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Geometric robustness of QHE

® 1980 IQHE: Classical/macroscopic R-valued Hall conductance
measurement, whose range is e—hzZ, with ~ 10710 error.

® Most theory ~ perfect Euclidean plane sample.
® Experimental samples are bumpy and finite sized.

® Quantized Hall conductance persists, ignores fine geometric
details. This is why it is useful, e.g. redefinition of Kilogram.

® Summary: Macroscopic index theory explains how
macroscopic quantization emerges from microscopic QM.
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QHE experiments

Wz Are 2D Interfaces Really Flat?

Zhihui Cheng,* Huairuo Zhang, Son T. Le, Hattan Abuzaid, Guoging Li, Linyou Cao,
Albert V. Davydov, Aaron D. Franklin,* and Curt A. Richter

3n/4 Cite This: ACS Nano 2022, 16, 5316-5324 l:lmu Online
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to examune the cross-sectional structure of various 2D
19v1 interfaces on the length scale of an array of electronic devices
(~12.5 pym in total). Contrary to the conventional assumption
that 2D interfaces are always flat, we find that these interfaces
can be quite intricate and complex. Correlating the interface
Excite here deformation with the corresponding device performance, we

N. Mitchell et al, Nature Phys. (2018)
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One calculation to rule them all

® “Topological invariance”: deform complicated calculations to
special simple ones.

® Non-trivial step is to justify deformation invariance of relevant
calculation.
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® For IQHE, geometric invariances and basic calculation seem to
be missing.
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e |. Differential geometry of Landau quantization
® Riemannian, spin, gauge.

e |I. Functional analysis and traces of commutators
® Cancelling infinities in QM.

e [Il. Coarse geometry and index theory
® Macroscopic quantization of Hall conductance.

Focus is on Geometry and Analysis, not on Topology and algebra.

No specialized condensed matter ideas, models, or background
assumed.
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Geometry in quantum mechanics

® Usually, Schrodinger operator on Riemannian M is
H=-V?4V,

where V is real-valued potential.

e H, and its spectral projections P, will commute with complex
conjugation.

® Such “real” Hamiltonians cannot describe QHE.

® Must replace V with V — /A, where A is connection 1-form
for U(1) line bundle.

® This is a fundamental feature of quantum mechanics!
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Geometry in quantum mechanics

Quantum phenomena do not occur in a Hilbert space, they occur
in a laboratory. — A. Peres.

® A natural Hilbert space to represent position operators on M
is L2(M).
® |s quantum state a L2 “wavefunction” ¢ : M — C?

® No! Even in spinless case, 1 is not a C-scalar field, but a
section of a U(1) line bundle? £ — M.

® Need connection, to compare copies of C living at different
points of M.

® On contractible M with no magnetic field, this may be
forgotten without consequence. (But recall AB-effect!)

2Consider what Galilean invariant “momentum operator” means. ..
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Geometry in quantum mechanics

® Generally, we have a Hermitian vector bundle V — M.

® A (local) “gauge” is an orthonormal frame, making the bundle
look (locally) like M x CN. Gauge group unitarily represented
in CN.

® Relative to a gauge choice, a section of V is described as a
CN-valued function.

e To differentiate v “gauge-covariantly”, we use a “connection”,
or “parallel transport”, defined by properties

vquf-vw = qu/} +f- vaa
Vi(h-¥)=v(h) -+ h- Vi,

u, v vector fields, f, h smooth functions, v section.
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Geometry in quantum mechanics

For simplicity, work with U(1) line bundles, £ — M.

e After choosing a (local) gauge and coordinates, 1 is a

C-valued function of x!,...,x9.

e Correspondingly, V becomes a covariant derivative,
Vi = (8= A,

where A=} A; dx/ is a R = —ju(1)-valued 1-form, called
the connection 1-form.

e “Constant function” with respect to gauge choice generally
differs from “V-constant”. Mismatch is encoded by A.
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Geometry in quantum mechanics

¢ Connection 1-form A is gauge-dependent description of V.

® Rotate gauge choice by applying

g=¢e"N: M= UQ),
A~ A+ dN.

e If A happens to be exact, A = dA, we can apply g = e~ to
find a “better” gauge in which the connection looks “trivial”,

V=0,
® Since d? = 0, an obstruction to A being exact is
dA = Z(@;Aj — 8j¢4,') dx’ VAN dx) = ]:V.

ij
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Geometry in quantum mechanics

e Vs called the curvature 2-form of V. It is
gauge-independent.

