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Today’s Talk Is Based On
On Choosing a Physically Meaningful Topological Classification for
Non-Hermitian Systems and the Issue of Diagonalizability
with Vicente Lenz
Under review, arxiv:2010.09261

Continuity of Spectra of Spectral Operators
with Vicente Lenz
In preparation

Motivated by
Recent works by Kawabata et al. (2019), Zhou & Lee (2019)

• Extends 10-Fold Cartan-Altland-Zirnbauer Classification of
selfadjoint operators

• Systematic classification of non-selfadjoint operators

• 38 symmetry classes + gap-type subclasses
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Our Main Results
1 Provides a recipe to classify non-selfadjoint spectral operators.

⇝ Inclusion of effects of disorder, perturbations

2 Physically meaningful classification singled out by identifying
relevant states ⇝ physical criterion for choice of line gap.

3 Provides mathematical recipe for point gap classification.

4 Extends the classification results by Zhou & Lee, Kawabata et al.
from periodic tight-binding to spectral operators.

Update since publication of preprint

• Current preprint claims classification result only applies to
diagonalizable ⊊ spectral operators. ⟹ Range of validity ↑

• Fixed a mistake: existence of 𝑃rel not conditional on absence of
Jordan blocks.

• Thank you to Vicente Lenz & Masatoshi Sato 3 / 33
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1 Kawabata et al.’s 38-Fold Classification of Non-Selfadjoint
Operators

2 Spectral Operators
3 Physics Determines Relevant Line Gap Classification
4 Mathematical Point Gap Classification
5 Summary
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What Are Topological Phenomena?

Quantum Hall Effect Electromagnetic waves Coupled Oscillators

What makes a physical effect
topological?

Find a mathematical object
(e. g. projection or vector bundle)
whose topology manifests itself on
the level of physics.

Bulk-Boundary Correspondence

𝑂bdy(𝑡) ≈ 𝑇bdy = 𝑓(𝑇bulk)

Step 1: Bulk Classification

• Classify systems with certain
symmetries

• Identify all topological invariants
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General Properties of Non-Selfadjoint Operators
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Differences between selfadjoint and non-selfadjoint
operators?

1 Spectrum may be complex.

2 They need not be diagonalizable/have Jordan blocks.*

⇝ Intuition can only be made precise for spectral operators!

*What that means mathematically will be clarified later in the talk.

7 / 33



Classification Non-Selfadjoint TIs Spectral Operators Line Gaps Point Gaps Summary

Point Gap vs. Line Gaps
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Gap types for selfadjoint ⟶ non-selfadjoint operators

Co-dimension 1 ⟶ { Co-dimension 1 (line gaps)
Co-dimension 2 (point gaps)

Differences between point and line gaps

• Point gaps just enforce bounded invertibility

• Line gaps prevent states from crossing the relevant line.

• Real and imaginary line gaps
⇝ imaginary and real axis (order reversed!)

• 𝐻 has line gap ⟹ 𝐻 has point gap
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Relevant Symmetries of Non-Selfadjoint Operators
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Symmetries for selfadjoint ⟶ non-selfadjoint operators

𝑈 𝐻 𝑈−1 = ±𝐻 ⟶ { 𝑈 𝐻 𝑈−1 = ±𝐻
𝑈∗ 𝐻 𝑈−1

∗ = ±𝐻∗

where 𝑈 and 𝑈∗ are (anti)linear, invertible maps with 𝑈2 = ±𝟙
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Relevant Symmetries of Non-Selfadjoint Operators
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Type Condition on 𝐻 𝜎(𝐻) =
ordinary 𝑉 𝐻 𝑉 −1 = +𝐻 +𝜎(𝐻)
chiral 𝑆 𝐻 𝑆−1 = −𝐻 −𝜎(𝐻)
±TR 𝑇 𝐻 𝑇 −1 = +𝐻 +𝜎(𝐻)
±PH 𝐶 𝐻 𝐶−1 = −𝐻 −𝜎(𝐻)

pseudo 𝑉∗ 𝐻 𝑉 −1
∗ = +𝐻∗ +𝜎(𝐻)

chiral∗ 𝑆∗ 𝐻 𝑆−1
∗ = −𝐻∗ −𝜎(𝐻)

