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1. Introduction to Random Matrix Theory

Random matrices are N x N matrices, whose entries are random
variables with a given probability law.

Goal of Random Matrix Theory: establish statistical proper-
ties of eigenvalues and eigenvectors of random matrices, in the
limit N — oo.

This is typically a challenging task because relation between
matrix entries and eigenvalues and eigenvectors is complicated.

We will focus here on hermitian and real symmetric ensembles.
Eigenvalues will always be real.



Gaussian Unitary Ensemble: consists of N x N hermitian ma-
trices H, with probability density

N 2
dP(H) = const-e~2 1 MH g
with

dH = H dRe h;;dIm h;; H AR
1< k=1

Independence: writing Tr H? = Y, ;|h;;]%, we find

dP(H) ~ [[ e Nil*dRen;; ;dImh,, He Mdh
1<J

= Entries are independent Gaussian variables.

Unitary invariance: if H is a GUE matrix and U is unitary and
fixed, then UHU™ is also a GUE matrix.



Joint eigenvalue density: explicitly given by:

N
PNO\L-- AN)—Const H()\ _)\)26 22
1<J

Jj= 1>‘2

Correlation functions: we are interested in

k
p )(M,---J\k) = /d)\k—l—l---dANpNO\la---a)\N)

Orthogonal polynomial: {¢n},cn Hermite functions. Then

pPN(A1, ..., Ay) = Cp det (% 1 (VN )>1<w<N and

p%)(/\l,---,/\k) =

(N — k)IN* et (K(N)(\/NA@',\/N)\]-))
N \/N 1<2,7<k

N—-1
with KO (z,9) = 37 un(@)in(y) = wN(WN_l(Z . Zfiv R
k=0



One-point function pg\P()\) is the density of states at .

As N — oo, we find

Wy = KPVCVNAVEY - 1N <2) [ X2
P = VN " on g P
Local statistics: for k > 2, p%f}()\l, ..., Ar) describes eigenvalue
correlations. Can only have a limit when \q,..., A, are in interval

of size ~ 1/N. In this case, find Wigner-Dyson distribution

1 (k) (E Tq Tl > (Siﬂ(ﬂ‘(:l:i - xj))>
+ N D & — det
E(E)'N Npsc(E) Npsc(E) (i —x5) ), i<k

GOE, GSE: similar formulas can be derived for Gaussian en-
sembles with different symmetries (orthogonal and symplectic
ensembles).



Applications:

e Heavy Nuclei: random matrices have been introduced by Wigner
to describe excitation spectra of heavy nuclei.

e Anderson Model: in the isolator phase, the eigenvalues of the
Anderson Hamiltonian are Poisson distributed. In the metallic
phase, the eigenvalues are expected to follow a Wigner-Dyson
distribution.

e Quantum Chaos: integrable classical dynamics should lead to
Poisson distribution of energy levels. For chaotic classical mo-
tion, the energy level are expected to follow GOE statistics.

Universality Conjecture (vague): the (local) statistics of en-
ergy levels of chaotic and disordered systems depend on the
symmetries but are independent of further details of the system.
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Invariant Ensembles: N x N hermitian matrices H with proba-
bility density
N
dP(H) = const - e~ 2 '"VUHgp where V(\) > 0.

For V(X)) = A2, this is just GUE. Otherwise, ensemble still invari-
ant w.r.t. unitary conjugation, but entries are not independent.

The joint probability density of the N eigenvalues is given by

N
p(A1,...,An) =const- [ (N — Aj)ze—%zle\/(/\j).
1<J
Under appropriate conditions on V, universality for invariant en-
sembles was proven by Pastur-Shcherbina and by Deift et. al.:

1 (k)(E—I- xq o T ) . det (Siﬂ(ﬂ'(wi—m]‘))>
i<k

ok(E)" No(E) " T No(E) (2 — ;)

Question: IS it possible to establish universality in situations
where the joint probability density is not explicitly known?
.



2. Wigner Matrices and the Local Semicircle Law

Hermitian Wigner Matrices: N x N matrices H = (hy;)1<k <N
such that H* = H and

1

hkj:\/—ﬁ@:kj—l—iykj) forall 1<k<j<N
2

hkk:\/—ﬁxkk forall 1< k<N

where xp;, y; and zp, (1 <k < N) are iid with

2

and Ee“"J <« oo for some o> 0

5 1
Exjk = 0, Ea:jk = 5

Remark: scaling so that eigenvalues remain bounded as N — oo.

