One way is to take a connection.

Assume X is a (smooth) manifold. Take a U(1)-connection  $\nabla$  on L (locally,  $\nabla = d + A$  for  $A \in \Omega^1(X; \sqrt{-1\mathbb{R}})$ ). The curvature is  $F_{\nabla} := \nabla^2 \in \Omega^2_{clo}(X; \sqrt{-1\mathbb{R}})$  (locally,  $F_{\nabla} = dA$ ). We have

$$c_1(L)_{\mathbb{R}}=c_1(F_{\nabla}):=rac{1}{2\pi\sqrt{-1}}\,[F_{\nabla}]\in H^2(X;\mathbb{R}).$$

Here  $c_1(L)_{\mathbb{R}}$  is the image of  $c_1(F_{\nabla})$  under the  $\mathbb{R}$ -ification  $H^2(X; \mathbb{Z}) \to H^2(X; \mathbb{R})$ . I.e., the curvature recovers  $c_1(L)$  up to torsion. In particular,

$$c_1(F_{
abla})\in \Omega^2_{\mathrm{clo}}(X)_{\mathbb{Z}}$$
 (closed forms with  $\mathbb{Z}$ -periods).

Physically : "Dirac charge quantization".

Mayuko Yamashita

## Flat line bundles

However, there are nontrivial line bundles which cannot be detected by the curvature : flat ones.

Example :  $X = \mathbb{RP}^2 = S^2/\mathbb{Z}_2$ . The trivial bundle  $\mathbb{C} \times S^2 \to S^2$  admits a  $\mathbb{Z}_2$ -action by  $-(z, x) \mapsto (-z, -x)$ , preserving the trivial connection d. Taking quotient we get  $L \to \mathbb{RP}^2$  with a flat connection  $\nabla$ . L is nontrivial :  $c_1(L) = -1 \in H^2(\mathbb{RP}^2; \mathbb{Z}) \simeq \mathbb{Z}_2$ . The nontriviality is detected by the holonomy.  $\pi_1(\mathbb{RP}^2) \simeq \mathbb{Z}_2$  and the holonomy of  $(L, \nabla)$  gives the nontrivial element

$$\operatorname{Hol}(L, \nabla) \in \operatorname{Hom}(\pi_1(\mathbb{RP}^2), U(1)) \simeq \mathbb{Z}_2.$$

### Holonomy

Holonomy  $\operatorname{Hol}(L, \nabla)$  remembers the isomorphism (=gauge equivalence) class of  $(L, \nabla)$ . Fix an orientation on  $S^1$ . Holonomy function for  $(L, \nabla)$ :

$$\operatorname{Hol}(L, \nabla) \colon C^{\infty}(S^1, X) \to U(1)$$

In the case  $\nabla = d + A$  we have  $\operatorname{Hol}(L, \nabla)(f) = \exp(\int_{S^1} f^* A)$ .

#### Theorem

Assume we have  $(L_1, \nabla_1)$  and  $(L_2, \nabla_2)$  on X. We have

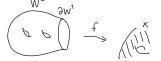
 $\operatorname{Hol}(\mathcal{L}_1, \nabla_1) = \operatorname{Hol}(\mathcal{L}_2, \nabla_2) \Rightarrow (\mathcal{L}_1, \nabla_1) \simeq (\mathcal{L}_2, \nabla_2).$ 

In particular,  $\operatorname{Hol}(L, \nabla)$  remembers  $c_1(L) \in H^2(X; \mathbb{Z})$  completely.

## Characterization of holonomy

Holonomy functions cannot be arbitrary maps  $C^{\infty}(S^1, X) \to \mathbb{R}/\mathbb{Z}$ . What is the condition?





, we have

$$\operatorname{Hol}(L, 
abla)(f|_{\partial W}) \equiv \int_W f^* c_1(F_{
abla}) \pmod{\mathbb{Z}}.$$

Conversely, the equation

$$arphi(f|_{\partial W})\equiv \int_W f^*\omega \pmod{\mathbb{Z}}$$

can be regarded as a *compatibility condition* for a pair  $(\omega, \varphi)$  consisting of  $\omega \in \Omega^2_{clo}(X)$  and  $\varphi \colon C^{\infty}(S^1, X) \to \mathbb{R}/\mathbb{Z}$ . Hol $(L, \nabla)$  should arise as  $\varphi$  for such a pair.

Mayuko Yamashita

## The first definition of $\widehat{H}^2(X; \mathbb{Z})$ : Geometric model Let X be a manifold. Let us define the *geometric model* of $\widehat{H}^2(X; \mathbb{Z})$ by

### Definition

$$\widehat{H}^2_{ ext{geom}}(X;\mathbb{Z})$$
  
:= {( $L, 
abla$ )  $o$  X : Hermitian line bundle with U(1)-connection}/  $\sim_{ ext{isom}}$ 

### We define structure maps

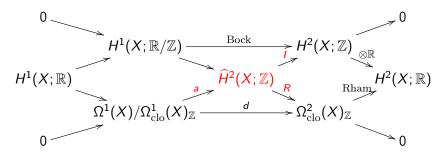
$$\begin{split} &R \colon \widehat{H}^2_{\text{geom}}(X;\mathbb{Z}) \to \Omega^2_{\text{clo}}(X), \quad [L,\nabla] \mapsto \frac{1}{2\pi\sqrt{-1}} F_{\nabla} \\ &I \colon \widehat{H}^2_{\text{geom}}(X;\mathbb{Z}) \to H^2(X;\mathbb{Z}), \quad [L,\nabla] \mapsto c_1(L) \\ &a \colon \Omega^1(X)/\text{im}(d) \to \widehat{H}^2_{\text{geom}}(X;\mathbb{Z}), \quad \alpha \mapsto [X \times \mathbb{C}, d + 2\pi\sqrt{-1}\alpha]. \end{split}$$

For a smooth map  $\phi \colon X \to Y$  between manifolds, we get the *pullback* 

$$\phi^* \colon \widehat{H}^2_{\text{geom}}(Y;\mathbb{Z}) \to \widehat{H}^2_{\text{geom}}(X;\mathbb{Z}), \quad [L,\nabla] \mapsto [\phi^*L, \phi^*\nabla].$$

# The hexagon for $\widehat{H}_{geom}^2$

We get the commutative diagram



The diagonal sequences are exact.

This implies that  $(\widehat{H}^2_{\text{geom}}(-;\mathbb{Z}), R, I, a)$  is a *differential extension* of  $H^2(-;\mathbb{Z})$ .

Pros and cons of  $\widehat{H}^2_{ ext{geom}}(X;\mathbb{Z})$ 

Advantage :

Intuitive.

