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Abstract. We classify, up to stable conjugacy, centrally ergodic actions α of R

on an injective semifinite von Neumann algebra with an invariant trace and with

Γ(α) �= R. We also classify actions of R on an injective semifinite von Neumann

algebra with a non-trivial center, and which admit an invariant trace.

§0 Introduction

In this paper, we study one-parameter automorphism groups on injective semifi-

nite factors up to stable conjugacy. Although there has been steady progress on

the classification problem of discrete group actions on injective factors (cf. [Connes,

2], [Connes, 3], [Jones, 6], [Jones-Takesaki, 7], [Ocneanu, 11], and [Sutherland-

Takesaki, 14]), the problem for continuous groups has not been studied. It is

necessary to understand actions of R for the theory of general continuous groups,

but little is known for actions of the real number group R, beyond the Arveson-

Connes spectrum theory and Takesaki duality. This paper is the starting point of

our study of continuous group actions on injective factors. As a first step, we will

study the easier case where the Connes spectrum Γ(α) is not equal to the entire

group R̂ = R, and get the following main theorems.
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Theorem 0.1. Let M be a semifinite injective factor and α and β actions of R

with Γ(α), Γ(β) �= R̂ and α−1(Int(M)), β−1(Int(M)) �= R. Let

M �α R ∼= A(α)⊗̄N (α),

M �β R ∼= A(β)⊗̄N (β),

be the central decompositions, where A(α) and A(β) are the centers and N (α) and

N (β) are factors. Then α and β are stably conjugate if and only if N (α), A(α)

and N (β), A(β) are isomorphic respectively, and the flows given by α̂ and β̂ on the

centers A(α) and A(β) are conjugate.

Note that if α−1(Int(M)) = R, then α is cocycle conjugate to the trivial action

by a classical result ([Kallman, 8]).

Theorem 0.2. In the context of Theorem 0.1, we have

(1) If Γ(α) = 0, then N (α) is isomorphic to L(H) or the hyperfinite type II∞

factor R0,1.

(2) If Γ(α) ∼= Z, then N (α) is isomorphic to R0,1.

Using Takesaki duality, we are also able to classify centrally ergodic actions of

R on semifinite injective von Neumann algebras under the assumptions that the

action admits an invariant trace, and the center is non-trivial.

Modular automorphism groups, a special type of actions of R, have been well

studied. The classification problem of injective type III factors was reduced to the

classification of group actions on the hyperfinite type II factors. Our problem is
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related to the uniqueness problem of the injective type III1 factor, which was solved

recently by [Haagerup, 5]. Our result here is also related to Connes’ classification

of injective type III0 and IIIλ factors, 0 < λ < 1, [Connes, 4].

The condition Γ(α) �= R in our result is a strong restriction on the action α.

But the difficulty for the case Γ(α) = R is very similar to that in the uniqueness

problem of the injective type III1 factor. In our context, Haagerup’s deep result

means that an action α of R on R0,1 with tr ◦ αt = e−ttr, t ∈ R, is unique up

to conjugacy, but the case of trace preserving actions with Γ(α) = R is still open.

The author hopes that this case will be settled in the near future.

In §1, we prove a version of Theorem 0.1 for semifinite injective algebras. In §2,

we will show that the characteristic invariant is trivial and N (α) is of type II∞ if

we have Γ(α) ∼= Z and M is a factor. In §3 we construct examples to show that all

the possible cases in Theorem 0.2 can actually occur.

§1 General cases

Let M be a semifinite injective (separable) von Neumann algebra, and α a

centrally ergodic action of R on M (i.e., Z(M)α = C) such that M has an invariant

trace τ for α.

First, we deal with the case where Γ(α) = 0. (See Définition 2.2.1 in [Connes, 1]

for the definition of the Connes spectrum Γ(α).) We may exclude the case where

all the αt’s are inner, because in this case the action is cocycle conjugate to the

trivial one by a result in [Kallman, 8]. We will classify actions of this type up to

stable conjugacy. (See page 216 in [Jones-Takesaki, 7] for the definition of stable

conjugacy.) We note that by the result of [Katayama, 10], we know that the crossed
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product algebra by R is properly infinite unless the action is inner for every t ∈ R.

We construct an invariant for this action α as follows.

We denote by σ the action α ⊗ Adλ−1
R on M̃ = M⊗̄L(L2(R)), which is the

second dual action of α by Takesaki duality (see [Takesaki, 15]), where λR is the

regular representation of R. (Here we use the definition α̂s(ut) = e−istut for the

dual action.) In the following, we consider the system {M̃, σ} instead of the system

{M, α}. We still have Γ(σ) = 0, so by the definition of the Connes spectrum, there

exist a central projection e in the fixed point algebra M̃σ, which is isomorphic to

the crossed product M �α R, and a positive ε such that

Sp(σe) ∩ ([−3ε,−ε] ∪ [ε, 3ε]) = ∅.