N N
E Y AM=ETrH°=E Y |hj>=NE|hjl|°
a=1 J,k=1

- ]}_4:|hjk|2 = O(N D)



Semicircle Law (Wigner, 1955): for any § > 0,

NIE -3 E+J]
Nn

Hm |im P
n—0 N—oo

— PSC(E)‘ > 5) =0

where

N[I] = number of eigenvalues in interval I
1 | E?
F)=—{/1— —.
psc(E) 27 4
Remark 1: semicircle independent of distribution of entries.

Remark 2: Wigner result concerns DOS on macroscopic scales,
in intervals containing order N eigenvalues.

Question: What about density of states on smaller scales?



Theorem [ErdOs-S.-Yau, 2008]: Fix |E| < 2. Then, for any
o> 0,

Semicircle law holds up to microscopic scales.

Intermediate scales: if n(N) — 0 such that Nn(N) — oo, we
have

N [E . U(N); E _|_ U(N)]
lim P 2 2
Nesoo Nn(N)

—psc(E)| >0 | =

Previous results by Khorunzhy, Bai-Miao-Tsay, and Guionnet-
Zeitouni (up to scales n(N) ~ N—1/2),

10



Main ingredients of proof: upper bound on density and fixed
point equation for Stieltjes transform.

Upper bound: states that

if n=n(N)>1/N.

To show the upper bound we observe that

NIE -n/2,E+n/2] =) 1(|pa — E| < n)

2
n 1
< = nIm
<) n y .
o (o — E)2 4+ n? o o — E —in
and hence
1 1 1 N 1
=< —Im Tr = —Im E: i, ]
P=e N H—FE—in N 0B P
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Decomposing H as

we find (Feshbach map)
1 1 1

(1,1) = =
H— 2 hii1—z—a-(B—z)"la hll—Z—%Za%
with
£o = Nl|a - ugl|? = Eé&=1
where Ao and uy are eigenvalues and eigenvectors of B.
We conclude that, with high probability,
1 1
Im (L1 $ :
—ETw IM ¥ 20X "2
N 1 : S L
Im NTr B—E—in Pminor P
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Fixed point equation: we consider the Stieltjes transform

1 1 psc(y)
my(z) = NTrH — msc(z) = /d

Convergence of the density follows if we can prove that

mpy(z) = msc(z), forIm z=n> K/N.

The Stieltjes transform msc solves the fixed point equation

1
msc(z) + z+msc(z) 0

It is enough to show that, with high probability,

1
my(z) + T (2) <6

To this end, we use again

mn(z) = Z 1 @

1 §
7 hij =2 N 2a G
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3. Delocalization of Eigenvectors

Let v = (vy,...,vyx) be an ¢o-normalized vector in C&. Distin-
guish two extreme cases:

Complete localization: one large component, for example

v=(1,0,...,0) = |vllp=1, forall 2 <p< o

Complete delocalization: all components have same size,

1,1
v=(N"12 . N2 = |vl,=N2tr«1

Theorem [Erdds-S.-Yau, 2008]:
Suppose Ee’lijl < oo for some v > 0. Fix Kk > 0, 2 < p < o0.
Then

1,1
IP(EIV Hv=ypv,pe[-24+k,2 -kl |vl]o=1,||vlp > MN 2—|-p>
< Ce— VM
for all M, N large enough.
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Idea of proof: we write v = (v1,w). Hence Hv = pv implies

(2 ) e

By normalization

1
1 =v4w? = |u]?=

(504 — Nla'ua|2)7
1 + NZO{ (,u )\ )2

where Ao and u, are the eigenvalues and the eigenvectors of B.
1 - Nn?
NLnQ Za:|)\a—,u|§q7§oz T o | Aa = p| < 0}

Choosing n = K/N, for a sufficiently large K > 0, we find

1| <

K?2 1 K
< c—
N [{o: |ha—p| < K/NY ~

with high probability, because, by the local semicircle law, there
must be order K eigenvalues \q with |A\q — | < K/N. L]
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4. Level Repulsion

Theorem [Erd6s-S.-Yau, 2008]: Suppose Ee’l%iil < oo for
some v > 0, fix |E| < 2.

