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Plan of the talk

(1)Random matrices and the Altland-Zirnbauer (AZ) class

Level statistics: Symmetry and Universality
10 ensembles: Wigner-Dyson (3) + chiral (3) + BdG (4)

(2)(supersymmetric) Sachdev-Ye-Kitaev (SYK) and AZ

interacting fermionic many-body system.
Nice model to see the AZ & K-theory in contexts of chaos

(3)dissipative SYK and symmetry

Fermionic dissipations, classification of fermionic Lindbladians



Introduction:Nuclei and complex spectrum

Random matrices are first applied to physics by Wigner.

Motivated by the complicated nuclear spectrum.
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Bohr’'s wooden toy model.

compounded nuclei are
strongly interacting
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Introduction: Random matrices

The philosophy of a random matrix approach to a spectrum is to focus on
the statistical property of the spectrum rather than understanding the
specific eigenvalues themselves.
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Nuclear spectrum, Sinai billiard and zero’s of the Riemann zeta
have the same statistical property! Very universal.
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Ensembles

Wigner-Dyson

Time reversal

Chiral

chiral symmetry (+ Time reversal )

Bd

particle hole symmetry (+ chiral symmetry)

Those complete the 10 Altland-Zirnbauer (AZ) ensembles!



Wigner-Dyson

We consider three ensembles (orthogonal, unitary, symplectic)

VY )

| —— Semi Circle
GOE

" — GUE

- — GSE

10x10 matrices in different ensembles

They approach the famous semi-circle law but also have different
“crystal” like structure depending on the ensembles.

To understand that, it is important to know the possible number of off-
diagonal components, which is related to time reversal symmetry.



Gaussian unitary ensemble (GUE): 2x2 ex

- Let us consider a generic random 2x2 Hamiltonian

_fct+z xT—y\ B
H_<x+z'y c—z) =cl4+x-0 =cl+rn-o
— A=c=xr

Cwoy oy e (001N, (0 =i\ . (1 0
v = (v, 0% ) “‘(1 0) 0‘(7; 0) U_<O 1

(Pauli matrices)

- Then the measure becomes
/exp(—%TrHQ)dcdxdydz — /exp(—(c2 + 2% +y° + 2°))dedxdydz
= /exp(—(r2 + ¢?))dcdrr?dQs
— #/drrz exp(—r?)

The probability of having degeneracy is suppressed by r?
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Gaussian orthogonal ensemble (GOE): 2x2 ex

- Let us consider a generic random 2x2 Hamiltonian with reality:

H = (C_I_Z v > = cl 4+ r(cosfo” + sinfo*)

L C— %2

— A=cxr
- Then the measure becomes
Compared to the unitary ensemble, y is just removed.

1
/exp(—§TrH2)dcdazdz = /exp(—(02 + 2% + 2%))dcdxdz

/ exp(— c*))rdrdfdc

_#/rexp

ne probability of having degeneracy is suppressed by r
ne number of off-diagonal components is reduced.

-4 4 -

ne probability of having degeneracy is increased, because we only need
to tune one parameter to get degeneracy
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Gaussian symplectic ensemble (GSE): 2x2 ex

- Let us consider a random 2x2 Hamiltonian but with quaternions:

H:(C_HJ q ) g=w—+11x+Jy + k=z
q c—

- Then the measure becomes

1
/ exp(— §TrH \dedrdydzdwdv
= /exp(—(c2 + 2% + y° + 22 + w? + v?))dedrdydzdwdv

/exp —(r* 4 ¢*))r*drdQudc

—# [ rtexp(-

The probability of having degeneracy is suppressed by ré

The reason is the same, we have more off-diagonal components.
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so far

What we learned is that more off-diagonal components lead to less
probability to get degeneracy.

The main message so far is that generic matrices have many off-
diagonal components

They give a correlation among the spectrum.

They are different from the random diagonal matrices.

Those correlation patterns can be used to explain the experimental
data that looks structureless at first sight.
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Time reversal symmetry

The three ensembles (GOE, GUE, GSE) are related to the time
reversal symmetry.

The time-reversal symmetry is a symmetry that should reverse the time:
TeitHy—1 _ Jjit(THT ')

Assuming { commutes with the time reversal operator,
the above relation requires

T(—iH)T ' =iTHT !
Therefore the time reversal should anti-commutes with the imaginary unit.

These operators are called anfi-linear operators.
Not a linear operator!
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Time reversal and (anqular) momentum

The anti-linear nature is compatible with the angular momentum.
Let us consider a quantum particle on a line.

Assuming that the position operator commutes with the time reversal,
the momentum anti-commutes with the time reversal:

dN._, . d
i )T i =

Going to a particle in a three-dimensional space, the angular momentum
the time reversal commutes with the angular momentum,

Texp] ‘=TT ' xTpT '=—-xxp

which is again compatible with the time reversal in classical mechanics.

TpT—! = T(

In the position basis, the time reversal is simply the complex conjugate K .

Since K? = 1 , the square of the time reversal is also 1 T2 =1
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Time reversal and spins

The spin should transform in a same manner with the angular momentum:

TsT ' =—s

Let us consider spin 1/2: s = —o

2
We canchoose T = 10 K = (_01 (1)) K

Now the time reversal satisfies 72 = —1
This phase -1 is not removed by the redefinition of the phase 7 — 0T

One of consequences is that each state is not invariant under the time-
reversal symmetry and always have at least two degenerate state.

TIn=%L, TH=—I1

(since spin should be flipped under time reversal, up to a sign)

This is the generic property for systems with 72 = —1
called Kramers’ degeneracy.
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Time reversal and spins

One example of the time reversal invariant Hamiltonian with spins is
H=1L-s

Hamiltonian is invariant under the time reversal because both the
angular momentum I, and the spin S change the sign.

For example, when the angular momentum takes the value .J = 1]

0O 0 O 0O 0 =2 0 —1
L.=10 0 —1 L,=10 0 0 L.=17 0
0 2 O — 0 O 0 O

L : anti-symmetric
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Time reversal and ensemble

Now we see that

No time reversal — GUE

time reversal with 7° =1 — GOE

time reversal with 72 = —1 — GSE
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Gaussian unitary ensemble (GUE

Without time reversals, there are no constraints on Hamiltonians
The generic Hamiltonian is LxL hermitian matrices

The exponential of the Hamiltonian = evolution operator exp(—tH1)
is an element of the unitary matrices U (L) .