Then by Lemme 5.2.3 in [Connes, 1], we have a positive non-singular self-adjoint h

in M̃σe

e such that

Sp(t 	→ (Ad(hit) ◦ σe
t )) ∩ [−ε, ε] = {0}.

We would like to get the equality Sp(σ) ∩ [−ε, ε] = {0} by replacing σ within its

stable conjugacy class. By considering σ⊗ i on M̃⊗̄L(L2(R)) if necessary, we have

a partial isometry u in M̃ such that e = uu∗ and 1 = u∗u since e is properly infinite

and the central ergodicity of σ implies that the central support of e in M̃ is 1. We

define

vt = u∗hitσt(u) ∈ M̃, for t ∈ R,
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so that we have

vtv
∗
t = u∗hitσt(u)σt(u∗)h−itu

= u∗hiteh−itu = u∗eu = u∗uu∗u = 1,

v∗
t vt = σt(u∗)h−ituu∗hitσt(u)

= σt(u∗)eσt(u) = σt(u∗uu∗u) = 1,

vsσs(vt) = u∗hisσs(u)σs(u∗hitσt(u))

= u∗hisσs(u)σs(u∗)hitσs+t(u)

= u∗hi(s+t)σs+t(u)

= vs+t.

Thus {vt} is a unitary cocycle for σ, so we define a new action on M̃ by Ad(vt)◦σt,

and denote it simply by σ again. Now we have Sp(σ) ∩ [−ε, ε] = {0} as desired.

By considering σ⊗ i on M̃⊗̄L(L2(R)) if necessary, we may assume M̃σ is properly

infinite. Then by Lemme 5.3.4 in [Connes, 1], we have a unitary U in M̃σ([ε,∞))

(see Définition 2.1.2 in [Connes, 1] for this notation) such that we have

M̃ ∼= M̃σ
�θ Z, θ = Ad(U) ∈ Aut(M̃σ).

Suppose Z(M̃σ) ∼= L∞(Y, ν). Then there exists a measurable real-valued function

k on Y such that σt(U) = eitkU . Because Spσ(U) ⊂ [ε,∞) (see Définition 2.1.2 in

[Connes, 1] for this notation), we may assume that k(y) ≥ ε for all y ∈ Y . Consider

the crossed product M̃ �σ R. Then we have

M̃ �σ R ∼= (M̃σ
�θ Z) �σ R

∼= (M̃σ
�σ R) �θ̄ Z,
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where θ̄ is defined by

θ̄(λ(t)) = eitkλ(t), for t ∈ R,

θ̄(x) = θ(x) = UxU∗, for x ∈ M̃σ.

In the above expression, we also have M̃σ
�σ R ∼= M̃σ⊗̄L∞(R), where we iden-

tify λ(t) with the function, s ∈ R 	→ e−ist ∈ C, on R. Then the action θ̄ on

L∞(Y, ν)⊗̄L∞(R) is given by

(θ̄ϕ)(y, t) = ϕ(T−1y, t − k(y)) for ϕ ∈ L∞(Y, ν)⊗̄L∞(R),

where T is an automorphism on Y corresponding to the automorphism θ on

Z(M̃σ) ∼= L∞(Y, ν). Thus we have the following lemma.

Lemma 1.1. Under the above assumptions and notations, we have

Z(M̃ �σ R) = (L∞(Y, ν)⊗̄L∞(R))θ̄ ∼= L∞(X,µ),

where X = { (y, t) | y ∈ Y, 0 ≤ t < k(T−1y) } and dµ = dν × Lebesgue measure.

Proof. Because the action θ̄ on Z(M̃σ
�σ R) ∼= L∞(Y, ν)⊗̄L∞(R) is aperiodic, it

can be regarded as a free action of Z on M̃σ
�σ R. So by the relative commutant

theorem for free actions of discrete groups (Lemma 7.11.10 in [Pedersen, 12]) we

know that Z(M̃ �σ R) ⊂ Z(M̃σ
�σ R). An element x ∈ Z(M̃σ

�σ R) is in

Z(M̃ �σ R) if and only if x commutes with the unitary u implementing θ̄ on

M̃σ
�σ R. But this condition is clearly equivalent to θ̄(x) = x.

6



For the set X as in the lemma, we know that

θ̄n(X) ∩ θ̄m(X) = ∅, for n �= m,

⋃
n∈Z

θ̄n(X) = Y × R,

so the fixed point algebra (L∞(Y, ν)⊗̄L∞(R))θ̄ is isomorphic to its restriction

L∞(X,µ). Q.E.D.