Fix k> 1, and assume that the probability density h(z) = e~ 9(z)
of the matrix entries satisfies the bound
1

~ 1
h(p)| < (1 Cp2yo/2”

Z > 2,
(p)| S T op2)er2 for o > 5+k

hg'

Then there exists a constant ., > 0 such that

P(N[E—i E+— ] >k) < ) ek
2N 2N
for all N large enough, and all € > 0.

Remark: for GUE, we have

p(pts - mn) = [ (i — 1j)? = PN >k) =&
i<j

2
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5. Universality of hermitian Wigner Matrices

Universality: local eigenvalue statistics in the Iimit N — oo is
expected to depend only on symmetry, but to be independent of
probability law of matrix entries.

Remark: universality at the edges of the spectrum was estab-
lished by Soshnikov in 1999 using the moment method. Here 1
will consider universality in the bulk of the spectrum.

In 2001, Johansson established the validity of bulk universal-

ity for ensembles of hermitian Wigner matrices with a Gaussian
component (result was later extended by Ben Arous-Péché).
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Johansson’s approach: consider matrices of the form
1
H=Hy+1t2V

where V' is a GUE-matrix, and Hg is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of Hg evolve
under a Brownian motion up to time ¢ (more prec. t/N).

T he distribution of the eigenvalues of the matrix evolves then
according to Dyson’s Brownian motion

dBn | 1 1
=+ = > dt, 1<a<N

VN N g2 da— Ag -

where {By, : 1 < a < N} is a collection of independent Brownian
motion.

d)\a —
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The joint probability distribution of the eigenvalues x = (x1,...,xN)
of H is

p() = [ dy ai(x;y) po(y)

where pg is the distribution of the eigenvalues y = (y1,...,yn)
of Hp and

N/2
NUEANGD ot (o~ Naymud?/2)N
(2nt)N/2 An(y) jk=1
with the Vandermonde determinant

u(x;y) =

N 1 1 ... 1
A(x) =[] (&; — z;) = det o2 e N
=~ N oo N

This can be proven using the Harish-Chandra/Itzykson-Zuber
formula

/ 6_% TF(U*R(X)U—HO(Y))QdU —
U(N)

det (e_%(xj_yi)Q)

A(x)A(y) 1<4,j<N
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The k-point correlation function of p is therefore given by

PP, = [P, o y) po(y)dy

where

(k)(fbl,---,wk;}f) = /Qt(X;y) drgyq...doy
(N — k).
o |

det (Kt,N(fL’z’» T y)>1<7j i<k
with
N
(2mi)? (v — u)t
x [ dz [ dw (e Nw—ww=—r)/t _ 4
/7 /l’ ( )JH1 ° T y]

1 t Yy — T ) N (w?—2vw—2z242uz) /2t
X —r4+z—u——
. <w r+z—u Z (w =) C =) e

Kt)N(’U,, v, Y) —

where ~ is the union of two horizontal lines and I is a vertical
line in the C-plane, and r € R is arbitrary.
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Convergence of k-point correlation follows from

1
No(uw) (“ +

-t 5 ) sinm(xo — x1)

> for a.e. y
N @(u) No(u) m(z2 — 1)

To prove convergence of Kt,N to sine-kernel Johansson uses

1
Ky _
No(u) ( Ut ,Y)
/QWz/I‘—hN(w)gN(Z w)eN(fN(’w)—fN(Z))

with
1 1
In(z) = 2(7’2 —2uz) + ; 09(z — y;)

gn(z,w) = . [w—r+2z—u] - L yj —r

t(w—r) N(w—r)z(w y;i)(z — y;)
hv(w) = %(e—T(w—T)/tQ _ 1)

and performs a detailed asymptotic saddle analysis.
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Beyond Johansson: what happens if t = ¢(N) — 07 Consider

t = N—1—|—€

Similar integral representation but asymptotic analysis is more
delicate and requires microscopic convergence to the semicircle.