Disadvantage :

- Hard to analyze directly.
- Difficult to generalize to  $\widehat{H}^n_{\text{geom}}(X;\mathbb{Z})$ .

We seek for alternative definitions.

## The second definition of $\widehat{H}^2(X;\mathbb{Z})$ : Cheeger-Simons' model

Let us abstractize the property of the pair of curvature and holonomy as follows.

### Definition (Second differential characters [CS85])

A second differential character on X is a pair  $(\omega, \varphi)$  consisting of

- A closed 2-form  $\omega \in \Omega^2_{\mathrm{clo}}(X)$ ,
- A group homomorphism  $arphi\colon Z_{\infty,1}(X;\mathbb{Z}) o\mathbb{R}/\mathbb{Z}$ ,

such that, for any  $c\in \mathcal{C}_{\infty,2}(X;\mathbb{Z})$  we have

$$\varphi(\partial c) \equiv \int_{c} \omega \pmod{\mathbb{Z}}.$$
 (6)

Here  $C_{\infty,n}$  and  $Z_{\infty,n}$  is the group of smooth singular chains and cochains (a slight generalization of "oriented  $M^n$  with  $f: M \to X$  with/without boundaries")

(6) automatically implies  $\omega \in \Omega^2_{\mathrm{clo}}(X)_{\mathbb{Z}}$ . (why?)

## Definition (The Cheeger-Simons' model [CS85]) Let us define

 $\widehat{H}^2_{\mathrm{CS}}(X;\mathbb{Z}) := \{(\omega, \varphi) : \text{second differential character on } X\}.$ 

#### Theorem

We have an isomorphism

$$\widehat{H}^2_{ ext{geom}}(X;\mathbb{Z})\simeq \widehat{H}^2_{ ext{CS}}(X;\mathbb{Z}),$$

by mapping  $[L, \nabla]$  to  $(c_1(F_{\nabla}), \operatorname{Hol}(L, \nabla))$ .

## The first definition of $\widehat{H\mathbb{Z}}^*$ : Differential characters The definition of $\widehat{H}^2_{CS}(X;\mathbb{Z})$ easily generalize as follows.

### Definition (The Cheeger-Simons' model [CS85])

Let *n* be a nonnegative integer. An *n*-th *differential character* on *X* is a pair  $(\omega, \varphi)$  consisting of

- A closed *n*-form  $\omega \in \Omega^n_{\mathrm{clo}}(X)$ ,
- A group homomorphism  $\varphi \colon Z_{\infty,n-1}(X;\mathbb{Z}) \to \mathbb{R}/\mathbb{Z}$ ,

such that, for any  $c\in \mathcal{C}_{\infty,n}(X;\mathbb{Z})$  we have

$$\varphi(\partial c) \equiv \int_c \omega \pmod{\mathbb{Z}}.$$

## Definition (The Cheeger-Simons' model [CS85]) Let us define

$$\widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z}):=\{(\omega,\varphi): \textit{n-th differential character on } X\}.$$

### Structure maps

For a smooth map  $\phi \colon X \to Y$  between manifolds, we get the *pullback* 

$$\phi^* \colon \widehat{H}^n_{\mathrm{CS}}(Y;\mathbb{Z}) \to \widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z}), \quad (\omega,\varphi) \mapsto (\phi^*\omega,\phi^*\varphi).$$

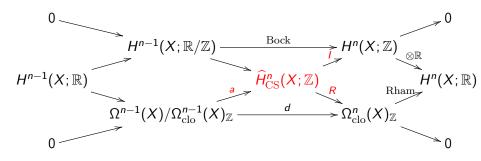
We define structure maps

$$\begin{aligned} &R: \widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z}) \to \Omega^n_{\mathrm{clo}}(X), \quad (\omega,\varphi) \mapsto \omega \\ &I: \widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z}) \to H^n(X;\mathbb{Z}), \quad (\omega,\varphi) \mapsto [\omega - \varphi_{\mathbb{R}} \circ \partial] \\ &\mathfrak{a}: \Omega^{n-1}(X)/\mathrm{im}(d) \to \widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z}), \quad \alpha \mapsto (d\alpha, \int \alpha \pmod{\mathbb{Z}}). \end{aligned}$$

Here  $\varphi_{\mathbb{R}}$  is any  $\mathbb{R}$ -valued lift of  $\varphi$ . (Check : *I* is well-defined. )

# The hexagon for $\widehat{H}^*_{\mathrm{CS}}$

We get the commutative diagram



The diagonal sequences are exact.

This implies that  $(\widehat{H}^*_{CS}(-;\mathbb{Z}), R, I, a)$  is a *differential extension* of  $H^*(-;\mathbb{Z})$ .

### Exercises

 $\widehat{H}^n(\mathrm{pt};\mathbb{Z})$  are :

$$egin{aligned} &\widehat{H}^0(\mathrm{pt};\mathbb{Z})=H^0(\mathrm{pt};\mathbb{Z})\simeq\mathbb{Z}, \ &\widehat{H}^1(\mathrm{pt};\mathbb{Z})\simeq\mathbb{R}/\mathbb{Z}, \ &\widehat{H}^n(\mathrm{pt};\mathbb{Z})=0 \ (n\geq 2). \end{aligned}$$

We have

$$egin{aligned} \widehat{H}^0(X;\mathbb{Z}) &= H^0(\mathrm{pt};\mathbb{Z}), \ \widehat{H}^1(X;\mathbb{Z}) &\simeq C^\infty(X,\mathbb{R}/\mathbb{Z}). \end{aligned}$$

## The higher holonomy function

 $M^{n-1}$ : closed oriented (n-1)-dimensional manifold. We define the *higher* holonomy function denoted by  $\int_M$ ,

$$\int_{M} : \widehat{H}^{n}_{\mathrm{CS}}(M; \mathbb{Z}) \to \mathbb{R}/\mathbb{Z}, \quad (\omega, \varphi) \mapsto \varphi(\mathrm{id} \colon M \to M).$$

Note that  $\widehat{H}^1_{CS}(M; \mathbb{Z}) \simeq \mathbb{R}/\mathbb{Z}$ , so it is like *integration*. One important property is :

### Proposition (The Bordism formula)

Suppose  $(W^n, \partial W)$  is an oriented compact n-dimensional manifold. For any  $\widehat{x} \in \widehat{H}^n(W; \mathbb{Z})$ , we have

$$\int_{\partial W} \widehat{x}|_{\partial W} \equiv \int_W R(\widehat{x}) \pmod{\mathbb{Z}}$$

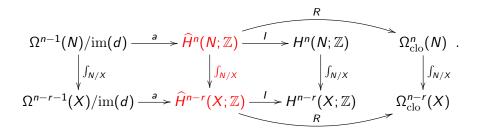
This is clear by the definition of differential characters.