Note that the dual action σ̂ on the “measure theoretic spectrum” { (y, t) | y ∈

Y, 0 ≤ t < k(y) } of this center is the flow under the ceiling function k(T−1y) for

the transformation T−1 on Y because σ̂ is just a translation for the L∞(R) part in

the above expression.

Because σ is centrally ergodic, θ is also centrally ergodic, thus M̃σ is isomorphic

to M̄⊗̄L∞(Y, ν) for an injective factor M̄.

We would like to express M̃ �σ R in the form of N⊗̄L∞(X,µ) and get the

relation between σ̂ and θ̄.

We consider
⊕∞

n=−∞ M̄⊗̄L∞(X,µ),
⊕∞

n=−∞ M̄⊗̄L∞(Y, ν), and
⊕∞

n=−∞ M̄

and denote the shift operator on these by S, that is, (S(x))n = (xn−1). Then

we have

M̃ �σ R ∼= (M̃σ⊗̄L∞(R)) ×θ̄ Z

∼= (M̄⊗̄L∞(Y, ν)⊗̄L∞(R)) ×θ̄ Z.

Here we have L∞(Y, ν)⊗̄L∞(R) ∼= ⊕
n∈Z L∞(X,µ) as in the proof of Lemma 1.1,

and under this isomorphism we may identify θ̄ on M̄⊗̄L∞(Y, ν)⊗̄L∞(R) with S
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on

∞⊕
n=−∞

(M̄⊗̄L∞(X,µ))).

Thus we have

M̃ �σ R ∼= (
∞⊕

n=−∞
(M̄⊗̄L∞(X,µ))) �S Z

∼= ((
∞⊕

n=−∞
M̄) �S Z)⊗̄L∞(X,µ)

∼= N⊗̄L∞(X,µ),

where we set N = (
⊕∞

n=−∞ M̄) �S Z, which is an injective factor isomorphic

to M̄. We define the automorphism R(σ̂, Y ) on (
⊕∞

n=−∞ M̄⊗̄L∞(Y, ν)) �S Z ∼=

N⊗̄L∞(Y, ν) by

R(σ̂, Y ) = S ◦
∞⊕

n=−∞
θ on

∞⊕
n=−∞

M̄⊗̄L∞(Y, ν)

R(σ̂, Y )(V ) = V for the unitary V implementing S.

This notation is used because this automorphism is a “reduction” of σ̂ as follows.

Because the action σ̂ on the center Z(M̃ �σ R) ∼= L∞(X,µ) is the flow built

under the ceiling function k(T−1y) over the base (Y, T−1) as seen in the proof of

Lemma 1.1 and the remark after it, the action σ̂t for t ∈ R gives us an isomorphism

of N (y, s) ∼= N , where y ∈ Y , 0 ≤ s < k(T−1y), onto N (y′, s′) ∼= N , with y′,s′ as
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follows.

(y′, s′) =




(T−ny, s + t − k(T−1y) + · · · − k(T−ny)),
if k(T−1y) + k(T−2y) + · · · + k(T−n+1y) ≤ s

< k(T−1y) + k(T−2y) + · · · + k(T−ny), for some n > 0;
(Tny, s + t − k(y) − · · · − k(Tn−1y))

if − k(y) − k(Ty) − · · · − k(Tn−1y) ≤ s

< −k(y) − k(Ty) − · · · − k(Tn−2y), for some n > 0.

And if both s and s′ are zero, then this automorphism coincides with the one

given by R(σ̂, Y ). Thus our notation R(σ̂, Y ) is justified. Note that the modular

automorphism group of the dual weight on the crossed product M̃ �σ R is the

identity, so the crossed product M̃ �σ R, and hence N , is semifinite, and we have

an invariant trace on the crossed product algebra M̃ �σ R.

We note that the crossed product algebra by R is properly infinite unless the

action is inner for all t ∈ R. But this case has been excluded by assumption, so

the above factor N is isomorphic to the factor N0, which appears in the central

decomposition of M �α R. Thus we may define the above factor N as the factor

which appears in the central decomposition of M �α R, and this N is of type I∞

or II∞ by the above remark. We also note that σ̂ on Z(M̃ �σ R) is conjugate to

α̂ on Z(M �α R).

We regard the automorphism R(σ̂, Y ) as a groupoid action of Y × Z on the

semifinite injective factor N as in §1 of [Sutherland-Takesaki, 14]. We will compare

this action R(σ̂, Y ) with the following model actions P and P̄ .