In other words, H is an element of the Lie algebra u(L)

Comparing with the classification of symmetric spaces by Cartan,

These are called class A
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Gaussian orthogonal ensemble (GOE)
With time reversals T2 — 1 , we can take the basis with T = K

The generic Hamiltonian with the constraint 7 H7 ' = H

The solutionis H = S for a real symmetric matrix S

What is the space of the Hamiltonian ?
Since the generator of O(L) (50(L)) Is the anti-symmetric matrices ,
which is a solution of 7X7 ! = —X , itis different from so(L)

(because of this e** commutes with the time reversal Te'X 71 = ¢'¥ )

It is rather "u(L) — so(L)” ,remembering H = S + i A
Then the evolution operator exp(—iHt) should belong to U(L)/O(L)

Comparing with the classification of symmetric spaces by Cartan again,
the space U(L)/O(L) are called class Al.
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Gaussian symplectic ensemble (GSE)

With time reversals 72 = —1, we can take the basis with 7 = 10 K
(because of the Kramers’ degeneracy, the rank always should be even)

[(A+C B
H_(BT A—C)

1 0O 0 1 0 —2 1 0
_A®<O 1>+BT®(1 0>+BZ’®(@' O)+C®<O _1>
— AR+ B, QR c"+B,Qc?+C®o~

Imposing the time reversal THT ' = H

A* = A (realsymmetric) B = —B; B = —By (C* = —( (real anti-symmetric)

H=5®&I+iA, 0" +14, Q0 +iA, Q0"
spin-orbit interaction
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Gaussian symplectic ensemble (GSE) and quaternion

SRI+iA-o = (S“Az Aw_iAy>

A, +iA, S —iA,
Another representation

I ®Sy+1i0-A
S111 Si90l +1A15 -0 -+ Syl +1A; - O
S12[ — iAlg - O SQQ[ s SQkI T iAQk - O
Slkf — iAlk - O Sgkf — ’iAQk - g - Skkf
S11 a2 - alk\
a2 S22 - Q22

— : : , : . quarternion Hermitinan

a1k Q2 - Skzk/
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Gaussian symplectic ensemble (GSE).ctd

Again, the “anti-symmetric” part with 7 X T 1=—-X is
X=5S0c+1Ax1

(then the exponential commutes with time reversal: 7 exp(iX)7T ! = exp(iX) )

This is a generator sp(k) of Sp(k) .

(note that for k=1 it reduces to su(2))

Therefore a Hamiltonian in the GSE ensemble is an element of u(2k) — sp(k)

Then the evolution operator takes the value on U (2k)/Sp(k)

Comparing with the classification of symmetric spaces by Cartan again,
the space U(2k)/Sp(k) are called class All.
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Sphere integral and Symmetry

GOE (B=1): = /exp(—(r2 + ¢*))rdrdfdc
GUE (B=2): = / exp(—(r* + ¢*))dedrr?dQ,

GSE (B=4). = /exp(—(r2 + ) rtdrdQudc

We get the sphere integral over S° .
RPTL ~ R, X SP determines the spectral statistics .

St =0(2)/0(1) x O(1)
S =U(2)/U(1) x U(1)
S* = Sp(2)/Sp(1) x Sp(1)

IS a nice representation in our context.

Then we can understand the sphere as a symmetry-breaking pattern that
determines the level statistics.
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GUE: 2x2

. A O
General matrix: U (Ol )\2) U’ U : 2x2 unitary matrix to diagonalize

A1

0 ;)2> is not invariant under conjugation by U

In particular, the matrix (

’L(91
but only invariant under diagonal unitary transformation: [ — <€O ZOQ )
€ 2

When the two eigenvalues are degenerate, it is invariant under full U(2):
(o 5)v =0 Y
We say that the generic matrix configuration breaks the symmetry U(2)
to U(1) x U(1)
U(2)/U(1) x U(1) parametrize the matrix with fixed eigenvalues.
U2)/U(1) x U(1) ~ SU((2)/U(1) ~ S?
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GOE: 2x2

A O

0 2\ ) O1  (:2x2 orthogonal matrix to diagonalize
2

General matrix: O (

In particular, the matrix (%1 )? ) IS not invariant under conjugation by @,
2

1 0
but only invariant under diagonal unitary transformation: O = < 0 __1>

When the two eigenvalues are degenerate, it is invariant under full O(2):

°f 3)o=(0 %)

We say that the generic matrix configuration breaks the symmetry O(2)
to O(1) x O(1)

O(2)/0(1) x O(1) parametrize the matrix with fixed eigenvalues.
0(2)/0(1) x O(1) ~ SO(2)/O(1) ~ S*
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GSE: 4%4 (quartanion 2x2

A1 O

General matrix: §
0 Ao

) ST S:4x4 symplectic matrix to diagonalize

In particular, the matrix (%1 )\O> is not invariant under conjugation by S
2

S1 0
but only invariant under diagonal unitary transformation: S = (01 g )
2
Si € Sp(1)
When the two eigenvalues are degenerate, it is invariant under full Sp(2):
A0 A0
S ST =
0 A 0 A
We say that the generic matrix configuration breaks the symmetry Sp(2)
to Sp(1) x Sp(1)

Sp(2)/Sp(1) x Sp(1) parametrize the matrix with fixed eigenvalues.
Sp(2)/Sp(1) x Sp(1) ~ SO(5)/SO(4) ~ S*
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Chiral ensembles

We have focused on the system only with a time-reversal symmetry.
Now we add so-called chiral symmetry.

These types of ensembles are interesting, especially from a QCD perspective
where the chiral symmetry breaking takes place.

In condensed matter side, sometimes it is called sublattice symmetry.

The chiral symmetry P satisfies
P2 =1 {H,P} =0

Because of the anti-commuting nature, when we have non-zero eigenvalue F;
then there is also a pair P |E;) with eigenvalue —FE; .

Therefore, the origin (E=0) is a special point in those ensembles.

(In other words, the property apart from the origin is determined by the time reversal symmetry)

Symmetry breaking pattern at the origin is an additional data.
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Chiral Gaussian unitary ensemble (chGUE)

We take the following form of the chiral symmetry:

(In O
P‘(o —[M)

A generic Hamiltonian is then AN x N
1/ — A B B:NxM
~\B" C C:MxM
Imposing the chiral symmetry O
(A -B H —
- () B

B
0

class Alll

Therefore a Hamiltonian in the chGUE is an element of
u(N+M)— (u(N)+u(M))

Then the evolution operator takes the value on U(N + M)/U(N) x U(M)

Comparing with the classification of symmetric spaces by Cartan again,
the space U(N + M)/U(N) x U(M) are called class Alll.
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Symmetry of chGUE

On the other hand, the symmetry of the ensemble is

v o (Xn 0
PXP — X X_<O XM>

(X — (UN . ) c U(N) x U(M)

0 Vu
B%UNBV]\Z
Using this symmetry, we can transform the matrix B to
/)\1 o ... 0 0...0\
0 X -+ 0 0---0
\() 0 - Ay 0...()/

Eigenvalue of H = singular value of B

27



chGUE and symmetry enhancement at the origin

Let us consider the simplest non-trivial example of (N, M) = (1,1)
The Hamiltonian is then

0 2 0 At _[exr 0
H:(z O>:(Aei9 O> U—( 0 eix2>€U(1)><U(1)

0 )\673(9+X1X2)>

T
UHU" = <)\€—73(9-|-X1—X2) 0

Therefore, the Hamiltonian is invariant under the diagonal subgroup U (1)
with X1 = X2 .

On the other hand, at A\ = (Qthe full U(1) x U(1) symmetry is restored.