±TR∗ 𝑇∗ 𝐻 𝑇 −1
∗ = +𝐻∗ +𝜎(𝐻)

±PH∗ 𝐶∗ 𝐻 𝐶−1
∗ = −𝐻∗ −𝜎(𝐻)

(Compared with Kawabata et al. this uses different nomenclature for the symmetries.)
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38-Fold Classification of Non-Selfadjoint Topological Insulators
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Bare basics

• Symmetries of 𝐻
Gap type } ⟷ Topological class of 𝐻

• Topological class = ⋃{Topological phases}
• Topological phase = Operators connected by symmetry- and

gap-preserving continuous deformations

• Homotopy definition of topological phase (usually
first-principles starting point)

• Phases labeled by a finite set of topological invariants

• Number and nature of topological invariants depends on
topological class
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38-Fold Classification of Non-Selfadjoint Topological Insulators

Normalization of Non-Selfadjoint Operatosr

nature of non-Hermitian topological phases. We
clarify this fundamental issue and find that the
complex nature of the energy spectrum leads to
the two types of complex-energy gaps, a point gap
and a line gap (Fig. 1), as described in Sec. III.
Whereas a point gap and the corresponding topo-
logical classification were considered in Ref. [122],
a line gap was not considered there, and the present
work has developed the unified understanding of
complex-energy gaps. Importantly, the two types of
complex-energy gaps enrich non-Hermitian topo-
logical phases in a fundamental manner that has no
analogs to the Hermitian ones; non-Hermitian top-
ology strongly depends on the type of complex-
energy gaps.

Our complete classification of non-Hermitian topological
phases relies on these fundamental insights in non-Hermitian
physics. Crucially, although the previous classification [122]
cannot correctly describe the recent experiments on non-
Hermitian topological systems, the present classification
encompasses them because of the above fundamental
insights into symmetry and energy gaps, as described in
Sec. VII A. Moreover, our work systematically predicts
novel non-Hermitian topological phases that enable richer
phenomena and functionalities due to the interplay of non-
Hermiticity and topology. For example, our theory predicts
novel symmetry-protected topological lasers and dissipative
topological superconductors, as described in Secs. VII B
and VII C.

II. SYMMETRY

For Hermitian Hamiltonians, internal (nonspatial) sym-
metries fall into the AZ symmetry class [205]: time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS), where TRS and PHS are antiunitary,
whereas CS is unitary. These symmetries lead to the
10-fold classification of Hermitian topological insulators
and superconductors [206–208]. On the other hand, it is
nontrivial whether the AZ symmetry fully describes all the
internal symmetries even in the presence of non-Hermiticity.
In fact, PHS is defined with transposition as Eq. (13) and
cannot be described in terms of complex conjugation any
longer for non-Hermitian BdG Hamiltonians due to the
distinction between complex conjugation and transposition.
Correspondingly, CS does not coincide with sublattice
symmetry (SLS), although they are equivalent in the
presence of Hermiticity. As a consequence, the total number
of symmetry classes is 38 as shown below, each of which
describes intrinsic non-Hermitian topological phases as well
as non-Hermitian random matrices.