We define an action P of Y ×Z on N as follows. If N is of type II∞, then take

and fix an action ϕ of R on N such that we have tr ◦ ϕt = ettr where tr is the
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trace on N and t ∈ R. If N is of type I∞, then we just set ϕt = Id ∈ Aut(N ) for

every t ∈ R. Then we define P by

P (y, n) = ϕ− log m(y,n), for y ∈ Y , n ∈ Z,

where m(y, n) is the value of Radon-Nikodym derivative of T−n at y ∈ Y . With

this P , we also define an action P̄ of a groupoid X × R on N as follows. First we

define a groupoid homomorphism p of X × R to Y × Z by

p(x, t) =
{

( pY (x),Card{s | 0 < s ≤ t, Fsx ∈ Y × 0}), if t ≥ 0
(pY (x),−Card{s | t < s ≤ 0, Fsx ∈ Y × 0}), if t < 0,

where the projection pY of X onto Y is defined by pY (y, t) = y. Then we define P̄

by

P̄ (γ) = P (p(γ)), where γ ∈ X × R.

We can define the action P̃ of R on N⊗̄L∞(X,µ) by

(PtT )(tx) = P (x, t)(T (x)) for t ∈ R, x ∈ X, and T =
∫ ⊕

X

T (x)dµ(x).

If we need to express the dependence of P , P̄ and P̃ on Y , ν, T , k, and N , we

use the notations P (Y, ν, T,N ), P̄ (Y, ν, T, k,N ), and P̃ (Y, ν, T,N ). With these

definitions, we get the following key lemma.
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Lemma 1.2. With the above notation, σ̂ and P̃ are cocycle conjugate as actions

of R on M �σ R.

Proof. In the following proof, we make use of a combination of the usual method

of decomposing actions into groupoid actions and integrating them, and a way of

reducing a continuous groupoid to an orbitally discrete one.

We write just R for R(σ̂, Y ). At first, we show two actions R and P of Y × Z

on N are cocycle conjugate.

Because we have an invariant trace on L∞(Y, ν)⊗̄N , the module of R (cf. §1

in [Sutherland-Takesaki, 14]) is the inverse of the Radon-Nikodym derivative for

a measure on Y and the transformation T . So this module is equivalent to the

module of P modulo coboundaries. Thus by conjugating by an automorphism on

L∞(Y, ν)⊗̄N if necessary, we may assume that these two modules coincide.

Regard R and P as Borel homomorphisms of our AF measured groupoid Y ×Z

into the Polish group Aut(N ). Then by the above, we have

R(γ) = P (γ) mod Int(N ), for γ ∈ Y ×Z.

So we can apply the cohomology theorem of Bures-Connes-Krieger-Sutherland

[Sutherland, 13]. (Also see [Sutherland-Takesaki, 14, appendix].) Then we get

Borel maps Q of Y × Z to Int(N ) and f of Y to Int(N ) such that we have

R(γ) = Q(γ)f(r(γ))P (γ)f(s(γ))−1 , γ ∈ Y × Z.
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Because the map f gives us an automorphism on L∞(Y, ν)⊗̄N and the map Q gives

us an unitary operator in L∞(Y, ν)⊗̄N , we know that the actions R and P of Y ×Z

on N are cocycle conjugate.

We write this in the following way. We have a Borel function τ of Y to Aut(N ),

and a unitary cocycle u for R(σ̂, Y ) such that we have

Ad(u(y, n))R(y,n) = τ (T−n(y))−1P (y, n)τ (y).

We use the map pY of X to Y defined by pY (y, t) = y as above. We also use the

groupoid homomorphism p of X ×R to Y ×Z as above, and a map q of X ×R to

X × R defined by the following:

q(γ:x0 → x1) = (γ′:x0 → pY (x1)).

We have s(p(γ)) = pY (s(γ)) and r(p(γ)) = pY (r(γ)). Next we want to get a suitable

unitary cocycle for σ̂, which is now regarded as an action of X × R as above. We

can make many choices of a unitary cocycle, but we use the simplest one. Taking

the action σ̂ into account, we define a map v of X × R to U(N ) by

v(γ) = σ̂(γq(γ)−1)(u(p(γ))).

Note v is a unitary cocycle for σ̂, since for elements γ1, γ2 with product γ1γ2 defined
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in the groupoid X × R, we have γ1q(γ1)−1 = γ1γ2q(γ1γ2)−1, so

v(γ1γ2)

= σ̂(γ1γ2q(γ1γ2)−1)(u(p(γ1)p(γ2)))

= σ̂(γ1q(γ1)−1)(u(p(γ1))σ̂(p(γ1))(u(p(γ2))))

= σ̂(γ1q(γ1)−1)(u(p(γ1)))σ̂(γ1q(γ1)−1p(γ1))(u(p(γ2)))

= σ̂(γ1q(γ1)−1)(u(p(γ1)))σ̂(γ1γ2q(γ2)−1)(u(p(γ2)))

= v(γ1)σ̂(γ1)(v(γ2)).

We define the Borel map Q of X to Aut(N ) by

Q(x) = P̄ (γ)τ (s(γ))σ̂(γ)−1Ad(v(γ)∗),

where γ ∈ X × R is given by γ: (pY (x),0) → x. We claim

Ad(v(γ))σ̂(γ) = Q(r(γ))−1 P̄ (γ)Q(s(γ)).