Generic configurations break the symmetry U (1) x U(1) to U(1)
Fixed eigenvalue Hamiltonian is parametrized by

U(1) xU)/U(1) ~U(1) ~ S*
On the other hand, the random matrix measure is dzdz = \d\df

—we get the correct angular part and the power of A from symmetry!
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Chiral Gaussian orthogonal ensemble (chGOE. chGSE)

In exactly the same manner, we get

0 B
H_<BT o)

N x M real matrix T2 =1
{ N x M quartanion matrix T2 =—1
and replacing U by O or Sp.

with B =

Comparing with the classification of symmetric spaces by Cartan again,
the space O(N + M)/O(N) x O(M) is called class BDI.
and the space Sp(N + M)/Sp(N) x Sp(M)is called class CII.
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Numerical test of chGSE
L= 40 (k=20) chGSE, 30000 samples Distribution of the first real eigenvalue

spectral density Alllitr
0.4; 1, ]
T |
0.2f FWFFFFFWW ]
01 | | | |
e T I Wigner surmise
0.6
=
r— Enq1 — By = 0.4
n ~ I
i i
Lng2 — Bty 0.2
“adjacent gap ratio” 0.0|
-2 =1 0 |
Poisson GOE GUE GSE
p(r) 1 27  (r+r?) 81v3 (r+r*)* 729 (r+r*)*
(1+41)2 8 (1+r+r2)% dr  (14r4r2)4 A (14+r+r2)7
(r) || 210g2 —1~0.38629 | 4 — 2v/3~0.53590 | 2¥3 — 1 ~0.60266 | 32¥3 — 1 ~0.67617




Bogoliubov- de Genne(BdG)

In those ensembles, we have particle-hole symmetry, which anti-
commutes with the Hamiltonian.

{H,C} =0
These ensembles appear in superconductors.

Because of the anti-commuting nature, when we have non-zero eigenvalue F,
then there is also a pair C |E;) with eigenvalue —E; .

Therefore, the origin (E=0) is again a special point in those ensembles.
When the state is invariant under particle-hole, they are Majorana zero modes.

Moreover, we can have chiral symmetry.
If those exist, they anti-commute with the particle hole symmetry.

{C,P}=0

Because they do not commute, we could not diagonalize simultaneously them.

When we diagonalize P, the Hamiltonianis H = (AhT _Ah*>

h : normal state Hamiltonian /\ :order parameter
31



BdG (C.D)

Now ( is an anti-commuting operator with the Hamiltonian, rather than T
The Hamiltonian then can be thought of as an element of §0(L) or sp(k)

(recall that the symmetry e'X that anti-commuters with 7 is either in SO(L) or Sp(k‘) )
For C*=1 H=1A € so(L)
(class D)

For C*=—-1 H =M € sp(k)
(class C)

In those ensembles, though C relates two states, C itself does not
constrain the degenerate eigenvalues apart from the origin

Therefore the level statistics in the bulk is that of the class A (GUE).
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BdG (C.D) near E=0

We can study the behavior around E=0 using small matrices.

For class D, the smallest matrix is 2x2,

0 —IA
=i o)

and the symmetry is O(2) .
Therefore the symmetry is not broken and there is no level repulsion.

For class C, the smallest matrix is 2x2 and generic matrix is

— ( z T zy)
T+ 1y —Z
and the symmetry is Sp(1) = SU(2).

This is essentially the same with the 2x2 unitary matrix and generically the
symmetry is broken to U (1)

Therefore the fixed eigenvalue Hamiltonians are labelled by
SU(2)/U(1) = §?
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BdG (DIl

We have the chiral symmetry P on top of C with C? = 1

We work in a basis with C = 1and P = o?
To impose the chiral symmetry, we expand the matrix in s0(2k) as

H=iA¢®I+iA, ®0c"+ 5,00 +14A, Q0"

Then, imposing the chiral symmetry {P, H} = 0 we get

. . . (A Ap
H=1A,R0c"+1A, Q0 —Z(Am _Az>

On the other hand, the commuting part 149 ® I + Sy & oY gives a symmetry
This forms u(k) . To see clearly this, it is convenient to diagonalize P = ¥

In this basis,

Y z _ Y
Ao QT+ 5, ®0 1Ay Q@I+ 5, Q0 —< 0 _s, 7;!0>
and 0 A, +1A
o y L4 x x Z Z
H—1A, ®c7+14A. R0 __(!m—i!z 0 )
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BdG (DIl

Therefore, Hamiltonian is , s0(2k) — u(k) and the symmetry is U (k)
The space of the evolution operatoris O(2k)/U (k) .

Comparing with the classification of symmetric spaces by Cartan again,
the space O(2k)/U (k) is called class DIlI.

U 0 0 Ap +iA\ (UT 0 _ [ 0 U(Ay +iA,)U"
0 U)\A, —iA, 0 0 UT) \UA, —iA)UT 0

Therefore the Hamiltonian transforms as an anti-symmetric tensor of U (k)

A=A, +1A, :order parameter is anti-symmetric
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BdG (Cli

We have the chiral symmetry 2 ontop of C with C* = —1
We work in a basis with C = icY K and P = ¢?

To impose the chiral symmetry, we expand the matrix in 5p(k) as
H=iAQI1I+5,0"+S5,80Y+5,®07°
Then, imposing the chiral symmetry {P, H} = 0 we get

z . (S S
H=5,c"+5,. R0 _<Sa: _Sz>

On the other hand, the commuting part 149 ® I + Sy & oY gives a symmetry
This forms u(k) . To see clearly this, it is convenient to diagonalize P = ¥

In this basis,

Yy Z __ Yy
Ao QT+ 5, ®0 1Ay Q@I+ 5, Q0 —< 0 _s, 7}!0>
and 0 Sy + 15
[/
— y| r __ T z
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BdG (CI
Therefore, Hamiltonian is , sp(k) — u(k) and the symmetry is U (k)
The space of the evolution operator is Sp(k)/U (k) .

Comparing with the classification of symmetric spaces by Cartan again,
the space Sp(k)/U(k) is called class ClI.

U 0 0 Sy+1iS.\ (U 0\ [ 0 U(S, +1S.)UT
0 U)\S,+15, 0 0 Ut}  \U(S,—iS,)U" 0

Therefore the Hamiltonian transforms as an symmetric tensor of U (k)

A = 8, + 1S, :order parameter is symmetric
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BdG: summary

N
i (ar

BdG
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BdG (Cl) near E=0

We can study the behavior around E=0 using small matrices.

For class ClI, the smallest matrix is 2x2 where

-

i0
0
and the symmetry is (eo e_w) e U(1)

The symmetry is then broken to O(1).

The equal eigenvalue Hamiltonians are parametrized by
U(1)/0(1) ~ S*

Note that the eigenvalue is now an order parameter )\ = A.
We are just seeing the symmetry breaking pattern by an order parameter!
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BdG (DIll) near E=0

We can study the behavior around E=0 using small matrices.

For class ClI, the smallest matrix is 4x4 where
0 oY
H = 9
oY 0

and the symmetry is Uz 0 e U(2)
0 Us

The symmetry is then broken by order parameter to SU(Q)

The equal eigenvalue Hamiltonians are parametrized by

U(2)/SU(2) ~ St

40



BdG (CI. DIl bulk spectral statistics

In those ensembles, we have an anti-unitary symmetry which commutes
with the Hamiltonian;

We also call this anti-uniatry time reversal symmetry.