Actually, for fiber bundle  $p: N \rightarrow X$  whose fibers are oriented and closed manifold, we can define the *differential integration map* 

$$\int_{N/X} : \widehat{H}^n(N;\mathbb{Z}) \to \widehat{H}^{n-r}(X;\mathbb{Z}),$$
(12)

where  $r = \dim N - \dim X$ .

Differential integration is a refinement of integrations in  $H\mathbb{Z}^*$  and  $\Omega^*$  in the sense that the following diagram commutes.



## Application : Chern-Simons invariants

An example of differential character is constructed from Chern-Simons invariants. The basic setting (G = U(n)) is :

Let  $(E, \nabla) \to X$  be a hermitian vector bundle with connection. For  $f: M^3 \to X$  with M: 3-dimensional closed oriented manifold, set

$$CS(E,\nabla)(f: M \to X) := CS(f^*E, f^*\nabla)$$
$$= \int_M f^* Tr(dA \wedge A + \frac{2}{3}A \wedge A \wedge A) \pmod{\mathbb{Z}}.$$

Here  $CS(f^*E, f^*\nabla) \in \mathbb{R}/\mathbb{Z}$  is the *Chern-Simons invariant*. The second Chern character form is

$$\operatorname{ch}_2(F_{\nabla}) = \operatorname{Tr}((dA \wedge A + A \wedge A)^2) \in \Omega^4_{\operatorname{clo}}(X).$$

We get

$$(\mathrm{ch}_2(F_
abla),\mathrm{CS}(E,
abla))\in\widehat{H}^4_{\mathrm{CS}}(X;\mathbb{Z}).$$

## Definition of the Chern-Simons invariants

Actually, the definition of the Chern-Simons invariants uses  $H\mathbb{Z}^*$ . Generally, take a compact Lie group *G* (gauge group). Fix  $n \in 2\mathbb{Z}$  and  $\lambda \in H^n(BG; \mathbb{Z})$ : the *level* (If *G* is simple and simply connected,  $H^4(BG; \mathbb{Z}) \simeq \mathbb{Z}$ ).

The characteristic polynomial for  $\lambda \in H^n(BG; \mathbb{Z})$  is its  $\mathbb{R}$ -ification,

$$\lambda_{\mathbb{R}} \in H^n(BG; \mathbb{R}) \simeq (\operatorname{Sym}^{n/2} \mathfrak{g}^*)^G.$$

Let  $(P, \nabla) \to X$  be a principal *G*-bundle with connection. The characteristic form associated to  $\lambda_{\mathbb{R}}$  is

$$\lambda_{\mathbb{R}}(F_{\nabla}) \in \Omega^n_{\mathrm{clo}}(X).$$

Choose a *n*-classifying manifold for *G*-connection  $B^n_{\nabla}G$  (appropriate approximation of *BG* by manifold with "universal connection"  $\nabla_{\text{univ}}$ ). There exists a unique element  $\hat{\lambda} \in \hat{H}^n(B^n_{\nabla}G;\mathbb{Z})$  such that

$$egin{aligned} &I(\widehat{\lambda})=\lambda\in H^n(B^n_
abla G;\mathbb{Z})\simeq H^n(BG;\mathbb{Z}),\ &R(\widehat{\lambda})=\lambda_\mathbb{R}(F_{
abla_{\mathrm{univ}}}). \end{aligned}$$

(Why? Hint : use  $n \in 2\mathbb{Z}$ .) Let  $(P, \nabla) \to M^{n-1}$  be a principal *G*-bundle with connection with closed oriented *M*. Take a classifying map  $f: M \to B^n_{\nabla}G$  of  $(P, \nabla)$ .

### Definition (The Chern-Simons invariant)

The Chern-Simons invariant with level  $\lambda$  of  $(P, \nabla)$  is

$$\mathrm{CS}_{\lambda}(P, \nabla) := \int_{M^{n-1}} f^* \widehat{\lambda} \in \mathbb{R}/\mathbb{Z}.$$
 (14)

(14) does not depend on the choice of  $B^n_{\nabla}G$ .

Let  $(P, \nabla) \to X$  be a principal *G*-bundle with connection. For  $f: M^{n-1} \to X$  with M: (n-1)-dimensional closed oriented manifold, set

$$\operatorname{CS}_{\lambda}(P, \nabla)(f \colon M \to X) := \operatorname{CS}_{\lambda}(f^*P, f^*\nabla).$$

#### Proposition

We get an element

$$(\lambda_{\mathbb{R}}(F_{\nabla}), \operatorname{CS}_{\lambda}(P, \nabla)) \in \widehat{H}^n_{\operatorname{CS}}(X; \mathbb{Z}).$$

It satisfies ( $f: X \rightarrow BG$  : a classifying map for P)

 $f^*\lambda = I(\lambda_{\mathbb{R}}(F_{\nabla}), \operatorname{CS}_{\lambda}(P, \nabla)) \in H^n(X; \mathbb{Z}).$ 

Pros and cons of the Cheeger-Simons model

Advantages :

- More algebraic than  $\widehat{H}^2_{\text{geom}}$ .
- The higher holonomy can be directly evaluated.

Disadvantages :

- Not realized in terms of cochain complexes (as opposed to  $H^*_{dR}$ ,  $H^*_{sing}$ ...). For example, what is the "trivialization" of a differential character? (c.f., We can talk about trivializations of  $(L, \nabla)$ .)
- Does not generalize to other cohomology theories (actually, the Anderson self-duality of  $H\mathbb{Z}$  is hidden behind the definition of  $\widehat{H}^*_{CS}(-;\mathbb{Z})$ .).