To see this, for an arbitrary γ ∈ X × R, we define γ1 = γq(γ)−1, and γ0 =
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q(γ)−1p(γ), then we have γ = γ1p(γ)γ−1
0 so that

Ad(v(γ))σ̂(γ)

= Ad(v(γ1))Ad(σ̂(γ1)(v(p(γ))))Ad(σ̂(γ1p(γ))(v(γ−1
0 )))σ̂(γ1)σ̂(p(γ))σ̂(γ0)−1

= Ad(v(γ1))σ̂(γ1)Ad(v(p(γ)))σ̂(p(γ))σ̂(γ0)−1Ad(v(γ0)∗)

= Ad(v(γ1))σ̂(γ1)τ (r(p(γ)))−1 P̄ (p(γ))τ(s(p(γ)))σ̂(γ0)−1Ad(v(γ0)∗)

= Ad(v(γ1))σ̂(γ1)τ (s(γ1))−1P̄ (γ1)−1P̄ (γ)P̄ (γ0)τ (s(γ0))σ̂(γ0)−1Ad(v(γ0)∗)

= Q(r(γ))−1 P̄ (γ)Q(s(γ)).

So σ̂ and P̄ are cocycle conjugate as actions of X ×R. We define an automorphism

Q̄ on
∫ ⊕

X
N (x)dµ(x) = L∞(X,µ)⊗̄N = M̃ �σ R by

Q̄ =
∫ ⊕

X

Q(x)dµ(x).

We also define a map v̄ of R to U(M̃ �σ R) by

v̄(t)
(∫ ⊕

X

ξ(x)dµ(x)
)

=
∫ ⊕

X

v(t, F−tx)ξ(x)dµ(x).

Then v̄ is strongly continuous in t. Indeed, for any t and positive ε, if we define

Yt,ε =
⋃

|s|≤ε

Ft+s(Y × 0),

Yt = Ft(Y × 0),
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then for a fixed t, we have

sup
|t−s|<ε

∥∥∥∥(v̄(t)− v̄(s))
(∫ ⊕

X

ξ(x)dµ(x)
)∥∥∥∥

≤ 2

(∫ ⊕

Yt,ε

‖ξ(x)‖2 dµ(x)

)1/2

→ 2
(∫ ⊕

Yt

‖ξ(x)‖2 dµ(x)
)1/2

= 0 as ε → 0.

Thus v̄ is a unitary cocycle for σ̂ as an action of R, and we have Ad(v̄(t))σ̂t =

Q−1P̃tQ, so that σ̂ and P̃ are cocycle conjugate as actions of R on L∞(Y, ν)⊗̄N ∼=

M̃ �σ R. Q.E.D.

The following lemma shows that the model action is canonical up to conjugacy

if the flow and N are given.

Lemma 1.3. Let β be another action of R on M with the same properties as

α. We construct ρ for β as we constructed σ for α. We use the notations X(σ),

F (σ), Y (σ), ν(σ), T (σ), k(σ), N (σ) and X(ρ), F (ρ), Y (ρ), ν(ρ), T (ρ), k(ρ),

N (ρ) for distinguishing these for σ and ρ. If N(σ) ∼= N(ρ) and the flows F (σ)

on Z(M̃ �σ R) and F (ρ) on Z(M̃ �ρ R) are conjugate, then we know the actions

P̃ (Y (σ), ν(σ), T (σ), k(σ),N (σ)) and P̃ (Y (ρ), ν(ρ), T (ρ), k(ρ),N (ρ)) are conjugate

as actions of R on the crossed product algebra M̃ �σ R ∼= M̃ �ρ R.

Proof. By assumption, the flows built from the base (Y (σ), T (σ)) under k(σ) and on

(Y (ρ), T (ρ)) under k(ρ) are conjugate. By Proposition 2.4 in [Katok, 9] , there are

thus subsets Y ′(σ) of Y (σ), Y ′(ρ) of Y (ρ) and an isomorphism ϕ: (Y ′(σ), ν(σ)) →

(Y ′(ρ), ν(ρ)) such that ϕ ◦ T ′(σ) = T ′(ρ) ◦ ϕ and k′(ρ) ◦ ϕ = k′(σ), where T ′(σ)
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is the transformation induced on Y ′(σ), k′(σ)(y) =
∑n−1

j=0 k(σ)(T (σ)j (y)) where

n = sup{m > 0 | T (σ)j(y) /∈ Y ′(σ) for 0 ≤ j ≤ m}, and T ′(ρ), k′(ρ) are defined

similarly.