® Minimal coupling of charge-q particle to E&M Faraday 2-form
F means: V is locally

V=0 - i%Aj, dA=F" =F.

® “Free Hamiltonian” is

h2
Heree = 2—V*V.
m
® On M = R? and uniformly magnetic field F = b - dx A dy,
this is called the Landau Hamiltonian. But it is defined for
much more realistic geometries.
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Landau operators

® Lab is a Riemannian 3-manifold (I\7l,g), say Euclidean R3,

e Charge q is confined to 2D orientable submanifold + : M < M
(the sample).

o Magnetic field F € Q2(M) is set up.
® Since velocity vector v € TM, only restricted field

Fi=F

affects tangential motion (Lorentz force).
® Pick an orientation on M, thus voly,. Then

.FIB~V01M

for magnetic field strength B € C>*(M).
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Landau operators

e |f M is contractible, B - voly, is the curvature of some
connection V, unique up to gauge equivalence. Then we have
the Landau operator

Hg = V*V.
® Simplest example,
M=R?  B=becR\{0}
has spectrum (Landau '30),
Spec(Hp) = (2N + 1)|b].

e | will explain the differential geometry behind “Landau
quantization”.
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Dirac operator

On a Riemannian manifold, Levi—Civita
connection parallel transports tangent
vectors.

St

Spin connection V5P on spinor fields (fermions) gives Dirac

operator,
d . .
D=3 cle) V" (physics: —ir"V,, A" =ele)
i=1
where {e;}i=1, . 4 is orthonormal frame and {c(e;), c(ej)} = —20j;.
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Dirac operator

® On 2D spin Riemannian manifold M, spinor bundle is,
S=8TaS"

where ST — M is a line bundle with connection VSPin.%,

® + corresponds to

U(1) = Spin(2) 25 SO(2)
0 +i0/2

e e
e Curvature of VSPInLE g
R 1
—vo
+ 4 Volm

where R € C°°(M) is Riemannian scalar curvature function.
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Landau quantization and Dirac index

® Dirac operator is an odd operatoron S =ST & S,

_( 0 D
Ds = ( A ) .
e Couple charged fermion to E&M, twist by Lg — M with

curvature B - voly.
Twisted spin connection on ST @ L has curvature

Spin,+
vB

= (BF &) volu.
® Two possible Laplacians on S @ Lg.

® Dirac?.
Spin .
® V' Laplacian.
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Landau quantization and Dirac index

® The Laplacian for Vlsgpin,
vSpm *vSpln o < B—R/4 >
(V&™) Vg 0 Hgr/a;

is direct sum of two Landau operators.

® Related to Dirac?® by Schrodinger—Lichnerowicz identity:

inyx in R —-B 0
D§®£B:(VSBP ) vsBp +4+< 0 B)'

Equivalently,
e _[(He—B 0
Solgp =\ 0  Hgr+B8+BJ
2
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Landau quantization and Dirac index

. . . _ R
® For large uniform magnetic field strength, B=b > —7,

H,—b 0
Di.. .= 0 Hoe+24b]>0
b+ R b+3 2 -
>0
Only Hp — b can have zero eigenvalues.
® “Lowest Landau level” is Dirac kernel,

Pri1, = ker(Hp — b) = ker D, _,
0 =kerD_4, b> 0.

Breaks SUSY. .. but by “how much”?
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Landau quantization and Dirac index

® Original Landau quantization is R = 0 case,
Hp Spectrum : oy 35 o) */p
® For almost constant B = b, small R and potentials, get
“Landau band”.
Hg Spectrum -l - - .
® We need completeness for essential self-adjointness.
Very different story when M has a boundary!
[ ]

How does Landau quantization of spectrum relate to
quantized Hall conductance?!
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Landau quantization and Dirac index

e LLL is infinitely-degenerate when M is non-compact.

® |ts “size” is the K-theoretic “Dirac index’,
[PLLL] = Index(D) € Ko(C*(M)),

which is a coarse geometric invariant of M.
® Higher-dimensional Landau quantization exists (L+T'24).
® K-theory index is an abstract abelian group element.