The second definition of  $\widehat{H\mathbb{Z}}^*$ : Differential cocycles Let X be a manifold. An *n*-th *differential cocycle* on X is an element

$$(c,h,\omega)\in Z^n_\infty(X;\mathbb{Z}) imes C^{n-1}_\infty(X;\mathbb{R}) imes \Omega^n_{\mathrm{clo}}(X)$$

such that

$$\omega - c_{\mathbb{R}} = \delta h. \tag{16}$$

Here  $C^*_{\infty}$  and  $Z^*_{\infty}$  denotes the groups of smooth singular cochains and cocycles. We introduce the equivalence relation  $\sim$  on differential cocycles by setting

$$(\boldsymbol{c},\boldsymbol{h},\omega)\sim (\boldsymbol{c}+\delta \boldsymbol{b},\boldsymbol{h}-\boldsymbol{b}_{\mathbb{R}}-\delta \boldsymbol{k},\omega)$$

for some  $(b,k) \in C^{n-1}_{\infty}(X;\mathbb{Z}) \times C^{n-2}_{\infty}(X;\mathbb{R}).$ 

## Definition $(\widehat{H}^*_{HS}(X; \mathbb{Z}) [HS05])$ Set

$$\widehat{H}^n_{\mathrm{HS}}(X;\mathbb{Z}):=\{(c,h,\omega): \mathsf{differential} \,\, n ext{-cocycle on } X\}/\sim$$

 $\widehat{H}^*_{\mathrm{HS}}(X;\mathbb{Z})\simeq \widehat{H}^*_{\mathrm{CS}}(X;\mathbb{Z})$ 

#### Proposition

We have an isomorphism

$$\widehat{H}^n_{\mathrm{HS}}(X;\mathbb{Z})\simeq \widehat{H}^n_{\mathrm{CS}}(X;\mathbb{Z})$$

by mapping  $[c, h, \omega]$  to  $(\omega, h \mod \mathbb{Z})$ .

The corresponding structure maps for  $\widehat{H}^*_{\mathrm{HS}}(-;\mathbb{Z})$  are

$$\begin{split} & R \colon \widehat{H}^n_{\mathrm{HS}}(X;\mathbb{Z}) \to \Omega^n_{\mathrm{clo}}(X), \quad [c,h,\omega] \mapsto \omega \\ & I \colon \widehat{H}^n_{\mathrm{HS}}(X;\mathbb{Z}) \to H^n(X;\mathbb{Z}), \quad [c,h,\omega] \mapsto [c] \\ & \mathfrak{a} \colon \Omega^{n-1}(X)/\mathrm{im}(d) \to \widehat{H}^n_{\mathrm{HS}}(X;\mathbb{Z}), \quad \alpha \mapsto [0,\alpha,d\alpha]. \end{split}$$

Thus  $(\widehat{H}_{HS}^{n}(-;\mathbb{Z}), R, I, a)$  is a differential extension of  $H^{n}(-;\mathbb{Z})$ .

## The differential chain complexes

Actually,  $\widehat{H}^*_{HS}(-;\mathbb{Z})$  can be realized as the cohomology group of the *differential cochain complex*.

Fix  $k \in \mathbb{Z}$  and define the cochain complex  $\widehat{C}(k)^*(X)$  by

$$\widehat{C}(k)^{n}(X) := \begin{cases} C_{\infty}^{n}(X;\mathbb{Z}) \times C_{\infty}^{n-1}(X;\mathbb{R}) & n \leq k-1 \\ C_{\infty}^{n}(X;\mathbb{Z}) \times C_{\infty}^{n-1}(X;\mathbb{R}) \times \Omega^{n}(X) & n \geq k \end{cases}$$

with the differential

$$d(c, h, \omega) := (\delta c, \omega - c_{\mathbb{R}} - \delta h, d\omega).$$

Let  $\widehat{H}(k)^n(X)$  be the *n*-th cohomology group of  $\widehat{C}(k)^*(X)$ , i.e.,

$$\widehat{H}(k)^n(X) := \widehat{Z}(k)^n(X)/d\widehat{C}(k)^{n-1}(X),$$

where  $\widehat{Z}(k)^n(X) := \ker d \subset \widehat{C}(k)^n(X).$ 

#### We have

Proposition

$$\widehat{H}(k)^n(X)\simeq egin{cases} H^{n-1}(X;\mathbb{R}/\mathbb{Z}) & n\leq k-1\ \widehat{H}^n_{\mathrm{HS}}(X) & n=k\ H^n(X;\mathbb{Z}) & n\geq k+1. \end{cases}$$

One advantage of having the cochain complex is that we can talk about trivializations. Let us look at second differential cocycles. We have  $H^2_{\text{HS}}(X;\mathbb{Z}) \simeq H^2_{\text{geom}}(X;\mathbb{Z}) = \{(L,\nabla)\}/\sim_{\text{isom}}$ . Given  $(L,\nabla)$ , let us fix  $\hat{x} \in \hat{Z}(2)^2(X) = \hat{Z}(1)^2(X)$  representing it. We can consider two types of trivializations of  $(L,\nabla)$ .

• Topological trivialization, i.e., a section s of L (with |s| = 1). The choices of such s are in bijection with the set

$$\{\widehat{y}\in\widehat{C}(1)^1(X)\mid d\widehat{y}=\widehat{x}\}/d\widehat{C}(1)^0(X),$$
 (20)

which is a torsor over  $\widehat{Z}(1)^1(X)/d\widehat{C}(1)^0(X) = \widehat{H}^1(X;\mathbb{Z}) \simeq C^{\infty}(X;\mathbb{R}/\mathbb{Z}).$ 

Flat trivialization, i.e., a flat section s of (L, ∇).
 The choices of such s are in bijection with the set

$$\{\widehat{y}\in\widehat{C}(2)^1(X)\mid d\widehat{y}=\widehat{x}\}/d\widehat{C}(2)^0(X),$$
(21)

which is a torsor over  $\widehat{Z}(2)^1(X)/d\widehat{C}(2)^0(X) = H^0(X; \mathbb{R}/\mathbb{Z}).$ 

#### Introduction

#### 2 Ordinary differential cohomology

- Hermitian line bundles with connection
- Differential characters
- Differential cocycles
- Differential K-theory
  - Review : Topological K-theory
  - Chern-Weil constructions
  - The model by vector bundles with connections

#### Additional topics

- Generalized differential cohomology
- Differential extension of the Anderson duals

K-theory is a generalized cohomology theory which is important in both math and physics.

There are various models for  $K^*$ , for example there are models in terms of

- Vector bundles,
- Families of Fredholm operators,
- "Gradations" on Clifford modules.

## The vector bundle model of $K^*$

 $K^0(X)$  classifies stable equivalence classes of complex vector bundles over X.

Let X be a finite CW-complex. Let Vect(X) be the set of isomorphism classes [*E*] of complex vector bundles over X, with the abelian monoid structure by  $\oplus$ .

 $K^0(X)$  is defined to be the Grothendieck group associated to Vect(X). This means that  $K^0(X)$  is a group whose elements are formal differences

$$[E_+]-[E_-]\in K^0(X)$$

and we have

$$[E] = [F]$$
 in  $K^0(X)$  if  $E \oplus G \simeq F \oplus G$  for some G.