Then by definition, P (Y ′(σ), ν(σ), T ′(σ),N (σ)) and P (Y ′(ρ), ν(ρ), T ′(ρ),N (ρ))

are conjugate. Because these can be regarded as reductions of P̄ (Y (σ), ν(σ), T (σ), k(σ),N(σ))

and P̄ (Y (ρ), ν(ρ), T (ρ), k(ρ),N(ρ)) respectively, we conclude P̃ (Y (σ), ν(σ), T (σ), k(σ),N(σ))

and P̃ (Y (ρ), ν(ρ), T (ρ), k(ρ),N(ρ)) are conjugate by a similar argument to the lat-

ter part of the proof of Lemma 1.2. Q.E.D.

Theorem 1.4. Let M be a semifinite injective von Neumann algebra, and α

and β centrally ergodic actions of R on M with Γ(α),Γ(β) = 0. We assume

α−1(Int(M)), β−1(Int(M)) �= R. We also suppose that each of α and β admits an

invariant trace. Then α and β are stably conjugate if and only if N (α) ∼= N (β)

and the flows α̂ on Z(M �α R) and β̂ on Z(M �β R) are conjugate.

Proof. Suppose α and β are stably conjugate. Then we clearly get the above two

conditions.

Conversely assume the two conditions are satisfied. Considering σ and ρ for α

and β as above, we know that N (σ) ∼= N (ρ) and that the flows σ̂ on Z(M̃ �σ R)

and ρ̂ on Z(M̃ �ρ R) are conjugate. Then by Lemma 1.2 and Lemma 1.3, we

know that σ̂ and ρ̂ are cocycle conjugate. Hence, σ and ρ are stably conjugate, and

thus they are cocycle conjugate because M̃σ are M̃ρ are properly infinite by our

definition of M̃. (See Theorem 1 in [Jones-Takesaki, 7]). Then we have that the

second dual actions of α and β are cocycle conjugate by our definition of σ and ρ,

so that α and β are now stably conjugate. Q.E.D.
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In general, Γ(α) must be equal to 0 or isomorphic to Z because it is a closed

subgroup of R and we assume Γ(α) �= R. Note that if α and β are stably conjugate,

then Γ(α) and Γ(β) are equal. Next, we study the case where the Connes spectrum

is isomorphic to Z.

Let α and M be as above. By changing the scale if necessary, we may assume

that Γ(α) is equal to Z. Because R̂/Γ(α) ∼= T is compact, by Corollaire 2.3.13 in

[Connes, 1], we have α|Z = 1 by changing α within its cocycle conjugacy class if

necessary. Then we have

M �α R ∼= M �α0 T �i Z ∼= (M �α0 T)⊗̄L∞(T, µ),

where we use the notation α0 for the action of T induced from α, i is the trivial

action of Z, and µ is Lebesgue measure on T. It is easily seen that the Connes

spectrum Γ(α0) is also equal to Z = T̂. Thus the crossed product M �α0 T in the

above formula is a (semifinite injective) factor. And we note that the translation on

T corresponds to the flow on X in the above case, and this factor corresponds to the

factor N (α) in the discussion of the case Γ(α) = 0. The action which corresponds

to R(σ̂, Y ) in this case is just α̂0 on M �α0 T. If this α̂0 does not preserve the

trace, the second crossed product M�α0 T�α̂0 Z must be a type III von Neumann

algebra, which is a contradiction. So α̂0 preserves the trace. Thus we get the

following result. Note that N (α) here is defined as the factor which appears in the

central decomposition of M �α R.
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Theorem 1.5. Let M, α and β as above, and assume Γ(α) and Γ(β) are isomor-

phic to Z. Then α and β are stably conjugate if and only if Γ(α) and Γ(β) are

equal, N (α) and N (β) are isomorphic, and the characteristic invariants χ(α̂0) and

χ(β̂0) are equal.

Proof. By the above argument, these three conditions are clearly necessary.

If these three conditions are satisfied, we know that α̂ and β̂ are cocycle conju-

gate, so we get the stable conjugacy of α and β by Theorem 1.(a) in [Jones-Takesaki,

7]. Q.E.D.

By duality, we also get the following corollary.

Corollary 1.6. Let M be a semifinite injective von Neumann algebra with a non-

trivial center, and α and β centrally ergodic actions of R on M. We suppose that

α and β both admit an invariant trace, α̂−1(Int(M�αR)), β̂−1(Int(M�βR)) �= R̂,

and the flows α and β on Z(M) are aperiodic. Then α and β are stably conjugate

if and only if the flows (α,Z(M)) and (β,Z(M)) are conjugate and M �α R ∼=

M �β R.

Proof. The conditions are clearly necessary. Assume the conditions are satisfied.