Since now 7 commutes with the Hamiltonian, the bulk level statistics is now
changed.

The square of the time reversal is now determined by that of C ;
T? = (CP)(CP) = —C*P* = —C?

Therefore 72 = —1 (C? = 1), which means GSE, for DI

and T2 =1 (C2 = —1),which gives GOE, for ClI.

(The group for the numerator of the coset G/U (k) and O/S of and the bulk statistics are flipped)
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Numerical test of D
L= 20 class D, 40000 samples

spectral density

F
0.15- En_|_1 — E’I’L
, =
0.10}- En—|—2 o E’I’L—I—l
005! “adjacent gap ratio”
0.00 L.« S W . | ]
-6 -4 -2 0 2 4 6
Distribution of the first positive eigenvalue
,,,,,,,,,,, Wigner surmise :
O.7§ ] :
0.6/ i
-~ 0.5 :
203 |
g i
0.2 |
0.1 [
0.0t :
0010 | | | 012 | | | 0f4 | | | 016 | | | 018 |
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Summa[y
dALH\)\ T = A7

-measure

ngner-Dyson '
Cartan || 72 | C? | [T(C),P]+ | sym enhancement A\ — 0 | o | B | symmetry of matrices
A 11 2 U(L), adjoint
AL |l 1 1 O(L), (T
AIl || -1 Sp(1) — Sp(1) 4 Sp(L/2), H
Chiral
Cartan | 72 | C? | [T(C),P]+ | sym enhancement A\ -+ 0 | o | 8| symmetry of matrices
AIII U(l) - U(1)xU(1) 12 U(L) x U(L) ,(O,0)
BDI || +1|+1 O(1) = O(1)x0(1) 01 O(L) x O(L) , (o,0)
CII —1] -1 Sp(1) — Sp(1)xSp(1) |3 |4 | Sp(L/2) x Sp(L/2), (T,0)
BdG
Cartan || 72 | C? | [T(C),P]+ | sym enhancement A — 0 | « | 8 | symmetry of matrices
C —1 U(1) — Sp(1) 2. 2 Sp(L/2), (I
D +1 0@ -0@ |0|2|  OW.F
CF | it | 1 5 UQ1) | U(L), O
DiE |11 | Sp(1) — U(2) 1|4 U(L), B
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Plan of the talk

(1)Random matrices and the Altland-Zirnbauer (AZ) class

Level statistics: Symmetry and Universality
10 ensembles: Wigner-Dyson (3) + chiral (3) + BdG (4)

(2)(supersymmetric) Sachdev-Ye-Kitaev (SYK) and AZ

interacting fermionic many-body system.
Nice model to see the AZ & K-theory in contexts of chaos

(3)dissipative SYK and symmetry

Fermionic dissipations, classification of fermionic Lindbladians
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Sachdev-Ye-Kitaev

Original version: complex SYK

T CT CT- CiC [Sachdev-Ye 93]
Z LI A Rl [Sachdev 15]
1<7; k<l

{c,}L, c;} = dij {c;-f, c;f-} = {c;,c;} =0 :complex fermions

Before Kitaev, and even more before Sachdev and Ye, it was introduced
In the context of nuclear physics to study the interaction effect on the

- '
level statistics of the nuclear spectrum! [French-Wong 71]

[Bohigas-Flores 71]

Therefore the SYK is a natural setup to study the level statistics.
Kitaev's Majorana version reproduce all the Wigner-Dyson ensemble, and
supersymmetric version realizes all the Altland-Zirnbauer ensembles!

45



Sachdev-Ye-Kitaev

[Sachdev-Ye 93] [Kitaev 15]

N  Majorana fermion {Vi, 0} =0i; (dimH = 2%)
Hamiltonian: Hoyv i = i% Z JiliQ---iqwz’l %‘2 e %‘q
g : even 1<t
. J?(q—1)!
2 _
with (Jiyip.i,) , =0 and (Jijs,.i,) ;= g(2N)1-1

- Has the same effective action (Schwarzian) with 2d dilaton (JT) gravity
[Maldacena-Stanford, 16] [Maldacena-Stanford-Yang, 16]

- Very sparse random matrices on many body Hilbert space (Fock space)
N9 << 2

The density state is different from random matrices, but level statistics
agrees.
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Jordan-Wigner transformation

Majorana fermions are represented as matrices using the Jordan-Wigner
transformation;

1 i—th
even N ¢2i—1zﬁgz®'”®0zj® o’ ® !@"'@é
(2— 1);1;)ducts (N/2—z§;roducts
1 A R,
i=—0" QR - Ro*R 07 ®
Y2 7
1

odd N add wN =

E(Zi%%)(%%%@l) -+ (29PN _29N—1) to N-1

Then they satisfy {1, ; } = d;; . Equivalent to qubits!
The commutation relation is equivalent to that of the gamma matrices;
("7} = 20

Therefore the mathematics of Majorana fermions are the same with that of
the gamma matrices in N dimension and related to spinor representations.

Xi = \/5@&7; satisfies completely the same algebra with gamma matrices.
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fermion parity symmetry

even N

(—1)" = (ix1x2)(ix3xa) - - (ixn_1Xn) anti-commutes with all the fermions.

Using the Jordan-Wigner transformation,

1—th
XQ,L-_1:O'Z®...®O'Z® ot R IR---R1
— S——
(t—1)products . (N/2—1i)products
1—t

X%:UZ@...@(;Z@ oy QIR 1

i—th
iX2i-1X2i = I®- - ®IT® 0 ® I®---®I  gpin at site i.
(t—1)products (N/2—i)products
()" =0*® - -®0° : product of all the spins

odd N

We add (—1)% = x to the algebra at N-1.
We do not have fermion parity any more.
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Time reversal symmetry : even N

even N

The time-reversal symmetry acts on Majorana fermions as

—1
Tx:T = Xq
In our conventions, the complex conjugate flips the sign of the even fermions:
Kx2i—1K = X2i-1 Kxoi K = —X2;

Therefore to ensure the commutativity, we need a modification.
The correct one is

T X1X3X5 " - XN—1K  for N=0 mod 4
X2X4X6 - XN for N = 2 mod 4

= (phase) X 0 R 0" ® o' ®--- K

Another anti-unitary operators are given by

= (phase) X 0" QY R o ® - K
which anti-commutes with the fermion: T’xﬂ"_l = —Xj
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Time reversal symmetry : even N

property of the time reversal for even N

Explicitly calculating, we obtain

T2 _ +1  forN=0,2mod 8 (#of 0’ =even)
—1 for N = 4,6 mod 8 # of 0” =o0dd )

T(_l)F _ +(-1D*T  forN= 04mod8 (#of 0 =even)
—(-1)¥T  forN=26mod8 (#of 0 =odd)

From those two, we can deduce

7-/2 _

+1 forN=0,6 mod 8
—1 forN=2,4mod8

N — 8-N mod 8 exchanges ‘7~ and T’
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Time reversal symmetry : even N
odd N

For even N, we made different anti-unitaries 7 and 7" using (—1)
We cannot do that for odd N since we do have (—1)F