® Numerical “macroscopic trace” homomorphism
Ko(C*(M)) — R, which is “Kubo formula” for Hall
conductance from physics.

Values are quantized!
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Landau quantization and Dirac index

® By abstract invariances (later), it suffices to deform to basic
Euclidean plane case, R =0, and B = b.

® |n complex coordinates,
. 0 0— bz
D’S®£b = —2/ (— b 04 s
7
and lowest Landau level is

ker(0 + 22) = W{zme—b|2|2/4 :m>0}

= Bargmann — Fock space.

We will calculate the Hall conductance of this space.
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End of Lecture 1



Last time/today

® | ast time, geometric mechanism for Landau level phenomenon
was given, and LLL was identified with twisted Dirac kernel.

® They have abstract K-theoretic indices, which | will turn into
quantized numbers today.

® These are “renormalized” numbers hidden in intricate
traces-of-commutators (e.g. Kubo formula).

e Explicit calculation for Euclidean Landau levels.

® New technique of Carey—Pincus—Helton—-Howe theory will be
introduced.
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[Position, Momentum] = [X, P] = ih.

e Can you measure h this way?

(| —i[X, P]|ep) = h ??

e Textbook QM: Density matrix p, bounded observable
A = A*,
(A), = Tr(pA) € R.
Need p to be “trace-class” here.

® | ocal observables in Dirac sea state?
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Trace

e For operators on CV,

Ty — > e-values
> diagonal

Tr(AB) = Tr(BA) = Tr[A, B] = 0.
® What about

0?

Tr[X, P] = Tr(ih) = { 5

e Correct answer is

i
TI'[Xregy Preg] = %
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Crash course on trace

® On a Hilbert space /¢, a bounded operator A is trace class if

Z(ekHAHek) < 00, {ek}keN some O.N.B.
k

where |A| = VA*A. Then

TI‘(A) = Z(ek|A|ek) € (C, {ek}keN any O.N.B.
k

® Set of trace class ops. is denoted L1 (7).
Finite-rank C Trace class C Compact operators.
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Lidskii theorem '59

® A deep result:
Tr(A) = Ze-values(A)

Theorem: If AB and BA are trace class, then
Tr[A, B] = Tr(AB) — Tr(BA) = 0.
® [nteresting situation is “almost commuting pair”,
[A,B] € £1 but Tr[A, B] # 0.
In such a situation,

0 # Tr[A, B] = “Tr(AB) — Tr(BA)" = “oo — oc".
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Regularized CCR

Consider f : R — [—3,1], t — ﬁ The regularized
Xreg = F(X), Preg = f(P),

are almost-commuting, and it can be calculated that
i
Tl'[Xrega Preg] = %

After the lectures, think about why this is “robust”!

Xreg, Preg is called an almost-commuting self-adjoint pair.
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Carey—Pincus—Helton—Howe '70s

® Suppose [A, B] € £1. Then polynomials p;(A, B) also
almost-commute, e.g.,

[A,AB] = A[A,B], [ABA|=[ABJA €L
¢ No ordering ambiguity in p(A, B) under the trace,
Tr[A, AB] = Tr(A[A, B]) & Tr([A, B]A) = Tt[A, BA].
® Conclude that 3 bilinear, antisymmetric map

(p1, p2) = Tr[p1(A, B), p2(A, B)].
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CPHH Theorem

Let A, B be self-adjoint a.c. pair. Then there exists principal
function Ga g, such that

/(C (p1.p2} Gas = Te[p1(A. B). pa(A. B)

holds for any polynomials p; = pi(x,y) = pi(x + iy).
® |Vhenever \ is not an essential spectral value of A+ iB,

27 - GA,B()\) = —Index(A + iB — )\) € 7.

Cf. “quantization” of Poisson brackets,
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CPHH Therem

® Each a.c. pair A, B gives an “exact quantization” of phase
space weighted by principal function Ga .

® Gu g is basically unknown on essential spectrum, so trace
formula had little practical utility.

® New interesting examples come from Kubo formula for
Landau levels!

Reminder: A bounded operator S is Fredholm if
Index(S) := dimker S — dim coker S < oc.

Away from essential spectrum, S — X is Fredholm.

31/69



Preview of QHE application

e Kubo formula for Hall conductance has the form
oman = ITr[A, B].