A. Symmetry ramification and unification

Before describing our 38-fold symmetry in detail, we
summarize the changes in the nature of symmetry in non-
Hermitian physics. In fact, non-Hermiticity ramifies and
unifies symmetry in a fundamental manner. First, to see the
symmetry ramification, let us consider PHS as an example.
For Hermitian systems, PHS is defined by

FIG. 2. Flattening procedures of Hermitian and non-Hermitian Hamiltonians. (a) Flattening of a Hermitian Hamiltonian with an
energy gap. A Hermitian Hamiltonian can be flattened to another Hermitian Hamiltonian with H2 ¼ 1 without closing the energy gap.
(b) Unitary flattening of a non-Hermitian Hamiltonian with a point gap. A non-Hermitian Hamiltonian can be flattened to a unitary
Hamiltonian with H†H ¼ 1 without closing the point gap. (c) Hermitian flattening of a non-Hermitian Hamiltonian with a line gap.
A non-Hermitian Hamiltonian can be flattened to a Hermitian (an anti-Hermitian) Hamiltonian with H2 ¼ þ1 (H2 ¼ −1) in the
presence of a real (an imaginary) gap.

KAWABATA, SHIOZAKI, UEDA, and SATO PHYS. REV. X 9, 041015 (2019)

041015-4

Point gap

• 𝐻 homotopically deformed to unitary

• Idea: polar decomposition 𝐻 = 𝑉𝐻 𝑀
• Unless 𝐻 is normal [𝑉𝐻 , 𝑀] ≠ 0
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(Real) line gap

• 𝐻 homotopically deformed to spectrally
flattened hamiltonian 𝑄

• 𝑄 = 𝑄∗ = 𝟙 − 2𝑃 ⟷ 𝑃 = 𝑃 2 = 𝑃 ∗

• In general 𝑃 not a spectral projection of 𝐻
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38-Fold Classification of Non-Selfadjoint Topological Insulators
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Classification result by Kawabata et al. (2019)

• 38 topological symmetry classes + gap-type subclasses

• Eliminated doubly counted cases

• Determined coarse* topological classification by computing
twisted equivariant K-groups ⇝ classification tables

• Applies to periodic tight-binding operators

Example

TABLE VII. Topological classification table for non-Hermitian systems in the real AZ symmetry class with sublattice symmetry
(SLS). Non-Hermitian topological phases are classified according to the AZ symmetry class with additional SLS, the spatial dimension
d, and the definition of complex-energy point (P) or line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part
of the complex spectrum. The subscript of S! specifies the commutation (þ) or anticommutation (−) relation to time-reversal symmetry
(TRS) and/or particle-hole symmetry (PHS). For the symmetry classes that involve both TRS and PHS (BDI, DIII, CII, and CI), the first
subscript specifies the relation to TRS and the second one to PHS.

SLS AZ class Gap Classifying space d ¼ 0 d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7

Sþþ BDI P R1 Z2 Z 0 0 0 2Z 0 Z2

Lr R1 ×R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

Li R1 ×R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

S−− DIII P R3 0 Z2 Z2 Z 0 0 0 2Z
Lr R3 ×R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z
Li C1 0 Z 0 Z 0 Z 0 Z

Sþþ CII P R5 0 2Z 0 Z2 Z2 Z 0 0
Lr R5 ×R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0
Li R5 ×R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0

S−− CI P R7 0 0 0 2Z 0 Z2 Z2 Z
Lr R7 ×R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z
Li C1 0 Z 0 Z 0 Z 0 Z