F

What we have for odd N is

AN

T =x1X3" " XN—2XNK

This satisfies

TriT 1 = {+Xi for N =1 mod 4 T
7

T
—Xi for N =3 mod 4 T’

and
72 _ +1 forN=1,7 mod 8 (# of oY = even)
—1 forN=3,5mod 8 (# of 0” =0dd )

The property of the time reversal is symmetric under N — 8-N mod 8
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Time reversal symmetry :

summary
Naods | Jio o i (1) |
0 apil | ol 1
: 2 Toxi T = X
2 +1 | — —1 »
3 S T_XiT_ — — X4
. (=1)"xi = =(=1) "
6 =1 —1
7 1

SYK Hamiltonian is invariant under both 7 and 7-
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SYK as a boundary of many body MBL-SPT phase:

Kitaev chain [Xu,Ludwig,You 16]

THT ==y TYT  =—¢'  T?=1

O —€C€O0 —<CO0 eo—CO o o e
\_/\_/vv

% wz Majorana edge mode

wi

€O e—CO e—<CO e—CO eo—C e
&0 &0 &0 &0 o)

two body int: i7"’ — break time reversal

four body int: ©/*171)"! —invariant under time rev  [Fidkowski-Kitaev 09]

Consider many body MBL-SPT — SYK is a boundary theory
[Xu,Ludwig,You 106]

A natural generalization of Anderson localization/SPT [Ryu Schnyder Furusaki Ludwig,
09] to interacting systems!
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N mod 8 classification of ordinary SYK

T. :time reversal

(—1)* : fermion parity

Table of /N mod 8 dependence

Nmod8 || 72 | T2 | (-=1)¥ | T(-1)¥ = a(-1)*T | Level Stat | qdim
0 +1|{+4+1]| Yes 1 GOE 1
1 +1 No GOE V2
2 +1|{—-1] Yes —1 GUE 2
3 -1| No GSE 2v/2
4 —1|(—-1]| Yes 1 GSE 2
5 —1 No GSE 2v/2
6 —1 | +1| Yes —1 GUE 2
7 +1| No GOE V2

SYK realize all the Wigner-Dyson statistics!

To distinguish N and 8-N, we need additional ingredient
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Relation to properties of gamma matrices

k—th

VRl =67 0. Q0@ 0 QIQ--- Q1
k—th

72]{:0'2:@-"@0"2@ o ®I®®]

chirality: T' = (iv'v*)(iv*~v*) - - (i ~14Y)  (for even d)

Charge conjugation matrices

Corresponds to
Level statistics

Coy"Cyt = n(y")"

dmod 8 | C3C, | C*C_ | [C,T']+ | spinor | reality
C?]; — Cr,? = +1 0 +1 +1 1 MW Real
1 +1 M Real
G 2 +1 —1 —1 M,W | Complex
SYK mi?::::s 3 -1 Pseudo
4 —1 —1 1 W Pseudo
7:7 « Cn 5 —1 Pseudo
6 —1 +1 —1 M,W | Complex
7. < C,Cy 7 - M | Real
(_1)F - T M = Majorana
W = Weyl
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sSupersymmetric SYK

[Gaiotto Fu Maldacena Sachdev, 16]

N Majorana fermion {Vi, 0} =i (dimH = 2%)

Supercharge: Q=1 =R Z Cq;l---iq%‘l - Yg (j : odd

11 <---<1g

. 71— 1)!
with (C,...,), =0 and (C? .. iq>c = (le\f@—l) J

Hamiltonian: H = Q-

+ Again solvable at large /N though the model is strongly coupled

- Has the similar effective action (super Schwarzian) to 2d JT SUGRA
[Stanford-Witten,17,19]

- Completely reproduce all the AZ classes!
[Kanazawa-Wetting, 17] [Li Liu Xin Zhou, 17] [Sun Ye, 19]
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Properties of SUSY SYK

- The Hamiltonian is invariant under 7., 7_, (=1)"".

On the other hand, [7,Q] =0,{7_,Q} =0 {(-1)",Q}=0

[dentifying susy SYK  AZ ensemble

T — T
T_ —C
()" =P
QQ— H

There is a correspondence between SUSY SYK and AZ class!
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Relation to Dirac operators

- Let us consider the qA — 1 (though it corresponds to free fermions)
Q=) Ciy

J .
Rewriting C'; — py, 'and 17 — ~* supercharge is understood as the
Dirac operator in momentum space !

- In SYK side, without changing the symmetry properties we can add

Q=0Q1+Qs+Qg+ -
=> G+ > Cijramd™ Fly™ 4 -
97 1<g<k<l<m

Including all the terms, we get a generic AZ ensemble matrices.

* We can also consider ¢ = 3
Q=Q3+Q7r+ - =i Z Cijrh P! " + - -
i<j<k
(N,q4) and (8 — N, § + 2) have the same symmetry property.
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Properties of SUSY SYK [Stanford-Witten, 19]

- The time reversal, fermion parity, and supercharges are summarized as
Cartan | Nmod 8 | 72 | 72 | [T,(—1)¥]+ | @ | B| supercharge symmetry
BDI 0 +1 | +1 1 0 | O(L) x O(L) , (O,0)
Al 1 +1 1 O(L), O
CI 2 +1| -1 —1 1 U(L), m
8 3 =] 2 Sp(L/2), M
CII 4 -1 | -1 1 3|4 |Sp(L/2) x Sp(L/2), (O,0)
All 5 —1 4 Sp(L/2), H
DIII 6 -1 | +1 —1 14 U(L), H
D 7 +1 2 O(L), H
+ Of course, the last entry is just writing the tangent of Cartan symmetric

space = space of AZ random matrix ensembles, the relation to fermions
are unclear.

The symmetry is understood as the space of rotation matrices in spinor
representation and how " transforms under rotation.

In lower dimension where spin(d) indeed coincides with other classical
groups. (= property of Cly.o )
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Numerical test of SUSY SYK

Eigenvalue density

of supercharge

bulk level
statistics

En—l—l _ En

Tn =
En—|—2 - En—l—l

“adjacent gap ratio”

distribution of
1st positive
eigenvalue

P(nr)
S e
Sl AR AN

[&)]

w
——

N
—

N=10, ¢=5
DIl

..............................