® Furthermore, A + /B has essential spectrum being the unit
square [

e Away from unit square,

—1 )X inside square,

Index(A+iB—)\) =
x( ) {0, A outside square.

1
= Gap = 5.

® Thus opan = iTr[A, B] is quantized.
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Bargmann—Fock space index = LLL Hall conductance

Write P : L2(C) — 1, for the orthogonal projection onto
LLL/Fock space,

1L = spaﬂac{zmef‘z‘z/2 . me N} C [%(C).

f € L°°(C) acts on L2(C) by multiplication operators. Compress it
to the Landau level,
Pr=PfP,

to get Toeplitz operator on 74 1,1, with symbol f.
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Switch functions

® Define switch functions,
0, t<—a,
n:R—1[0,1,  n(t)= {

for some interpolation interval [—a, a]. Also

C —[0,1]
x-switch (x +iy) = m(x)
y-switch (x +iy) = m2(y)

® These are “half-plane position observable”.
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Chiral asymmetry of Landau levels

e Unlike L%(C), subspace Hyyy prefers anticlockwise.
® et 1, by x-switch and y-switch respectively. When
projected to HirL,

PsPr, — PgPr  #0.
~—— ——"

clockwise  anticlockwise

® Individually, Ps Pf, and Py, Py are not trace class.

Theorem (T; T+Xia '24)
For any x-switch f; and y-switch f, (at any angle 0 < 6 < 7),

1
Tr[Pg, Pg| = o (*)
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Proof of Tr[Py, Pg] = 5=

® Rewrite in “Kubo form”,

[Ps, P) = P[[f, Pl [, P]]
® |ntegral kernel of P is smooth and rapidly decaying,

1 22w 1
p(z,w) = —e 2 e =—¢e
T ™

1 2
—5lz—wl Wz

So Pis
® Approx. finite propagation,
® Locally trace class.

® Product [fi, P|[f2, P] is supported near origin,

R AAAAAARAAAR A AAAAAARRY o AOPAPOA

Y
050550007 70070077 /
0000000000005055005507 7
00000000005055525252577 2

LI5Sy

Supp(f)
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Proof of Tr[Py, Pg] = 5=

® So P[f, P][f2, P] and P[fi, P][f2, P] are trace class, and we
can integrate their kernels along diagonal.

® Magnetic translational symmetry + geometry of switches +

residue theorem gives exact integral as %
ivi

(arXiv:2401.06660, cf. Avron—Seiler—Simon '90s) O

Relation to CPHH:
® Write 7 : B — B/K.
® Py, Py, are self-adjoint a.c., so 7(Pg + iP,) is normal in B/K.
® 7(Py) and m(Ps,) have spectrum inside [0, 1], so

ess-Spec(Py, 1ir,) = Spec(m(Pg i) C B
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Tl’[Pfl,P,a] = % and CPHH

i

In T+Xia, we constructed Fredholm inverses for Py jr, — A when A
is in interior of square.

R el?/2R

oi(m+0)/2

This shows ess-Spec(Pf4ir) = .
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Fractional quantization

® As discussed earlier, principal function is therefore

in .
GPfl,,sz = %X., n= IndeX(Pﬁ+;,c2 — )\), rell

® CPHH base formula is

2nopan(P) = —2miTe[Py, Pg| = —2mi m_ n,
A e Y ——— [ 2
-1

with n = —1 due to calculation (x).

® For polynomials p; € Z[x, y], get rational quantization,

2niTx[p1(Pg, Pp), p2(Pr, Pg)] € Q.

Roughly: contribution along indirect paths, e.g., 1212 — 2121.
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Summary of LLL integer conductance

® LLL is a classical function space, whose chiral asymmetry is
detected by pairing its P with switch functions fi, f;.

® By abstract functional analytic reasons + plane geometry, this
pairing is index-theoretic and must be integral.

® Explicitly computable in LLL case. Works for higher LL
(T+Xia)!

® This gives (first?) explicit calculation that every LL has one
unit of Hall conductance.

® |t seems that there are no “finite-propagation” projections
which can exhibit non-zero Hall conductance. The analysis is
mandatory!
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Kubo formula vs experiment

® Rigorous derivation of Kubo formula for ogay?
e.g. De Roeck-Elgart—Fraas, Inventiones '23.