Theorem [Erdds-Péché-Ramirez-S.-Yau]: Let p](\]f) be the
k-point eigenvalue correlation function for the ensemble H =
Hg + t1/2V, where Hgp is an arbitrary Wigner matrix, V is an
independent GUE matrix, and t > N~ 1+¢ Then

, 1 (k) 1 Tl
J\MPOO Pk (E) PN <E + Npsc(E) b NPSC(E)>
1 [ . k
— et (Sln(w(azz :1:]))>
i) )iy
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Time reversal to remove Gaussian part: let h(x) be the den-
sity of the matrix elements of Hg.

1
The matrix elements of H = Hg + t2V have density

2
h(x) = (etLh)(z),  with L= %;?
Then
|he(2) — h(x)|?
h(x)

Letting F = h®N? and F, = (etLh)®N? we find

dr < Ct?

Fy— F|?
/' = ey .. deys < ON2E2

It is only small for t < N~ 1.
Hence t = N—17¢ js still not enough.
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We would like to write

h = etl on with v = e tlp,

But the heat equation cannot be reversed.

= approximate inversion of heat semigroup

Define vy = (1 —tL)h. Then
hy = el ~ b+ t212h (while etlh ~ h 1+ tLh)

T herefore

hy — h|?
/| th | da:SCt4

Hence, if F = h®N? and F; = h?N°, we find

F,— F|?
/' tF | dry...dzys <CN?t* <1 fort= N"17¢
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Theorem [Erdds-Péché-Ramirez-S.-Yau]: Suppose H is a
hermitian Wigner matrix, whose entries have law g = el for
h € C(R). Then,

. 1 (2) ( T T2 )
lim E E
N 2B PN\ T Npee () T Npsc(B)

sin?(w(z1 — x2))

=T e —a0))?

The result extends to higher correlation functions, assuming
more regularity on h.
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Tao-Vu approach: let H and H' be two Wigner matrices whose
entries have distribution z,y; assume that typical distance be-
tween eigenvalues is order one (z,y ~ vV N).
Assume that
Ez™ =Ey™ for 1<m<4

Fix k> 1 and consider a nice function G : R¥ — R. Then

EGay(H), -, Aay(H)) = EG(Aay (H), - ., Aoy, (H))| = 0
as N — oo.

Idea of proof: change one entry at the time.

H(z) = matrix obtained from H replacing (i, j)-entry with z
F(z) =GW\a(H(2))) (we take k= 1)

x5
F(z) = F(0) + 2F'(0) + --- + aF<’“><0> + ..

5
F(y) = F(0) +yF'(0) + - + %F@)(m + ..
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T herefore
EF(z) — EF(y)| < E|z[°F*)(0)
Observe
E|z|® ~ N5/2 put FU™(Q) ~ N

In fact

O

F'(0) = G'(Ma(H)) - o= G’ Oa(H)) - va(i)va(j) ~ N1

4]
Hence

[EF(z) - EF(y)| < CN /2

Repeating this argument N2 times, we can replace all entries of
H; the total error is O(N—1/2).
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Universality (Tao-Vu): for given H, find Johansson matrix
Hy=e 20y + (1 — e HY2y

such that H and H; have four matching moments.
This is only possible if entries are supported on at least 3 points.

Universality (Erd6s-Ramirez-S.-Tao-Vu-Yau): compare H with
the evolved matrix

Hy=e 20+ (1 — e H/2y
with ¢ = N—119

Moments do not match, but they are very close.
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6. Universality for Non-Hermitian Ensembles

The local relaxation flow: Dyson Brownian Motion describes
evolution of eigenvalues. Equilibrium measure is GUE measure

e~ H(x) N a:? 2

=1 i<j

The evolution of an initial probability density function fu w.r.t
DBM is described by the heat equation

Otft = L ft,
with the generator

N1, N 1 1 1
J

Relaxation time of Dyson’'s Brownian motion given by
1
ﬁvzH >0(1) = relaxation on times O(1)
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Idea: introduce new flow with shorter relaxation time. Define

N (2
ﬁ(x)=NLZ (2‘7+222( 7]))_Z|Og|$] 4|

= H(x) —I— Z (zj —7;)°

where Vg IS position of the 7-th eigenvalue w.r.t. semicircle law,
and R=N"°¢ K 1.