P(nr)

SO OO OoOOO

035}
0.30f
025}

0.20f

el \ P AV A, e )W

0.1

1
0.2 0.3 0.4




summary

SYK Realize all the Wigner-Dyson ensembles
Nmod8 | T2 | 72 | (-1)F | T(-1)¥ = a(-1)*T | Level Stat | qdim
0 +1 | +1| Yes 1 GOE 1
1 +1 No GOE V2
2 +1 | —-1| Yes —1 GUE 2
3 -1| No GSE 2v/2
4 -1 -1  Yes 1 GSE 2
5 —1 No GSE 2v/2
6 —1 | +1| Yes —1 GUE 2
7 +1| No GOE V2
SUSY SYK Realize all the Altland-Zirnbauer ensembles
Cartan | N mod 8 | 72 | 72 | [T,(—1)*]+ | « | B | supercharge symmetry
BDI 0 +1|+1 1 01 Oy oy (i)
Al 1 +1 1 6](4 e
CI 2 L = 101 U(L), o
C 3 —1 2 Sp(L/2), (T
CII 4 —1] -1 1 3|4 |Sp(L/2) x Sp(L/2), (O0,0)
AIl 5 —1 4 Sp(L/2), B
DIII 6 = 1 1 [ 1 U(L), B
D 7 +1 2 O(L), H
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Plan of the talk

(1)Random matrices and the Altland-Zirnbauer (AZ) class

Level statistics: Symmetry and Universality
10 ensembles: Wigner-Dyson (3) + chiral (3) + BdG (4)

(2)(supersymmetric) Sachdev-Ye-Kitaev (SYK) and AZ

interacting fermionic many-body system.
Nice model to see the AZ & K-theory in contexts of chaos

(3) dissipative SYK and symmetry

Fermionic dissipations, classification of fermionic Lindbladians

based on PRX Quantum (2023) with A.Kulkarni, K.Kawabata, J,Li, S.Ryu (Princeton U)

Phys.Rev.B 106 (2022) 7 w/ A.Kulkarni and S.Ryu (Princeton U)
Phys.Rev.B 108 (2023) 7 with A.Kulkarni, K.Kawabata, J,Li, S.Ryu (Princeton U)
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Complex enerqy

It is sometimes convenient to complexify energy.
Typically, it is interpreted as a decay rate of the state:

Y(t) et Ei—ivi)t t —

Consider a particle trapped in a potential, but Resongnce
decay by quantum tunneling.

bound
%\/zm(VO_EZ) state """

GamovV’ factor Vi ~ €

bound state: ¢ *" = !(i8)T outgoing wave: pure imaginary momentum
Resonance: e\Ytp)r — oilp—iv)r outgoing wave: complex momentum
= connection to the environment

The operator acting outside of the Hilbert space becomes non-Hermitian!
Compatible with the characterization as complex poles in the green functions

1
(?(l?)-—-fFrZE___}J
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Non-Hermitian matices

General motivation
- Non-Hermitian matrices are more generic than Hermitian matrices!

Ubiquitous.

Technical motivation

- d-dim quantum system = (d+1)-dim classical statistical problems
(evolution operator <«  transfer matrix)

unitary quantum Hamiltonian — complex probability stat.mech
(eg: finite density QCD, topological terms)

non-Hermitian quantum Hamiltonian <« positive probability stat.mech
(eg: Hatano-Nelson)

- diffusion eq= imaginary time Schrodinger eq

Motivation from genuinely Quantum systems

- Open quantum systems. The system evolution is not unitary in
system-environment setup.
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Open Sachdev-Ye-Kitaev

Again going back to the nuclear problems,
many nuclei are resonances! | o

P

(from wikipedia)
It is natural to think about SYK model coupled
to an environment and study the universality
of level statistics!

many body: Y Jiwmclclerer + dissipation
1<7;k<l

Another motivation:
a boundary approach to open SPT phases
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Non-Hermitian Random matrices . . .. . . .

38 symmetry classification in non-Hermitian Hamiltonians by symmetry
(1T0AZ+ (10-4) AZt + (3 + 24 - 5) AZ w/ SLS, we should remove overcounting )
TRS THT '=H
We should be careful about anti-unitaries PHS' CHC ' =-H

. SLS SHS '=-H
Transpose and complex conjugate are

. " . TRS'! TH'T '=H
different for Non-Hermitian matrices. PHS CH'C — _H

Symmetry class TRS PHS TRS' PHS' CS CS THI !'= _H
Complex AZ A 0 0 0 0 0
AIIl 0 0 0 0 1
Al +1 0 0 0 0 8 AZclass t=0 t=1
BDI +1  +1 0 0 1 0 A S
D 0 +1 0 0 0 1 AIII Sy S
Real Az DII -1 +1 0 0 1
All -1 0 0 0 0
cir -1 -1 0 0 1
o 0 1 0 0 0 § AZclass t=0 t=1 t=2 t=3
CI +1 -1 0 0 1 0 Al S_ S,
AT" 0 0 +1 0 0 1 BDI Siy S.4. S._ S,_
.
BDIT 00 4Ll 2 D S, S
0 0 U + 0
" 3 DIII S S 4 Syt St
Real Az! DII' 0 0 -1 +1 1
All" 0 0 -1 0 0 4 All S- S5
CIr* 0 0 -1 -1 1 5 CII Sy S+ S S,
ct o 0 0 -1 0 6 C S, S_
7t —
CI 0 0 +1 1 1 7 CI S S_. Sy S

06



Non-Hermitian Random matrices (density of states

We can find some structures for the distribution/level statistics in non-Hermitian
Random matrices

| —— Semi Circle
- —— GOE
0.1j I GUE
r — GSE

Allt (=All) real and imaginary part) -
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Non-Hermitian Random matrices (level statistics

We can find some structures for the distribution/level statistics in non-Hermitian
Random matrices

\ — )\NN
complex spectral gap ratio: P [Sa,Ribeiro,Prosen 19]
A — \NNN

gives a quantitative measure of level statistics.

class AII'
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Quantum channels

Completely Positive (CP) and Trace Preserving (TP) (CPTP) map
state P in system A (with H 4 ) to a state in system B (with Hp )

Graphically, e

=

Trace preserving is required since finally we obtain a density matrix.

Complete positivity is needed to guarantee that we get positive
operators even when the state is entangled with an environment.

They have so-called Kraus representation:

E(p) =Y KupK} S KIK, =
L

1

69
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Steinspring representation

We can realize any CPTP map as a unitary conjugation for the
+ environment E

E(p) = Trp(VpVT)

We can realize all the quantum channels as unitary maps.
Graphically,

E
1 -

I
<
=

The choice of environments is not unique.
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Choi isomorphism

Completely positivity is a positivity for entangled states.
Let us consider a maximally entangled| /) state between system & environment

and apply a quantum channel: E(|I) (I|) : Ha Q@ Hp = Ha @ HB

E

1

E

U]

1

S Eas

(flips depend on entangled states, but they are only different up to unitaries)

Completely positivity says that £(|I) (I|) is a density matrix.

(E(D) ()T = E(|1) (1)

From the Kraus representation, this is manifest;

—



Vectorization

The Choi-isomorphism is not useful when we multiply channels.
Another representation: vectorization

E

_ _I_H

E-HARQHy - Hp @ Hp

/2




Strong and weak symmetry
- strong symmetry

Symmetry of a Hamiltonianis UHU'™ = H . From this perspective,

& -

-

IS a natural symmetry for quantum channels
This is called strong symmetry.

assume Ha = Hp

- weak symmetry

On the other hand, when we think of quantum channels as a single operator

e — - -
U E ol = £
- -l — -

iIs a symmetry. This is called weak symmetry.
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Modular conjugation symmetry

- After vectorization, hermitian conjugate is now represented by the
modular conjugation:

T |p) = |p)

(modular conjugation for a reference maximally entangled state, not for Q)

- This Is anti-unitary operator:
JA®B)J '=B*® A"

- Any quantum channels are symmetric under the modular conjugation:

Iy (K,@KNJT'=)> (K, ®K})

U
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Quantum Master equation (Lindblad equation, GKSL):

Let us consider a quantum channel which is described by the exponential of a
generator [ :

o IS _ tL

€

These are called Lindblad equation (GKSL or quantum master equation)

o [Lindblad, 76] [Gorini-Kossakowski-Sudarshan, 76]
before vectorization

% p(t) = —i[H, p(t)] + > (Lkp(t)LZ - %LZLW@) - %p(t)Lsz)
k

after vectorization

| | o1 1 )
L=—iHy+iH_+) Liy®Lj_ — 5 Y Ll LI — L ® S LiLj_
k k k

L. : jump operators

L :Non-Hermitian Hamiltonian on doubled Hilbert space H | & H _
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SYK Lindbladian: [Kulkarni- TN - Ryu, 21]

H = Hgyk
Lm= Y Kupiyoi, i, s, Komiyoi, € C
i1 < <ip

. p-body Jump operators.