® Such oyay describes a “thought experiment” on infinite-sized
sample, where we “measure” transverse current induced by
slow introduction of voltage.

e Actual QHE experiments measure an aggregate resistivity on
finite-sized sample with boundary.

® Meaning of spectral gap, mobility gap, etc., is not sharp.

® Basic mystery: why quantization of 1/resistivity is almost
exact in sufficiently large finite-sized sample.
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Topological category?

® The phrase “topological phase” is arguably a misnomer.
® Microscopically, dynamics <> geometry.

® Analysis is crucial — estimating complicated system
(finite/with boundary) against clean limiting model (infinite).

® Algebraic topology, roughly Top — Algebra has great
functorial properties, but its locality principle (Mayer—Vietoris)
is much too flabby.

® Rigidity via imposition of symmetry “by hand” defeats the
purpose of genericity.
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Coarse perspective of index

® “Index” or “zero modes” is what's left behind in the low
energy/large-scale limit.

® For bounded M, large-scale limit is a point. Only topological
data remains, and determine the index = # zero-modes.

® For unbounded M, the idea is to label different types of
oo-degenerate zero mode spaces by its homotopy class in a
suitable operator algebra.

® Roe achieved such an index theory of Dirac operators, at the
level of K-theory of Roe-algebras.
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End of Lecture 2.



¢ Kubo formula has Tr[Py,.Ps,| form, makes sense for general
spectral projections P, and manifolds M. Trace converges
under mild conditions given later.

e Quantized Kubo formula is explicitly computed in basic LLL
case, and proved in limited settings using “topology”.

® Real life quantization persists far beyond “topology” setting.

® Quantization has functional analytic origin, valid once very
mild geometric conditions are satisfied (given later). Can
deform from LLL case to these.

® Finite, but macroscopic, aspect becomes apparent.
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Coarse geometry

® Let M be a Riemannian manifold, or some “good
discretization” of it.

® On Hilbert space L?(M), a subset A C M is regraded as
multiplication operator by ya. For example,

AAS = ANA°=0.

® “Roe algebra” Bsn(M) comprises operators L satisfying,

@ Locally trace class, KL,LK € £ when K C M compact.
@ Finite propagation, 3R, such that KLK’ = 0 when
d(K,K') > R.
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2000s: Coarse techniques were anticipated

Periodic table for topological insulators and supercond S

£

Alexei Kitaev
30. N. Higson, and J. Roe, Analytic K-homology, Oxford
University Press, New York, 2000.
31. A. Connes, Noncommutative geometry, Academic Press,
San Diego, 1994.

Anyons in an exactly solved model and beyond

Alexei Kitaev *
In general, a quasidiagonal matrix is a lattice-indexed matrix 4 = (A) with sufficiently
rapidly decaying off-diagonal elements. Technically, one requires that

il <elj =k, a>d,

where ¢ and o are some constants, and d is the dimension of the space. Note that “lattice”
is simply a way to impose coarse R? geometry at large distances. We may think about the
problem in these terms: matrices are operators acting in some Hilbert space, and lattice
points are basis vectors. But the choice of the basis need not be fixed. One may safely re-
place the basis vector corresponding to a given lattice point by a linear combination of
nearby points. One may also use some kind of coarse-graining, replacing the basis by a
decomposition into orthogonal subspaces corresponding to groups of points, or regions
in RY.
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Roe algebras

® Bin(M) is too naive — does not even contain the most
important example, e.g., LLL projection.
¢ To fix this, one usually takes the norm completion, C*(M).
® Convenient for K-theory calculations.
® But Kubo formula typically diverges!
® We constructed a Fréchet Roe algebra B(M):

® Contains all reasonable low energy spectral projections of
sensible gapped Hamiltonians on M,

® Kubo formula always converges, homotopy invariant, always
quantized.
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“Measuring” Roe algebra invariants

Idea: Non-trivial Roe algebra projections P are necessarily

“delocalized3”.

We detect delocalization by partitioning M and correlations of P
along various paths connecting the partitioning sets.

The Kubo formula opan(P) = —iTr[Pg, Pg] is precisely such a
projection-partition pairing.

Precise choice of partition/knowledge of P is unimportant, due to
“automatic cancellation of small-scale contributions”.