For a finite CW-pair (X, Y) (i.e.,  $Y \subset X$ ), the *relative*  $K^0$ -group  $K^0(X, Y)$  is defined by taking the Grothendieck group of the abelian monoid of isomorphism classes of triples

$$(E_+, E_-, \sigma),$$

where  $E_+$  and  $E_-$  are complex vector bundles over X and  $\sigma \colon E_+|_Y \simeq E_-|_Y$ . We set  $K^{-n}(X, Y) := K^0(\Sigma^n(X/Y), \text{pt})$ , in particular we have

$$\mathcal{K}^{-n}(X) := \mathcal{K}^{0}(\Sigma^{n}(X^{+}), \mathrm{pt}) = \mathcal{K}^{0}(S^{n} \times X, \mathrm{pt} \times X).$$

Some facts on  $K^*$ 

Bott periodicity. We have

$$K^n(X)\simeq K^{n+2}(X).$$

*K*-groups on pt:

$$K^0(\mathrm{pt})\simeq\mathbb{Z},\quad K^1(\mathrm{pt})=0.$$

The (topological) Chern character. We have a natural transformation

Ch: 
$$\mathcal{K}^{n}(X) \to \mathcal{H}^{2\mathbb{Z}+n}(X;\mathbb{R}) = \mathcal{H}^{n}(X;\mathcal{K}^{*}(\mathrm{pt})\otimes\mathbb{R})$$

If X is a manifold, taking a unitary connection  $\nabla$  on E we have  $\operatorname{Ch}([E]) = \left[\operatorname{Tr}(e^{F_{\nabla}/(2\pi\sqrt{-1})})\right] \in H^{2\mathbb{Z}}_{\mathrm{dR}}(X;\mathbb{R}).$ 

## Chern-Weil constructions

Let X be a manifold and  $(E, \nabla)$  be a harmitian vector bundle with unitary connection over X. Let  $F_{\nabla} \in \Omega^2_{clo}(X; End(E))$  be the curvature. We define the *Chern chacater form* by

$$\operatorname{Ch}(F_{\nabla}) := \operatorname{Tr}(e^{F_{\nabla}/(2\pi\sqrt{-1})}) \in \Omega^{2\mathbb{Z}}_{\operatorname{clo}}(X).$$

Its de Rham cohomology class represents the topological Chern character of [E],

$$\operatorname{Ch}([E]) = [\operatorname{Ch}(F_{\nabla})] \in H^{2\mathbb{Z}}(X; \mathbb{R}).$$

In particular, the cohomology class does not depend on the choice of  $\nabla$ , i.e., if we have two connections  $\nabla_0$  and  $\nabla_1$ , we have

$$\operatorname{Ch}(F_{\nabla_1}) - \operatorname{Ch}(F_{\nabla_0}) \in \operatorname{Im}(d).$$

## Chern-Simons forms

For two connections  $\nabla_0$  and  $\nabla_1$  on E, we have  $\operatorname{Ch}(F_{\nabla_1}) - \operatorname{Ch}(F_{\nabla_0}) \in \operatorname{Im}(d)$ . Why? Take a homotopy  $\nabla_{[0,1]}$  between  $\nabla_0$  and  $\nabla_1$ . Define the *Chern-Simons form* for the homotopy  $\nabla_{[0,1]}$  by

$$\mathrm{CS}(\mathcal{F}_{
abla_{[0,1]}}) := \int_{[0,1]} \mathrm{Ch}(\mathcal{F}_{
abla_{[0,1]}}) \in \Omega^{2\mathbb{Z}-1}(X).$$

We have the transgression formula

$$\operatorname{Ch}(F_{\nabla_1}) - \operatorname{Ch}(F_{\nabla_0}) = d\operatorname{CS}(F_{\nabla_{[0,1]}}).$$

The Chern-Simons form depends on the choice of homotopy only up to Im(d) (again, checked by taking a homotopy between homotopies). Thus

$$\mathrm{CS}(
abla_0,
abla_1) := \left[\mathrm{CS}(F_{
abla_{[0,1]}})\right] \in \Omega^{2\mathbb{Z}-1}(X)/\mathrm{Im}(d)$$

is well-defined.

Mayuko Yamashita

The first definition of  $\widehat{K}^*$ : Vector bundles with connections Freed and Lott [FL10] gave a model  $\widehat{K}^*_{FL}$  of differential K-theory in terms of vector bundles with connections.

Let X be a manifold. Rhoughly speaking,  $\widehat{K}^{0}_{FL}(X)$  is a group of hermitian vector bundles with connections,

$$[E, \nabla] \in \widehat{K}^{0}_{\mathrm{FL}}(X).$$

The functor R is given by the Chern character forms,

$$R \colon \widehat{K}^0_{\mathrm{FL}}(X) \to \Omega^{2\mathbb{Z}}_{\mathrm{clo}}(X), \quad [E, \nabla] \mapsto \mathrm{Ch}(F_{\nabla}).$$

The functor *a* accounts for the Chern-Simons forms,

 $a\colon \Omega^{2\mathbb{Z}-1}(X)/\mathrm{im}(d)\to \widehat{K}^0_{\mathrm{FL}}(X), \quad \mathrm{CS}(\nabla_0,\nabla_1)\mapsto [E,\nabla_1]-[E,\nabla_0].$ 

 $d = R \circ a$  follows by the transgression formula

$$\operatorname{Ch}(F_{\nabla_1}) - \operatorname{Ch}(F_{\nabla_0}) = d\operatorname{CS}(\nabla_0, \nabla_1).$$

# Definition of $\widehat{K}_{\mathrm{FL}}^{0}$

Definition (The model of  $\hat{K}^0$  by vector bundle with connection [FL10])

Let X be a manifold. Define  $\widehat{\operatorname{Vect}}(X)$  to be the set of isomorphism classes of triples

$$(E, \nabla, \alpha),$$
 (23)

where  $(E, \nabla)$  is a hermitian vector bundle with a unitary connection on X and  $\alpha \in \Omega^{2\mathbb{Z}-1}(X)/\mathrm{Im}(d)$ . We introduce the abelian monoid structure by

$$[E, \nabla, \alpha] + [E', \nabla', \alpha'] := [E \oplus E', \nabla \oplus \nabla', \alpha + \alpha'].$$

We introduce the following relation  $\sim$  on  $\widehat{\operatorname{Vect}}(X)$ ,

$$[E, \nabla_1, \alpha] \sim [E, \nabla_0, \operatorname{CS}(\nabla_0, \nabla_1) + \alpha].$$

Define  $\widehat{K}^{0}_{FL}(X)$  to be the Grothendieck group associated to  $\widehat{\operatorname{Vect}}(X)/\sim$ .