S− AI P C1 0 Z 0 Z 0 Z 0 Z
Lr R7 0 0 0 2Z 0 Z2 Z2 Z
Li R3 0 Z2 Z2 Z 0 0 0 2Z

S−þ BDI P C0 Z 0 Z 0 Z 0 Z 0
Lr R0 Z 0 0 0 2Z 0 Z2 Z2

Li R2 Z2 Z2 Z 0 0 0 2Z 0

Sþ D P C1 0 Z 0 Z 0 Z 0 Z
L R1 Z2 Z 0 0 0 2Z 0 Z2

S−þ DIII P C0 Z 0 Z 0 Z 0 Z 0
Lr R2 Z2 Z2 Z 0 0 0 2Z 0
Li R0 Z 0 0 0 2Z 0 Z2 Z2

S− AII P C1 0 Z 0 Z 0 Z 0 Z
Lr R3 0 Z2 Z2 Z 0 0 0 2Z
Li R7 0 0 0 2Z 0 Z2 Z2 Z

S−þ CII P C0 Z 0 Z 0 Z 0 Z 0
Lr R4 2Z 0 Z2 Z2 Z 0 0 0
Li R6 0 0 2Z 0 Z2 Z2 Z 0

Sþ C P C1 0 Z 0 Z 0 Z 0 Z
L R5 0 2Z 0 Z2 Z2 Z 0 0

S−þ CI P C0 Z 0 Z 0 Z 0 Z 0
Lr R6 0 0 2Z 0 Z2 Z2 Z 0
Li R4 2Z 0 Z2 Z2 Z 0 0 0

S−− BDI P R3 0 Z2 Z2 Z 0 0 0 2Z
Lr C1 0 Z 0 Z 0 Z 0 Z
Li R3 ×R3 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z

Sþþ DIII P R5 0 2Z 0 Z2 Z2 Z 0 0
Lr C1 0 Z 0 Z 0 Z 0 Z
Li C1 0 Z 0 Z 0 Z 0 Z

S−− CII P R7 0 0 0 2Z 0 Z2 Z2 Z
Lr C1 0 Z 0 Z 0 Z 0 Z
Li R7 ×R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

(Table continued)

KAWABATA, SHIOZAKI, UEDA, and SATO PHYS. REV. X 9, 041015 (2019)
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* Coarse means not all topological invariants are captured by those specific K-groups
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38-Fold Classification of Non-Selfadjoint Topological Insulators
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Classification result by Kawabata et al. (2019)

• 38 topological symmetry classes + gap-type subclasses

• Eliminated doubly counted cases

• Determined coarse* topological classification by computing
twisted equivariant K-groups ⇝ classification tables

• Applies to periodic tight-binding operators

Example

TABLE VII. Topological classification table for non-Hermitian systems in the real AZ symmetry class with sublattice symmetry
(SLS). Non-Hermitian topological phases are classified according to the AZ symmetry class with additional SLS, the spatial dimension
d, and the definition of complex-energy point (P) or line (L) gaps. The subscript of L specifies the line gap for the real or imaginary part
of the complex spectrum. The subscript of S! specifies the commutation (þ) or anticommutation (−) relation to time-reversal symmetry
(TRS) and/or particle-hole symmetry (PHS). For the symmetry classes that involve both TRS and PHS (BDI, DIII, CII, and CI), the first
subscript specifies the relation to TRS and the second one to PHS.

SLS AZ class Gap Classifying space d ¼ 0 d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7

Sþþ BDI P R1 Z2 Z 0 0 0 2Z 0 Z2
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Li C1 0 Z 0 Z 0 Z 0 Z
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Li R2 Z2 Z2 Z 0 0 0 2Z 0

Sþ D P C1 0 Z 0 Z 0 Z 0 Z
L R1 Z2 Z 0 0 0 2Z 0 Z2

S−þ DIII P C0 Z 0 Z 0 Z 0 Z 0
Lr R2 Z2 Z2 Z 0 0 0 2Z 0
Li R0 Z 0 0 0 2Z 0 Z2 Z2

S− AII P C1 0 Z 0 Z 0 Z 0 Z
Lr R3 0 Z2 Z2 Z 0 0 0 2Z
Li R7 0 0 0 2Z 0 Z2 Z2 Z

S−þ CII P C0 Z 0 Z 0 Z 0 Z 0
Lr R4 2Z 0 Z2 Z2 Z 0 0 0
Li R6 0 0 2Z 0 Z2 Z2 Z 0

Sþ C P C1 0 Z 0 Z 0 Z 0 Z
L R5 0 2Z 0 Z2 Z2 Z 0 0
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S−− CII P R7 0 0 0 2Z 0 Z2 Z2 Z
Lr C1 0 Z 0 Z 0 Z 0 Z
Li R7 ×R7 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z

(Table continued)

KAWABATA, SHIOZAKI, UEDA, and SATO PHYS. REV. X 9, 041015 (2019)
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Zoomed in

* Coarse means not all topological invariants are captured by those specific K-groups
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38-Fold Classification of Non-Selfadjoint Topological Insulators
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Classification result by Kawabata et al. (2019)

• 38 topological symmetry classes + gap-type subclasses

• Eliminated doubly counted cases

• Determined coarse* topological classification by computing
twisted equivariant K-groups ⇝ classification tables

• Applies to periodic tight-binding operators

Example

Problem solved!?