*Physicists: No localized Wannier representation
49/69



Coarse partitions

Anyons in an exactly solved model and beyond

In 2000, Kitaev proposed Ao Kitaey -

“real-space Chern

number”. @% v(P) = M4, B,C)
Recently, amorphous @ . ,ZA kZB zzc B
practitioners use this. e

The idea is to consider hopping amplitudes along triangles, with
one vertex in each partitioning set. Sum over all clockwise
triangles minus anticlockwise triangles.

Miracle: Something can survive (but only on unbounded sample!?)
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Coarse partitions

Coarse, non-trivial Coarse but trivial Not coarse.

Write B,(A) for set of points within distance r of A.

A partition M = | |; A; is coarse (transverse) if

() B-(A) bounded Vr > 0.

1
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Coarse partitions pair with Roe algebra operators

o If[; c Bﬁn(M), then
AoLoAilLy ... Aglg

is supported within some coarsened intersection [); B-(A;),
which is a compact set K.

® Since Lg locally trace class,

AoloAilLy .. .Aqu = AploAiL; .. .Aq LqK € L.
~—

t.c.

® In particular, for projection P = P? € Bg,(M), define

Tr[Ao,..., Aglp = > sgn(0)-Tr (PAyo)PAs1) - - - PAs(q)P) -

G€5q+1
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Coarse partitions pair with Roe algebra projections

TrlAo, ..., Agle = 3 sgn(o) - T (PAG(O) Pagy - PAJ(q))

0€5q+1

“Trace of totally antisymmetrized product of Toeplitz operators”.

e Cobordism invariance:
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Coarse partitions pair with Roe algebra projections

* Boundary profile invariance: Can replace A; = x4, by

“partition of unity”,
S
i

with Supp(A;) coarsely transverse.

e Using these invariances, we can show that

2Tr[A, B, Clp = TPy, Pg].

— (TZ —
f
¥
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Kubo formula is a coarse projection-partition pairing

e Mathematically, Kubo formula for o,pn(P) is a pairing
between P and the coarse partition {A, B, C}.

® The pairing has invariances, meaning that it descends to a
bilinear pairing

Ko(Bgn(M)) x HX2(M) — C
[P],[{A, B, C}] = Tr[A, B, Clp.
* Important technical lie: Any realistic P does not have finite
propagation!

® Analysis (trace estimates) needed to make above work, and to
find any interesting examples.
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Universal quantization

® Functional analytic way to see that pairing lands inside %Z.

Tl
— Universal quantization!

® The range is possibly 0, so we must calculate one non-trivial
example.

® For M = R?, the Ko(C*(R?)) = Z, generated by “Dirac
index”. LLL realizes this concretely.

® Calculation is robust against deformations of M preserving the
coarse geometry, perturbations of Hamiltonian.

“topological, but not Top”
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General quantization theorem

We outlined a principal function approach in last lecture. Today,
I'll proceed more “coarse geometrically”.

® QOperators A with A—1 € £1 have a Fredholm determinant.

® |ntuitively, the infinite product of eigenvalues converges, since
most of them are 1.

e If U—1¢ Ly and V —1 € £; individually, then
det(UVU V1) = det(U) det(V) det(U) ' det(V) " = 1.

e Generally, determinant of UVU~1V~! need not vanish: If
[C,D] € Ly, then

det(e€ePe™CeP) = exp(Tx[C, D]). (Pincus + HH)
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General quantization theorem

e Kitaev '00 conjecture: For unitaries U, V,
(U—1)(V —1) € L1 = det(UVU V) = 1.

This was proved by Elgart—Fraas '23.

® The motivation is that if C, D are self-adjoint a.c., and we
know that ' '
(e27I'IC - 1)(e2mD o 1) c E17 (1)

then
1 = det (e27riCe27riDe—27riCe—27riD>

= exp(Tr[27iC,27iD]) = 2niTy[C, D] € Z.
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General quantization theorem

e Condition (1) is hard to use in practice.
® We argued that if

(C - C*(D—-D? e L, (2)

then Condition (1) holds, so Tr[C, D] € 2-Z.

® Proof: The holomorphic function ¢ : z — €2™2 — 1 has zeros

at z=20,1, so

o(z) =Y(z)(z — 22).