### Structure maps

We define *structure maps* 

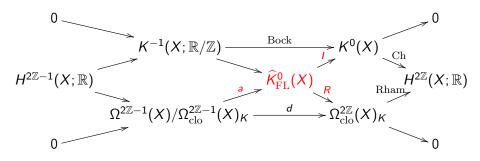
$$\begin{split} &R\colon \widehat{K}^0_{\mathrm{FL}}(X) \to \Omega^{2\mathbb{Z}}_{\mathrm{clo}}(X), \quad [E, \nabla, \alpha] \mapsto \mathrm{Ch}(F_{\nabla}) + d\alpha \\ &I\colon \widehat{K}^0_{\mathrm{FL}}(X) \to K^0(X), \quad [E, \nabla, \alpha] \mapsto [E] \\ &a\colon \Omega^{2\mathbb{Z}-1}(X)/\mathrm{im}(d) \to \widehat{K}^0_{\mathrm{FL}}(X), \quad \alpha \mapsto [0, 0, \alpha]. \end{split}$$

The well-definedness of R follows by the transgression formula

$$\operatorname{Ch}(F_{\nabla_1}) - \operatorname{Ch}(F_{\nabla_0}) = d\operatorname{CS}(\nabla_0, \nabla_1).$$

## The hexagon for $\widehat{K}_{\rm FL}^0$

We have the commutative diagram



The diagonal sequences are exact.

This implies that  $(\widehat{K}_{FL}^0, R, I, a)$  is a *differential extension* of  $K^0$ .



Freed and Lott [FL10] constructed a model  $\widehat{K}_{FL}^1$  of  $\widehat{K}^1$ . Elements of  $\widehat{K}_{FL}^1(X)$  are represented by quintuples

 $(E,\nabla,U,\alpha)$ 

where

- $(E, \nabla)$  is a hermitian vector bundle with a unitary connection on X,
- U is a unitary automorphism on E,
- $\alpha \in \Omega^{2\mathbb{Z}-1}(X)/\mathrm{Im}(d)$ .

The equivalence relations are given by transgression forms as before. We have the structure maps and the hexagon as before. We also set  $\widehat{K}_{\mathrm{FL}}^{2n} := \widehat{K}_{\mathrm{FL}}^{0}$  and  $\widehat{K}_{\mathrm{FL}}^{2n-1} := \widehat{K}_{\mathrm{FL}}^{1}$ .

## Integrations in $K^*$ and $\widehat{K}^*$

 $\widehat{K}^*$  also has the differential integration maps.

First we recall the (topological) integrations in  $K^*$ . For fiber bundles  $p: N \to X$  whose fibers are closed manifold and equipped with a fiberwise Spin<sup>c</sup> structure  $g_p^{-1}$ , we have the (topological) integration map,

$$(p,g_p)_*\colon K^n(N)\to K^{n-r}(X),$$

where  $r = \dim N - \dim X$ .

c.f. for  $H\mathbb{Z}^*$  we only require fiberwise orientation and get

$$\int_{N/X} : H^n(N;\mathbb{Z}) \to H^{n-r}(X;\mathbb{Z}),$$

For more on integrations (a.k.a. pushforward, Gysin maps, ...) in generalized cohomology theories, see [Rud98] for example.

<sup>1</sup>Or more generally, proper Spin<sup>c</sup>-oriented maps  $(p, g_p)$ 

Topological integration in  $K^*$  = Atiyah-Singer's index

In particular if  $(M^{2n}, g)$  is a closed even dimensional manifold with a Spin<sup>c</sup> structure, the integration map along  $p_M \colon M \to \text{pt}$  gives the homomorphism

$$(p_M,g)_* \colon \mathcal{K}^0(M) \to \mathcal{K}^{-2n}(\mathrm{pt}) \simeq \mathcal{K}^0(\mathrm{pt}) \simeq \mathbb{Z}.$$
 (24)

By the Atiyah-Singer's index theorem, the map (24) is given by

$$(p_M,g)_*[E] = \operatorname{Index}(\mathcal{O}_{E,\nabla}),$$

where  $D_{E,\nabla}$ :  $C^{\infty}(M; \$ \otimes E) \to C^{\infty}(M; \$ \otimes E)$  is the Dirac operator twisted by  $(E, \nabla)$ . In general for  $(p: N \to X, g_p)$ , the integration map is given by taking the family index of fiberwise twisted Dirac operators. Differential integration in  $\widehat{K}^*$  = reduced eta invariants

In order to define differential integrations in  $\hat{\mathcal{K}}^*$ , we need geometric Spin<sup>c</sup> structures, i.e., Spin<sup>c</sup> structures with Spin<sup>c</sup>-connections compatible with Levi-Civita connections<sup>2</sup>.

For fiber bundles  $p: N \to X$  whose fibers are closed manifold and equipped with a fiberwise geometric Spin<sup>c</sup> structure  $\hat{g}_p$ , we have the differential integration map,

$$(p,\widehat{g}_p)_*\colon \widehat{K}^n(N)\to \widehat{K}^{n-r}(X),$$

where  $r = \dim N - \dim X$ .

<sup>&</sup>lt;sup>2</sup>Actually we can drop the compatibility with Levi-Civita connections.

In particular if  $(M^{2n-1}, \widehat{g})$  is a closed odd dimensional manifold with a geometric Spin<sup>c</sup> structure, the differential integration map along  $p_M \colon M \to \text{pt}$  gives the homomorphism

$$(p_M, \widehat{g})_* \colon \widehat{K}^0(M) \to \widehat{K}^{-2n+1}(\mathrm{pt}) \simeq \widehat{K}^1(\mathrm{pt}) \simeq \mathbb{R}/\mathbb{Z}.$$
 (25)

#### Fact ([FL10])

The differential integration map (25) is given by

$$(p_M, \widehat{g})_*[E, \nabla, \alpha] = \overline{\eta}(
ot\!\!/ \mathcal{D}_{E, \nabla}) + \int_M \alpha \wedge \operatorname{Todd}(M, \widehat{g}) \pmod{\mathbb{Z}}.$$

Here the reduced eta invariant  $\overline{\eta}(p_{E,\nabla})$  is given by

$$\overline{\eta}(\not\!\!{D}_{E,\nabla}) := \frac{\eta(\not\!\!{D}_{E,\nabla}) + \dim \ker(\not\!\!{D}_{E,\nabla})}{2} \in \mathbb{R}.$$
(26)

## The bordism formula and the APS index theorem

The Atiyah-Patodi-Singer's index theorem is an index theorem for compact manifolds with boundaries.