* Coarse means not all topological invariants are captured by those specific K-groups
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Questions that Motivated Our Work
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1 Do Jordan blocks matter in the topological classification?
Answer: For spectral operators, no.

For non-spectral operators, the notion of
Jordan block is ill-defined.

2 What physical data determine which of the mathematical
classifications is relevant for physical phenomena?
Answer for “line gaps”: Physically relevant states
Answer for “point gaps”: I do not know.
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1 Kawabata et al.’s 38-Fold Classification of Non-Selfadjoint
Operators

2 Spectral Operators
3 Physics Determines Relevant Line Gap Classification
4 Mathematical Point Gap Classification
5 Summary
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Definition of Spectral Operators

Definition (Spectral Operator)
A spectral operator 𝐻 ∈ ℬ(𝒳) is a bounded operator on a Banach
space 𝒳 that possesses a projection-valuedmeasure
{𝑃(Ω)}Ω∈𝔅(ℂ) on ℂ with the following properties: for all Borel sets
Ω ∈ 𝔅(ℂ) we have

a [𝐻, 𝑃 (Ω)] = 0 and

b 𝜎(𝐻|ran𝑃(Ω)) ⊆ Ω.

• Definition goes back to Dunford, Schwartz, Bade, Kakutani & Wermer
(series of papers in 1954!)

• Theory developed across 700 (!) pages in Part III of Dunford &
Schwartz’s book ⇝ Re-discovered by my collaborator Vicente Lenz

• Projection-valued measure takes values in oblique projections
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Definition of Spectral Operators

Definition (Spectral Operator)
A spectral operator 𝐻 ∈ ℬ(𝒳) is a bounded operator on a Banach
space 𝒳 that possesses a projection-valuedmeasure
{𝑃(Ω)}Ω∈𝔅(ℂ) on ℂ with the following properties: for all Borel sets
Ω ∈ 𝔅(ℂ) we have

a [𝐻, 𝑃 (Ω)] = 0 and

b 𝜎(𝐻|ran𝑃(Ω)) ⊆ Ω.

• Periodic tight-bining operators are spectral operators
⇝ Link to works by Kawabata et al.

• Not all operators are spectral!
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Decompositions of Spectral Operators

Theorem (Jordan normal form)
Any spectral operator 𝐻 = 𝑆 + 𝑁 can be uniquely decomposed into
a scalar part

𝑆 = ∫
ℂ

𝐸 d𝑃(𝐸)

and a quasi-nilpotent part (i. e. 𝜎(𝑁) = {0})

𝑁 = 𝐻 − 𝑆

that commute [𝑆, 𝑁] = 0.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988
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Decompositions of Spectral Operators

Theorem (Cartesian decomposition)
Any spectral operator𝐻 = 𝐻Re + i𝐻Im can beuniquely decomposed
into a real and imaginary part with the following properties:

a [𝐻Re , 𝐻Im ] = 0
b 𝜎(𝐻Re ), 𝜎(𝐻Im ) ⊆ ℝ
c 𝐻Re is a scalar operator and 𝐻Im a spectral operator.

d The Boolean algebra of projections generated by the
projection-valuedmeasures of 𝐻Re and 𝐻Im is bounded.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988
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Decompositions of Spectral Operators

Theorem (Polar decomposition)
Any spectral operator 𝐻 = 𝑈 𝑀 can be decomposed into a phase 𝑈
and amodulus 𝑀 with the following properties:

a [𝑈, 𝑀] = 0
b 𝜎(𝑈) ⊆ 𝕊1, 𝜎(𝑀) ⊆ [0, ∞)
c 𝑈 is a scalar operator and 𝑀 a spectral operator.

d The Boolean algebra of projections generated by the
projection-valuedmeasures of 𝑈 and 𝑀 is bounded.