By Takesaki duality, we have N (α̂) ∼= N (β̂), and the flows of the second duals of α

and β on the center are conjugate by assumption. So we know α̂ and β̂ are stably

conjugate because Γ(α̂), Γ(β̂) �= R by the assumption Z(M) �= C. Moreover,

α−1(Int(M)) �= R, so the crossed product M �α R is properly infinite. Thus α̂

and β̂ are cocycle conjugate, and hence α and β are stably conjugate again by

Theorem 1.(a) in [Jones-Takesaki, 7]. Q.E.D.
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§2 Factor cases

Next we make further study for factor cases in this section, and prove a limitation

on the type of N when we have Γ(α) ∼= Z.

First, we show an assumption in Theorem 1.4 can be dropped for factors.

Proposition 2.1. Let M be a semifinite injective factor and α an action of R on

M with Γ(α) �= R̂. Then any trace on M is invariant under α.

Proof. If M is finite, the theorem is trivial because there exists only one normalized

trace. If M is a type I∞ factor, then all the automorphisms on M are inner, and a

trace is invariant under inner automorphisms. Finally assume that M is isomorphic

to R0,1, and take any trace τ on R0,1. Then by the uniqueness of the trace up to

constant, we have a continuous function f on R with τ ◦ αs = f(s)τ . Because we

have f(s + t) = f(s)f(t), there exists a constant k ∈ R such that f(s) = eks. If

this constant k is not equal to zero, then by [Takesaki, 15] we have that R0,1 �α R

is a factor of type III1, which is impossible because we assume Γ(α) �= R̂. Thus we

have k = 0, and τ is thus invariant under α for this case, too. Q.E.D.

Because actions on factors are trivially centrally ergodic, we can apply Theorem

1.4 to this case. Moreover, the characteristic invariants of the dual actions in this

case are trivial in fact. So we get the following simplification.

Theorem 2.2. Let M be a semifinite injective factor, and α, β actions of R on

M with Γ(α),Γ(β) ∼= Z. Then α and β are stably conjugate if and only if we have

Γ(α) = Γ(β) and N (α) ∼= N (β).

Proof. Because of Theorem 1.5, we have to show that the characteristic invariant

of R(α̂0) is trivial. By the remark preceding Theorem 1.5, we may assume that
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α has the period 1, and M �α0 T is a factor. We consider the dual action α̂0 on

this factor. Suppose that there exists a non-zero integer p such that (α̂0)p is inner.

Take a unitary element u in M �α0 T with Ad(u) = (α̂0)p. We have a complex

number γ with (α̂0)p(u) = γu and γp = 1. Then we have (α̂0)p2
= Ad(up), and

α̂0(up) = γpup = up. That is, we have up ∈ (M �α0 T)α̂0
. Thus we can take a

unitary element v in (M�α0 T)α̂0
with vp2

= u∗p. If we let θ = Ad(v)α̂0, we have

M �α0 T �α̂0 Z ∼= M �α0 T �θ Z.

Here the left hand side is isomorphic to the factor M⊗̄L(H) by Takesaki duality,

but the right hand side is not a factor because we have θp2
= Ad(u∗p)(α̂0)p2

= 1

while p2 > 0. Thus we have a contradiction. Q.E.D.

We now decide what type of N is possible for a given M of type II. In this

paper after this point, M is a semifinite injective factor, α is an action of R on M

with Γ(α) �= R, and N is a semifinite injective factor given by the decomposition

M �α R ∼= N⊗̄L∞(X,µ). By Takesaki duality, we get further restrictions.

Proposition 2.3. If M is of type II and Γ(α) is isomorphic to Z, then N cannot

be of type I.

Proof. Suppose that N is of type I. Then by the remark preceding Theorem 1.5,

we may assume that there exists an action α of T on M such that M �α T is a

type I factor. Then by Takesaki duality, we have

M �α T �α̂ Z ∼= M⊗̄L(H) ∼= R0,1.
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But all the automorphisms on a type I factor M �α T is inner, hence we have

M �α T �α̂ Z isomorphic to (M �α T)⊗̄L∞(T), which is also of type I. Thus N

cannot be of type I. Q.E.D.

As we will see in the next section all possible cases except the above excluded

case actually occur.

§3 Examples

It is not easy in general to construct examples of actions of R, so in this section,

we construct examples which show that the combinations M and N which are not

excluded in section 2 actually happen. We make frequent use of representation of

type II factors as crossed products and dual actions on them.

The following makes use of the fact that the factor R can be expressed as the

“irrational rotation algebra.”

Examples 3.1. Take an irrational number θ and we define an automorphism

σ on L∞(T) by

σ(f)(t) = f(e−2πiθt), t ∈ T, f ∈ L∞(T).