#### Fact (Atiyah-Patodi-Singer, [APS76])

Suppose  $(W^{2n}, \partial W, \widehat{g})$  is a compact even dimensional manifold with a geometric Spin<sup>c</sup> structure. Let  $(E, \nabla)$  be a hermitian vector bundle on W. Assuming collar structure on everything, we have

$$\mathrm{Index}_{\mathrm{APS}}(\not\!\!{D}_{E,\nabla}) = \int_{W} \mathrm{Ch}(F_{\nabla}) \wedge \mathrm{Todd}(W, \widehat{g}) - \overline{\eta}(\not\!\!{D}_{(E,\nabla)|_{\partial W}})$$

Here  $\operatorname{Index}_{\operatorname{APS}}(\mathcal{D}_{E,\nabla})$  is the Fredholm index with respect to the "APS boundary condition". In particular we have  $\operatorname{Index}_{\operatorname{APS}}(\mathcal{D}_{E,\nabla}) \in \mathbb{Z}$ . Thus we get

$$\overline{\eta}(\not\!\!\!D_{(E,\nabla)|_{\partial W}}) \equiv \int_{W} \operatorname{Ch}(F_{\nabla}) \wedge \operatorname{Todd}(W, \widehat{g}) \pmod{\mathbb{Z}}.$$
(27)

The APS index theorem, in particular (27), implies the following Bordism formula.

#### Proposition (The bordism formula)

Suppose  $(W^{2n}, \partial W, \widehat{g})$  is a compact even dimensional manifold with a geometric Spin<sup>c</sup> structure. For any  $\widehat{x} \in \widehat{K}^0(W)$ , we have

$$(p_{\partial W}, \widehat{g}|_{\partial W})_* \widehat{x}|_{\partial W} \equiv \int_W R(\widehat{x}) \wedge \operatorname{Todd}(W, \widehat{g}) \pmod{\mathbb{Z}}$$
(29)

Indeed, if we can represent  $\hat{x} = [E, \nabla, 0] \in \widehat{K}_{FL}^0(W)$ , we see (29) = (27). Then the general case follows by the Stokes theorem (check!). Actually the bordism formula also holds in the case dim W is odd and  $\hat{x} \in \widehat{K}^1(W)$ .

#### 1 Introduction

#### 2 Ordinary differential cohomology

- Hermitian line bundles with connection
- Differential characters
- Differential cocycles
- 3 Differential *K*-theory
  - Review : Topological K-theory
  - Chern-Weil constructions
  - The model by vector bundles with connections

#### 4 Additional topics

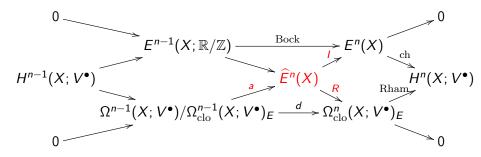
- Generalized differential cohomology
- Differential extension of the Anderson duals

## Generalized differential cohomology

So far we have seen the differential ordinary cohomology  $\widehat{H\mathbb{Z}}^*$  and the differential *K*-theory  $\widehat{K}^*$ .

Actually we can talk about differential extensions  $\widehat{E}^*$  of any generalized cohomology theory  $E^*$ .

Here we explain the axiomatic approach given by Bunke and Schick [BS12]. The idea is to generalize the hexagon as



## The axiom by Bunke and Schick

Suppose we are given

- a generalized cohomology theory *E*,
- a  $\mathbb{Z}$ -graded vector space  $V^{\bullet}$  over  $\mathbb{R}$  (universal choice :  $E^{\bullet}(\mathrm{pt}) \otimes \mathbb{R}$ ),
- a natural transformation ch:  $E^*(X) \to H^*(X; V^{\bullet})$ .

### Definition (The axiom of differential cohomology, [BS12])

A differential extension of  $(E^*, ch)$  is a quintuple  $(\widehat{E}^*, R, I, a)$  such that  $\widehat{E}^* \colon Mfd^{op} \to Ab^{\mathbb{Z}}$  is a functor, and R, I and a are natural transformations fitting into the following commutative diagram where the diagonal sequence is exact.

$$\Omega^{n-1}(X; V^{\bullet})/\Omega^{n-1}_{clo}(X; V^{\bullet})_{E} \xrightarrow{d} \Omega^{n}_{clo}(X; V^{\bullet})_{E} \xrightarrow{0} 0$$

## Remarks

- Hopkins and Singer [HS05] constructed a differential extension  $\widehat{E}_{\mathrm{HS}}^*$  of each ( $E^*$ , ch).
- Given (*E*\*, ch), the uniqueness of its differential extension is highly nontrivial. Bunke and Schick [BS10] investigate into this uniqueness problem. They show the uniqueness under some (very mild) assumptions. As far as I heard, there is no known conterexample for the uniqueness.
- When we take the universal choice  $V^{\bullet} = E^{\bullet}(\mathrm{pt}) \otimes \mathbb{R}$ ,

$$\widehat{E}^n_{ ext{flat}}(X) := \ker \left( R \colon \widehat{E}^n(X) o \Omega^n_{ ext{clo}}(X; V^ullet)_E 
ight)$$

is called the flat theory. It is a homotopy invariant functor, but it is not known that we have  $E^{n-1}(X; \mathbb{R}/\mathbb{Z}) \simeq \widehat{E}_{\text{flat}}^n(X)$  in general [BS10].

• There are variations on the axioms, such as multiplicative differential extensions when *E* is multiplicative.

## The Hopkins-Singer's model $\widehat{E}^*_{ m HS}$

Hopkins and Singer [HS05] constructed a differential extension  $\widehat{E}_{HS}^*$  of each  $(E^*, ch)$ .

For this, we represent  $E^*$  by an  $\Omega$ -spectrum  $E = \{E_n\}_{n \in \mathbb{Z}}$  and take a singular cocycle  $\iota \in Z^0(E; V^{\bullet})$  representing  $ch \in H^0(E; V^{\bullet})$ . An element in  $\widehat{E}^n_{HS}(X)$  is represented by a *differential function* 

$$(c,h,\omega)\colon X\to (E_n,\iota_n),$$

consists of a continuous map  $c \colon X \to E_n$ , a singular cochain  $h \in C^{n-1}(X; V^{\bullet})$  and  $\omega \in \Omega^n_{clo}(X; V^{\bullet})$ , such that

$$\omega - c^* \iota_n = \delta h.$$

We introduce an equivalence relation on differential functions coming from differential functions on  $X \times [0, 1]$ . Taking  $E = H\mathbb{Z}$  and  $\iota \in Z^0(H\mathbb{Z}; \mathbb{Z})$  to be  $\mathbb{Z}$ -valued fundamental cocycle, we recover  $H^*_{\text{HS}}(-; \mathbb{Z})$  explained before.

# Differential extensions $\widehat{I\Omega_{dR}^{G}}$ of the Anderson duals

In Yonekura-Y [YY21], we constructed a differential extension  $\widehat{I\Omega_{dR}^G}$  of the *Anderson dual to G-bordism theory*  $I\Omega^G$ .