We have to double the Hilbert space to vertorize:

lbj , %DZ_ . in total N + N = 2N Majorana fermions.

For example, for L; = \/ﬁwi

2

the reference maximally entangled state (= infinite temp state):
LIT) =0 W |I) = —iyt |I)

(* we should be careful about tensor product and transpose for fermions or anyons )

. . 9 — . i 1 N
L=—iHL, - +i(—1)2Hgy — wszrw_ —pu—I, ®I_

[cf: Shiozaki Shapoulian Ryu, 16] [Shapoulian Mong Ryu, 20]
[Yoshida Kudo Katsura Hatsugai, 20]
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Symmetry of SYK Lindbladian
Symmetry of the SYK Lindbladian:

always symmetries of Lindbladians

Modular conjugation jzp;tj_l = w;F jzj_l = 2"

weak Fermion Parity ~ (—1)7 ¢ (-1)" = —¢F

1

depend on choices of Jump terms/ Hamiltonians

—1
ReLtR—1 = e(RER )t - hot reverse a time

—1 F
Similarly to the SYK time reversal, we can combine the fermion ( )
parity symmetries to form another anti-unitary symmetry: 73—(—1)
We did not find how to define weak anti-unitary symmetry (—1)F.i

77

anti-unitary symmetry RwiiR_l — ¢§t RzR 1t =2*

[Kawataba,Kulkarni, TN, Li, Ryu 22]

strong Fermion Parity  (—1)" ¢ (1) = —¢7  (=1)" ¢ (1) =y



Algebra of Symmetries
[Kawataba,Kulkarni, TN, Li, Ryu 22]

The algebra only depends on /N mod 4 , in contrastto N mod 8 in SYK
J(-1)" =a(-1)"TJ TR =bRJT

N (mod 4) 0 1 2 3
a +1 —1 +1 —1
b +1 +1 -1 -1
R’ +1 +1 -1 -1

some anti-unitaries are always a symmetry of the SYK Lindbladian
(SYK Hamiltonian is always time reversal invariant or flip the sign)

On the other hand, the strong fermion parity is not always a symmetry

Ex) Li;=+//1¥' model is not invariant under strong Fermion Parity

L* =Y K{¢'p’ model is invariant under strong Fermion Parity
i<J
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Table of Symmetry classification of Lindbladian (1

p-body dissipation: .. = Z Komiy i, iy -+ Ui,
1<11<--<1p <N

N (mod 4) 0 1 2 3

fermion parity (—1)}_ Zo Zio Zio Zo

modular conjugation J +1 +1 +1 +1

P =R(-1)" +1 0 —1 0

Q =R(-1)" +1 +1 +1 +1

R +1 0 —1 0

S =R(-1)T" +1 +1 +1 +1
g =0 (mod 4) [Km;iK},.; ¢ R] Al = Df Al = Df Al = Df Al = Df

q=0 (mod 4) [Km;K;,; €R] | BDI' + S;y BDI' CI' + Sy _ BDI'

g =2 (mod 4) BDI Al = Df CI Al = Df

Q isa symmetry but P is not.

this term vanishes. Consequently, we have the following
symmetry classification for odd p > 3: for ¢ = 0 (mod 4)
with K,,; K}, . ¢ R and ¢ = 2 (mod 4), the symmetry
class is class Al (or equivalently class D) for arbitrary
N; for ¢ =0 (mod 4) with K, ; K}, € R, the symmetry
class is class BDI' for arbitrary N.
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Table of Symmetry classification of Lindbladian (2)

p-body dissipation: [, = Z Komiy i, iy -+ Ui,
1<11<--<1p <N
N (mod 4) 0 1 2 3
fermion parity (—1)]:, (—l)Fi Lo X Zio Zo Lo X Zio Zo
modular conjugation J +1 +1 0 +1
P +1 0 0 0
Q +1 +1 0 +1
even p R +1 0 0 0
S +1 +1 0 +1
g=0 (mod 4) [Knm:K}; ¢ R],¢=2 (mod 4) | AI=D'  AI=Df A AI=Df
g =0 (mod 4) [K,.;K},.; €R] BDI' BDI' A +np=AIIl BDI
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Symmetry and Dissipative many body Chaos: bulk level statistics
A — AN

complex spectral gap ratio: — ibei
P P gap A N \NNN [Sa,Ribeiro,Prosen 19]

distribution p(r,0) of 2z = re*

angle distribution p(0) := /p(fr, 0)dr

(a)P=2 N =10 (bukkclassA)(b) »P=2 N =12 (bulk class Al)

0.2 omome 0.2
VR
S =
Q, S¥
Class A Class A
—— Class Alf —— Class Al
—— Class Allf —— Class Allf
-3 —2 —1 0 1 2 3 -3 —2 —1 0 1 2 3
discrepancy good agreement

perhaps because Lindbladian is not completely random and see the transition

[cf: Garcia-Garcia Loureiro Romero-Bermudez Tezuka, 17]
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Symmetry and Dissipative many body Chaos: edge level statistics

N=10, p=1 (BDI+ S__ ) N=12, p=1 (BDI + S )

- (1) =+1 :
0.5 . (-1 =-1 08

'\

' "c'. "o‘ .0‘0
L
ARG AR

..’ 'r ‘..
AT SR T ,,.".,-z.
L w g%- < .’

DoS S PR
d. TR S L AT ! O. .
0 f'..-fo 1.' ~‘i-‘..'\

o # ..‘ &P ‘:'ﬁo
.o-"" o **-: -\.W ! "'~.
- od'-c.,\‘l-..l‘:.‘.-'\o +

'i(“ I"! ")a‘
\..r

~0.5 1 —(0.8-

—9 —1 0 —4 ) 0
Re A\ Re A\

'-’“-W\N /JW
' N \’ \ wl & 10-M/MW\N\ .. W"f\

real axis . \/\ /\/  \ / A
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0 . - . 0.02 0.0 0.02
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o
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summary

Symmetry of SYK Lindbladian

J(-1)" =a(-1)"T

— b F~ T \FT
IR =0RJ (=1) (-1)7,
mod 4 0 1 2 . 1y —
N (mod 4) 3 P—-1)"—R
+1 —1 +1 —1 -
G G
+1 +1 —1 —1 S R
+1 +1 -1 -1 O
N (mod 4) 0 1 2 3
fermion parity (—1)]: Zio Zo Zio Zo
modular conjugation J +1 +1 +1 +1
P +1 0 ~1 0
Q +1 +1 +1 +1
R +1 0 —1 0
S +1 +1 +1 +1
g =0 (mod 4) [Km;iK},.; ¢ R] Al = Dt Al = Dt Al = Df Al = Df
q=0 (mod 4) [Km;iK,,; €R] | BDI" + Sy4 BDI' CI' + 84— BDI'
g = 2 (mod 4) BDI Al = D' CI Al = D'

+p>1
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Summary of lectures

- Review of AZ class in random matrix context: T, 7) , C determine Cartan class.
symmetry breaking and enhancement fixed point determines universal behaviors.