(e2ﬂiC _ 1)(e2ﬂiD . 1) = (,O(C)QD(D)
= ¢(C)(C — C?)(D — D*)¢(D) € L;.

t.c. by assumption
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General quantization theorem

e Our Condition (2) holds “by physics™:
® For (magnetic) Schrédinger operators H = H* with spectral
gap, Fermi projection P lies in B(M). Furthermore,

algebra

(Ps — P?)(Ps, — PZ) PfP(1 — fi)PLP(1 — )P
is supported near the compact set

Supp(f) N Supp(1 — f) N Supp(H) N Supp(1l — ),

so we deduce it's trace class.
® Thus opan(P) = —iTt[Ps, Pg] € 2 Z.
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Exact quantization

® Hall conductance is quantized to %Z, without need for
translation symmetry, homogeneity, Euclidean geometry, etc.

® |dentification as a coarse geometry pairing shows its
invariances against small-scale perturbations/imperfections

® Flatness of sample

Uniformity of magnetic field

Holes in sample

Geometric assumptions in deriving Kubo formula

® Gap-closing is of course necessary for transitions, but what
kind of gap closing?
® |arge-scale geometric changes drive the transitions.
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Finite-sized sample and approximate quantization

® In real world, M has finite size, so H has discrete spectrum,
and P is finite-rank. Then [Py, Py, is traceless, so

opan(P) =0...27

® There is no paradox: non-trivial exact quantization holds in
thought experiment with infinite-sized sample.
e Hall conductivity is a bulk property.

® Let r be the (approximate) propagation of P. Choose a bulk
subset K C M which, for some R > r,

® Contains the R-thickened intersection of the partition
® Stays at least distance R from the sample boundary OM
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Finite-sized sample and approximate quantization

® The bulk contributes
oHall,k(P) = —2iTr(KAKPKBKPKCKPK + antisymm)

Dependence on cut-off R > r is small, because P has rapid
decay.
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Finite-sized sample and approximate quantization

Now opan k(P) need not vanish, and is not exactly quantized,
because KPK is not a projection.

Sample M is embedded in infinite-sized M. True Hamiltonian
H on M is a restriction of the fictitious H on M, with some
boundary conditions imposed.

For the K-truncated Fermi projections, we have
KPK ~ KPK.

® We get approximate quantization,

1

onank (P) ~ omank (P) ~ oman(P) € ZZ'
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Finite-sized sample and approximate quantization

Precision of quantization depends on how well P approximates P,
decay rate of P (spectral gap size), volume growth rate of M...
Numerical convergence [Mitchell et al 2018].

Basic requirement is R > r ~ B~1/2 i.e. macroscopic sample!

AB
AT
fOOO o{(

Note: The boundary part, K“PK* is not approximated by
K¢PK¢, it must be removed!
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Quantum Hall experiment

® Material has electron density p, non-interacting (~ 0K).

® Each Landau level has e—f electrons/unit area.

e Filling fraction v = %’% is varied by controlling b.

ke i=2

—

® At large b, it was found that Hall resistivity ppan = Uﬁin is

h 1

?m, Vv =~ integer.

PHau(V) =

66 /69



Quantum Hall experiment

2 . .
® So opan ~ 5 Int(v) when v is near an integer.

e Geometric imperfections broaden the Landau levels, and allow
v to vary “continuously”.

® v = integer corresponds to gaps between idealized Landau
levels; states are localized (maybe Anderson). Varying v here
doesn’t change integral conductance.

® v ~ half-integer corresponds to core of Landau band; states
are “very delocalized”. Interpolation of integral conductance
occurs here.

67/69



Macroscopic Planck constant

Magnetic length scale is

26nm/+/#Tesla ~ 10nm.

Size of M > 10nm, so quantization would be very close to
exact. Experimentally, 1071 error.

. e2
QHE gives access to <.

Josephson junction (macroscopic) gives %

Ironically, macroscopic measurements give best access to h.
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Quantum kilogram

s(econd) = 9192631770 ticks of Cs-133 atomic clock
(speed of light) x s
299792458

m(etre) =

® Prior to 2019, kilogram was locally defined,
Old kg = prototype in Paris.

® For > 100 years, we've known about Planck’s constant, and
could define “quantum kilogram” by

h=:6.626...72 x10**(kgy) - m*s L.

fix convention

o After QHE,

new

h =: 6.62607015 x 1073* - (kgy,) - m*s™ 1,
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