Introduce new equilibrium measure w(x) = e_H(X)/Z and new
evolution

Orgr = Lgy with L=L-—— > (z; —v5) -

Observe that

V2H
H(x) > CR2 > N?¢>1 = relaxation on short times




Hence, if G;n(x) = G(N(:ci — Zig )5 N(@igp_1 — xi+n)), we
find

1 | 1 | Dy (\/g)R?\1/2
|/N§]9wdw‘/ﬁgg@’ngd“'SC”( V)

with the Dirichlet form

N

Do, (h) :% 3 /|8xjh‘2 dw
j=1

On other hand, if difference between generators is small, we
expect fiu ~ w = vu. In fact, for ¢t > R?, we find that

Dw(y/ ft/) < CNA where A=K |z; —;]%.
J

From microscopic semicircle law, we find A < N—¢.
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This implies universality for ensembles of the form Hgy + t1/2v,
if t > N—¢, for arbitrary symmetry.

Time-reversal argument implies universality for all matrices whose
entries have enough regularity.

Combining with the result of Tao-Vu, we find universality for
arbitrary ensembles.

Theorem [Erdds-S.-Yau (2009), Erdds-Yau-Yin (2010)]:
Fix |[Fg| <2, k€N, § >0. Then

Eo+46
/ 5dE/dwl,...da:k()(a;l,...,:ck)

Eo—
o N e o

X

No(E) No(E)
B (]{;) L1 L
pGaUSS<E + No(B) L E+ NQ(E)>] —~0

as N — oo.
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7. Averaged density of states on arbitrarily small scales

Density of states (DOS) on intervals of size ¢/N:

—N[E——E+i]—1§jl(.iv|,\ — E| <¢/2)
oN'T ToN| T e & e T I =E

For e < 1, convergence in probability cannot hold.

Averaged DOS:
1 5 €

e R E CELCE S Chs)

Universality implies that, as N — oo,

1
EN|[E- 5B+ o

for fixed € > 0.

N] — psc(E)

Question Does averaged DOS converge to semicircle on smaller
intervals?
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Theorem [Maltsev-S., 2010]: Let h be the prob. density
function of the entries of the hermitian Wigner matrix H. Let

W ()|
h(s)ds <
/{h(s) s (s)ds < oo
Then we have, as N — oo,
1 g g
“EN [E—— E —] s pec(E
c o BT o) 7 psc(E)
uniformly in € > 0.
In other words,
im liminf TEN [E iy 5]— (E)
Nosoo 650 & ON' oN| e

and

1 € g
lim limsup —EN [E—— E —] — E
N T SUP 2 on Bt o] = pselB)
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Upper bound on average DOS (Erdds - S. - Yau, 2008):

we use
NE-E+ < ZimTr ,
2N’ 2N N H—E—z%
and the representation
1 1 1
—z(l’l) - hi1 —z—(a,(B - z)~1a) B h11 —Z—%Ea%
where

fa:N|ua'a|2 = Eéqa=1
We conclude that

EN|E - E+i]

ON' 2N
< ek 1 175
((h11 = B = Yada€a)? + (5 + Xa caba)?)
with
o = € = N(Aa — F)

N2(Ao — E)2 4 ¢2
34
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Convergence to semicircle: define the Stieltjes transform

1 1 1 1

my(z) = —Tr —
N(2) N H-—=z N;,ua—z

The DOS on scales /N is related with the imaginary part

e\ €
Im my (E—I_ZN) _%:NQ(,LLa—E)Q—I—eQ

To prove convergence to semicircle, it is enough to show
1

“EIm my (E + 7;3) s psc(E)
73 N

uniformly in € > 0.

To this end we show the upper bound on the derivative
|d]EIm (E—|—'8>'<CN
dE N N/ =

uniformly in € > 0.
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The upper bound on the derivative implies that, for small but
fixed kK > 0,

N [E+55
~ NAE'EIm my (E’—I—z—)
TR JE—5x
1 N (pto — E — £ N (o — E + 5
= —E ) |arctg ( ( “ 2N>) — arctg ( ( “ 2N
TR ‘G € €
1 K K
~ = ]EJ\/'[E——E—l——]
K 2N 2N

Hence, letting first N — oo, and then k — 0O,
K

1 € K
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