 Review of the (SUSY) SYK. Realize all the AZ class.
Relation to Majorana fermions and AZ becomes manifest.

* Introduce our SYK Lindbladian model. Natural to study level statistics in the
context of nuclear physics and

Anti-unitaries and non-Hermitian AZ class. Reflected to level statistics.

Future problems

- Complete level statistics of non-Hermitian random matrices.
Characterization by symmetry pattern when two eigenvalues collide.

- Understand 38 from Majorana fermions.
» Classification of ("anyonic”) quantum channels.
- Maybe related to exceptional groups, coadjoint orbit, etc...

thank Yyou !



Time reversal symmetry

- It is not linear, but an anti-linear operator.

Dirac’s bra-ket notation becomes confusing for non-linear operator.

- A useful braket notation for non-linear operators is
A([Y)) = |A)

An anti-linear operator satisfies

Ala ) +b[¢)) = a” [A) + 0" [Ad)

- The adjoint of an anti-linear operator is defined by

(plAT)) = (] Ag)

(This condition guarantees the anti-unitarity of Al )

- An anti-unitary operator © satisfies

(©0|09) = (V]¢)

In particular, they do not change the norm.
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Time reversal symmetry on linear operators

THTJr IS a linear operator since
T(H [T (avy + bip2))) = aT (H [T 1)) + T (H [T h2))

A relation between H and T HT T is

THT' =) (em|Hlen)" [Tem) (Ten

m,n

for a basis ‘6n> : [see Harlow-TN 23]
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Spin(2

* Isomorphic to U(1)
. 6

. Z§ . ’L%
cosf) —sinf\ («x € .9($‘|‘7/?/)6
sinf  cosf Y < =" (v +wy)

SO(2) is represented as a 1x1 d matrix conjugation.

Therefore we say that the vector representation of spin(2) = U(1)
appears as the symmetric tensor product of chiral spinor representation.

0 1 ) 0 —i vy _ Yroa L,
1 x — Y — Ey:_ Yl — _

_;8
2x2 Dirac spinor transforms as ¢ = (;ﬁ) — exp(10X7Y) ¢ = ( 9 lb)

O +i)p= (¢ X (8 (2)) (ﬁ) = 2’

- the space of 2x2 class Cl ensemble.
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Spin(1

* Isomorphic to  Zy = O(1)

- for any real number x, r = e re’ with 6 = 0,7
- gamma matrices are 1 dimensional,

() =2  AT=£V2

(two different representations depending on the sign)

. spinors are real 1 dimensional, ¢ — €%’
Symmetric tensor of two spinors are

¢/7$¢%€2i9¢lvx¢:¢lvx¢
A trivial example of class Al

38



Spin(3

* Isomorphic to SU(2)

r-o, ulx-o)u u € SU(2)
gives a 3d rotation.

Fundamental representation of SU(2) is a spin 1/2 representation of SO(3)
L - O Is symmetric matrix.

relation to spinor is

T o= E ;Y
i

- This is the simplest example of class C
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Spin(4
* Isomorphic to SU(2)xSU(2)
h=zo+ix-oc ., uhv' u,v € SU(2)

gives a 4d rotation.

h is naturally identified with a quaternion.
u,v is then naturally identified with a quaternion with unit norm.

SU(2) = Sp(1) is a more correct interpretation in this context.

The diagonal rotation ©w = v gives spin(3).
In this sense spin(3) = Sp(1) is better identification.

i 0 iOi 4 0O [ 4 N (_) h
il _(—wi 0) i _(I 0) Loy +Z$” _<h 0

This is the simplest chiral GSE matrix of 4x4,

90



Spin(5)

* Isomorphic to Sp(2)

H:<s a):< S.I a4—|—za-0') [ —
a —S as — 1a - O —sl

UHUT gives a 5d rotation.

U — 911 0 gives a 4d rotation before.
0 g2

i O iUi 4_0[ 5:I
"=\t 0) 7 =\ o) 7 0

H=> a7 +ay* + as?’

This is the simplest non trivial GSE matrix of 4x4.
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Spin(6
* Isomorphic to SU(4)

(0 BB B\ 1
—Fy O_ b __EQ with the norm ZTT(FFT) = |El|2 T ‘E2|2 T ‘E3|2
—Fs —F;5 0 EA

\-Es E, -E 0 ) F—UFU"

gives a 6d rotation in (1, X2, T3, %4, T5,Xg) € RY identified with

(F1, Fo, E3) = (x1 + 122, T3 + 124, T5 + 1T6)

0 B B B
(0 BB B

F =

First we start with F = and then impose invariance

_E2 —Bg 0 B1
\-Es B, -B, 0 |

under the duality and complex conjugate F,, = %GMVPUFPJ (E=B )

Weyl Spinoris 4 of SU(4). F' is manifestly anti-symmetric.

Therefore in 6d the vector appears in the anti-symmetric tensor of Weyl
spinor.
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Spin(8)

- There is a manifestly real representation of the gamma matrices

V' =0"@RIQIRI vV =0'®c"Q®I® "
V=0"QRIQI®I VY=0'®c*®I®dY
V=R Q0" QI YV =0'®I®c¥®o"

74203”@09@02@[ v820y®[®0y®0'z

Because of this, reality of spin(d+8) agrees with that of spin(d)
(Bott periodicity)
d—1
- both Weyl spinors and vectors are 8 dimensional because 22 = d .

1 .
there is a triality transformation that relates I;; and ;[7"7’]

In that sense, SO(8) spinor coincides with the fundamental rep of itself!

1
T102 — §(T12 + T34 + T56 + T7s) + 27 relations

- This representation is also practically useful to numerical study the

SYK for N = 8k.
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Spin(7)

- There is an special embedding of spin(7) into spin(8) combining the
standard embedding SO(7) C SO(8) and the triality

Using this we can find a spin(7) singlet in SO(8) spinor: 8, — 1 + 7

Fidkowski and Kitaev used this fact to construct a gapped pass between

8 layer of SPTs and trivial states [Fidkowski Kitaev, 09].
(spin(7) Casimir is their Hamiltonian)

In our case we can use this map to get SO(7) spinor from SO(8) vectors.

so@B) 8,8, —1+28+ 35
! l
spin(7) 8 ® 8 1H7+21+---

Since SO(8) vector is real, spin(7) is also real .
Since 7 comes from 8d anti-symmetric matrix 28 , (7" (') is anti-symmetric.

94