Dunford & Schwartz, Linear Operators, Part III, Spectral Operators, Chapter XV, Wiley-Interscience, 1988

14 / 33



Classification Non-Selfadjoint TIs Spectral Operators Line Gaps Point Gaps Summary

Spectral Operators Admit an Analytic Functional Calculus
Im E

Re E

!+−!−−

!−+

!++

"(!rel)

Im E

Re E

!outer

!inner

For functions 𝑓 that are analytic on some set Ω ⊃ 𝜎(𝐻), we set

𝑓(𝐻) ∶=
∞

∑
𝑛=0

𝑁𝑛

𝑛! ∫
𝜎(𝐻)

𝑓 (𝑛)(𝐸) d𝑃(𝐸)

= i
2𝜋 ∫

Γ(𝜎(𝐻))
d𝑧 𝑓(𝑧) (𝐻 − 𝑧)−1

where 𝑁 is the quasi-nilpotent part.

Important
When 𝜎rel is an isolated spectral island, then

1𝜎rel
(𝐻) = 1𝜎rel

(𝑆) = 1𝜎rel
(𝑆 + 𝑁 ′)

where 𝑁 ′ is any quasi-nilpotent operator with [𝑆, 𝑁 ′] = 0
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Relation to Diagonalizable Operators

Definition (Diagonalizable operator)
𝐻 ∈ ℬ(ℋ): ∃ similarity transform 𝐺 ∈ ℬ(ℋ)−1 that makes

𝐺 𝐻 𝐺−1 = ∫
ℂ

𝐸 d𝑃(𝐸)

normal, where 𝑃(Ω) is the projection-valued measure.
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Relation to Diagonalizable Operators

Proposition
𝐻 ∈ ℬ(ℋ) diagonalizable

⟺
𝐻 = 𝑆 scalar operator on aHilbert space

⇝ Dunford & Schwartz, Theorem XV.6.4
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Relation to Diagonalizable Operators

Corollary
Suppose 𝐻 ∈ ℬ(ℋ) is a spectral operator on a Hilbert space.

1 The scalar part𝑆 of 𝐻 = 𝑆 + 𝑁 defines a normal operatorwith
respect to a suitably chosen scalar product.

2 The real part𝐻Re of 𝐻 = 𝐻Re + i𝐻Im defines a selfadjoint
operatorwith respect to a suitably chosen scalar product.

3 If in addition 𝐻 = 𝑈 𝑀 ∈ ℬ(ℋ)−1, then the phase𝑈 is a
uniquely defined unitary operatorwith respect to a suitably
chosen scalar product.
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Continuity of Spectra

Conjecture
Let 𝜆 ↦ 𝐻(𝜆) be a continuous path in the set of spectral operators.
Then the spectrum 𝜎(𝐻(𝜆)) is inner and outer (upper and lower)
continuous in 𝜆.

• Outer/upper semicontinuity is for free.
(Kato, Chapter VI.3.1, Theorem 3.1)

• Proof is work-in-progress.

• Not sure whether the result is contained in Dunford & Schwartz
(almost 700 pages, so the answer could be yes).