The motivation comes from the classification of invertible QFT's (a.k.a invertible phases), in particular the conjecture by Freed-Hopkins [FH21]; an element in  $(\widehat{I\Omega_{dR}^G})^n(X)$  can be regarded as an invertible QFT on *G*-manifolds.

The construction is analogous to the Cheeger-Simons' differential character group  $H^*_{CS}(X; \mathbb{Z})$ .

Here G is a tangential structure group such as SO, Spin, etc.

For simplicity here we assume G is oriented.

An element in  $(I\Omega_{dR}^{G})^n(X)$  is represented by a pair  $(\omega, h)$  consisting of

- $\omega \in \Omega^n_{\mathrm{clo}}(X; (\mathrm{Sym}\mathfrak{g}^*)^G),$
- h is a partition function, which is a map assigning

$$h(M^{n-1},\widehat{g},f) \in \mathbb{R}/\mathbb{Z}$$

to each closed (n-1)-dimensional differential *G*-manifold with a map  $f \in C^{\infty}(M, X)$ . We require the additivity under disjoint unions.

We require the following compatibility condition for  $(\omega, h)$ .

If we have

$$(W, \hat{g}) = (\partial W, \hat{g}|_{\partial W})$$
  
 $(W, \hat{g}) = (\partial W, \hat{g}|_{\partial W})$   
 $(W, \hat{g}) = (\partial W, \hat{g}|_{\partial W}, \hat{g})$ , we have

$$h(\partial W, \widehat{g}|_{\partial W}, f|_{\partial W}) \equiv \int_W \operatorname{cw}_{\widehat{g}}(f^*\omega) \pmod{\mathbb{Z}}.$$

# Differential integrations and $\widehat{I\Omega_{\mathrm{dR}}^G}$

Important examples of elements in  $(\widehat{I\Omega_{dR}^G})^n(X)$  comes from differential integrations.

First we consider the case of  $\widehat{H\mathbb{Z}}$ . Let us fix  $\widehat{x} \in \widehat{H}^n(X; \mathbb{Z})$ . Then we can construct the element  $(\omega_{\widehat{x}}, h_{\widehat{x}}) \in (\widehat{I\Omega_{\mathrm{dR}}^{\mathrm{SO}}})^n(X)$  by

$$\omega_{\widehat{x}} := R(\widehat{x}),$$
  
 $h_{\widehat{x}}(M^{n-1}, \widehat{g}, f) := \int_{M} f^* \widehat{x} \quad (\text{higher holonomy of } f^* \widehat{x}).$ 

The compatibility condition follows by the bordism formula. For example if  $\hat{x} = [L, \nabla] \in \hat{H}^2(X; \mathbb{Z})$ , we have  $(\omega_{\hat{x}}, h_{\hat{x}}) = (c_1(F_{\nabla}), \operatorname{Hol}(L, \nabla)).$  Next we consider the case of  $\widehat{K}$ . Let us fix  $\widehat{x} \in \widehat{K}^n(X)$ . Then we can construct the element  $(\omega_{\widehat{x}}, h_{\widehat{x}}) \in (\widehat{I\Omega_{dR}^{\text{Spin}^c}})^n(X)$  by

$$\begin{split} & \omega_{\widehat{x}} := R(\widehat{x}) \otimes \operatorname{Todd}, \\ & h_{\widehat{x}}(M^{n-1}, \widehat{g}, f) := (p_M, \widehat{g})_* f^* \widehat{x}. \end{split}$$

Again the compatibility condition follows by the bordism formula. For example if  $\widehat{x} = 1 \in \widehat{K}^{2n}(\text{pt}) \simeq \mathbb{Z}$ , we have  $(\omega_{\widehat{x}}, h_{\widehat{x}}) = (\text{Todd}, \overline{\eta})$ .

In this way we get natural transformations

$$\widehat{H}^{n}(X;\mathbb{Z}) \to (\widehat{I\Omega^{\rm SO}_{\rm dR}})^{n}(X),$$
$$\widehat{K}^{n}(X) \to (\widehat{I\Omega^{\rm Spin^{c}}_{\rm dR}})^{n}(X).$$

Actually these are differential refinements of the combinations of Anderson dual to multiplicative genera (universal orientation  $MSO \rightarrow H\mathbb{Z}$  and the Atiyah-Bott-Shapiro orientation  $MSpin^c \rightarrow K$ , resp.) and the Anderson self-dualities of  $H\mathbb{Z}$  and of K [Yam21].

Mayuko Yamashita

### References I

- [APS76] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71–99.
- [BS10] U. Bunke and T. Schick, Uniqueness of smooth extensions of generalized cohomology theories, J. Topol. 3 (2010) 110–156.
- [BS12] \_\_\_\_\_, Differential K-theory: a survey, Global differential geometry, Springer Proc. Math., vol. 17, Springer, Heidelberg, 2012, pp. 303–357. https://doi.org/10.1007/978-3-642-22842-1\_11.
- [Bun12] U. Bunke, Differential cohomology, 2013. arXiv:1208.3961 [math.AT].
- [CS85] J. Cheeger and J. Simons, Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 50–80. https://doi.org/10.1007/BFb0075216.
- [FH21] D. S. Freed and M. J. Hopkins, *Reflection positivity and invertible topological phases*, Geom. Topol. **25** (2021) 1165–1330.
- [FL10] D. S. Freed and J. Lott, An index theorem in differential K-theory, Geom. Topol. 14 (2010) 903–966.
- [FMS07] D. S. Freed, G. W. Moore, and G. Segal, The uncertainty of fluxes, Comm. Math. Phys. 271 (2007) 247–274.

## References II

- [Fre00] D. S. Freed, Dirac charge quantization and generalized differential cohomology, Surveys in differential geometry, Surv. Differ. Geom., vol. 7, Int. Press, Somerville, MA, 2000, pp. 129–194. https://doi.org/10.4310/SDG.2002.v7.n1.a6.
- [HS05] M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and M-theory, J. Differential Geom. 70 (2005) 329–452.
- [HTY20] C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, Anomaly inflow and p-form gauge theories, arXiv:2003.11550 [hep-th].
- [Rud98] Y. B. Rudyak, *On Thom spectra, orientability, and cobordism*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. With a foreword by Haynes Miller.
- [Yam21] M. Yamashita, Differential models for the Anderson dual to bordism theories and invertible QFT's, II, 2021. arXiv:2110.14828 [math.AT].
- [YY21] M. Yamashita and K. Yonekura, Differential models for the Anderson dual to bordism theories and invertible QFT's, I, arXiv:2106.09270 [math.AT].