Then it is well known that we have L∞(T) �σ Z ∼= R. Then the dual action σ̂ is

an action of T. Define αt = σ̂exp(2πit) for t ∈ R, and note that

R �α R ∼= L∞(T)⊗̄L(l2(Z))⊗̄L∞(T).
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Thus N is L(l2(Z)), which is of type I. Because the right hand side of the above

formula is not a factor, Γ(α) is not equal to R. By Proposition 2.3, the Connes

spectrum Γ(α) is not isomorphic to Z, either. Thus we have Γ(α) = 0. By con-

sidering α ⊗ i on R⊗̄L(H) ∼= R0,1, we also get an example for R0,1 instead of

R.

The next is similar to Example 3.1.

Example 3.2. Let σ be as in Example 3.1, and let i be the trivial action

of Z on R. Define an action τ of Z on L∞(T)⊗̄R by τ = σ ⊗ i. Because τ is

centrally ergodic and outer, the crossed product is a (semifinite injective) factor.

Because R is finite and Z is discrete, this crossed product is finite, and being infinite

dimensional, is isomorphic to R. Let α be an extension to R of the dual action τ̂

as in Example 2.1. Then we have

R �α R ∼= L∞(T)⊗̄R⊗̄L(l2(Z))⊗̄L∞(T).

Thus N in this case is R⊗̄L(l2(Z)) ∼= R0,1. For t ∈ R, the flow given by α̂ on the

second copy of L∞(T) in the above formula is just translation by R on T ∼= R/Z.

Thus we have Γ(α) ⊂ Z. For an integer t, the action α̂t on the first L∞(T) is the

rotation by tθ. Thus we have Γ(α) = {0}.

In the next example, we express the factor R as a crossed product of R by Z.

Example 3.3. Take a free action σ of Z on the hyperfinite II1 factor R.

(For instance, regard R as the infinite tensor product of M2(C) and define σ by

the infinite tensor product of Ad
(

e
√

2πi 0
0 e−

√
2πi

)
.) Then the crossed product
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R �σ Z is a factor because σ is free; it is also finite because R is finite and Z is

discrete, and being infinite dimensional, is isomorphic to R. By Takesaki duality,

the crossed product R�σ̂T is isomorphic to R⊗̄L(l2(Z)) ∼= R0,1. We define α to be

the extension of σ̂ to R as in Example 2.1. Then we have R�α R ∼= R0,1⊗̄L∞(T).

For t ∈ R, the flow given by α̂ on L∞(T) is just translation by R on T ∼= R/Z.

Thus we have Γ(α) = Z in this case. For M = R⊗̄L(H) ∼= R0,1, we can use α ⊗ i

as a new α. Then N in this case is R0,1 again, and Γ(α) is equal to Z.

In the next example, we express the factor R0,1 using the group measure space

construction with the group R.

Example 3.4. We choose L∞(X,µ) and an action σ of R on L∞(X,µ) such

that µ is invariant under the action and σ is ergodic and σt is not the identity for

non-zero t. (For instance, take X = T× [0, 1) and µ to be the product of Lebesgue

measures. Taking an irrational θ, define the flow Ft on X by

Ft(x, y) = (einθx, y + t − n), for t ∈ R, x ∈ T, y ∈ [0, 1) ,

where we set n = [y+t]. Define σ by this flow Ft.) Because this is a measure preserv-

ing action of a continuous group, we have that the crossed product L∞(X,µ)�σ R

is isomorphic to R0,1. We define α = σ̂. Then by Takesaki duality we have

R0,1 �α R ∼= L∞(X,µ)⊗̄L(L2(R)).

The flow given by α̂ on L∞(X,µ) in the above formula is just the original Ft. Thus

we have Γ(α) = 0, and N in this case is L(L2(R)) which is of type I∞.
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Summing up, we can determine which combinations of M and N are possible

as follows.

Theorem 3.5. In the context of Theorem 1.4 and Theorem 2.2, we have the fol-

lowing.

(1) If M ∼= R and Γ(α) = 0, then N is isomorphic to L(H) or R0,1.

(2) If M ∼= R and Γ(α) ∼= Z, then N is isomorphic to R0,1.

(3) If M ∼= R0,1 and Γ(α) = 0, then N is isomorphic to L(H) or R0,1.

(4) If M ∼= R0,1 and Γ(α) ∼= Z, then N is isomorphic to R0,1.

Proof. The theorem is just a combination of the above results as follows. In general,

N cannot be finite by [Katayama, 10] because we assume α−1(Int(M)) �= R. For

case (1), the factor N can be of I∞, and II∞ by Examples 3.1 and 3.2 respectively.

For case (2), N cannot be of type I∞ by Proposition 2.3. The factor N can be of

type II∞ by Example 3.3. For case (3), N can be of type I∞ and II∞ by Examples

3.4 and 3.1 respectively. Finally for case (4), N cannot be of type I∞ by Proposition

2.3. The factor N can be of type II∞ by Example 3.3. Q.E.D.
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