• Proceeding under the assumption that this conjecture is true.
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1 Kawabata et al.’s 38-Fold Classification of Non-Selfadjoint
Operators

2 Spectral Operators
3 Physics Determines Relevant Line Gap Classification
4 Mathematical Point Gap Classification
5 Summary
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Definition of the Relevant Projection 𝑃rel
Im E

Re E

!+−!−−

!−+ !++

Our approach

• Pick physically relevant states ⇝ 𝜎rel

• Define projection onto relevant states

𝑃rel ∶= i
2𝜋 ∫

Γ(𝜎rel)
d𝑧 (𝐻 − 𝑧)−1

• Symmetries of 𝐻 and 𝜎rel

⟹ symmetries and constraints of 𝑃rel

Kawabata et al. (real line gap)

• 𝐻 homotopically deformed to spectrally flattened
hamiltonian 𝑄

• 𝑄 = 𝑄∗ = 𝟙 − 2𝑃 ⟷ 𝑃 = 𝑃 2 = 𝑃 ∗

• In general 𝑃 not a spectral projection of 𝐻!

• Choice of line gap ⇔ choice of contour
⇝ Line gap part of an infinite contour

• 𝑄, 𝑃 not unique (choice of scalar product)
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Definition of the Relevant Projection 𝑃rel
Im E

Re E

!+−!−−

!−+ !++

Our approach

• Pick physically relevant states ⇝ 𝜎rel

• Define projection 𝑃rel onto relevant states

• Symmetries of 𝐻 and 𝜎rel

⟹ symmetries and constraints of 𝑃rel

• No homotopy argument, no extended
hamiltonian

• Homotopy definition of topological class of 𝑃rel
relies on continuity of spectrum

nature of non-Hermitian topological phases. We
clarify this fundamental issue and find that the
complex nature of the energy spectrum leads to
the two types of complex-energy gaps, a point gap
and a line gap (Fig. 1), as described in Sec. III.
Whereas a point gap and the corresponding topo-
logical classification were considered in Ref. [122],
a line gap was not considered there, and the present
work has developed the unified understanding of
complex-energy gaps. Importantly, the two types of
complex-energy gaps enrich non-Hermitian topo-
logical phases in a fundamental manner that has no
analogs to the Hermitian ones; non-Hermitian top-
ology strongly depends on the type of complex-
energy gaps.

Our complete classification of non-Hermitian topological
phases relies on these fundamental insights in non-Hermitian
physics. Crucially, although the previous classification [122]
cannot correctly describe the recent experiments on non-
Hermitian topological systems, the present classification
encompasses them because of the above fundamental
insights into symmetry and energy gaps, as described in
Sec. VII A. Moreover, our work systematically predicts
novel non-Hermitian topological phases that enable richer
phenomena and functionalities due to the interplay of non-
Hermiticity and topology. For example, our theory predicts
novel symmetry-protected topological lasers and dissipative
topological superconductors, as described in Secs. VII B
and VII C.

II. SYMMETRY

For Hermitian Hamiltonians, internal (nonspatial) sym-
metries fall into the AZ symmetry class [205]: time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS), where TRS and PHS are antiunitary,
whereas CS is unitary. These symmetries lead to the
10-fold classification of Hermitian topological insulators
and superconductors [206–208]. On the other hand, it is
nontrivial whether the AZ symmetry fully describes all the
internal symmetries even in the presence of non-Hermiticity.
In fact, PHS is defined with transposition as Eq. (13) and
cannot be described in terms of complex conjugation any
longer for non-Hermitian BdG Hamiltonians due to the
distinction between complex conjugation and transposition.
Correspondingly, CS does not coincide with sublattice
symmetry (SLS), although they are equivalent in the
presence of Hermiticity. As a consequence, the total number
of symmetry classes is 38 as shown below, each of which
describes intrinsic non-Hermitian topological phases as well
as non-Hermitian random matrices.

A. Symmetry ramification and unification

Before describing our 38-fold symmetry in detail, we
summarize the changes in the nature of symmetry in non-
Hermitian physics. In fact, non-Hermiticity ramifies and
unifies symmetry in a fundamental manner. First, to see the
symmetry ramification, let us consider PHS as an example.
For Hermitian systems, PHS is defined by

FIG. 2. Flattening procedures of Hermitian and non-Hermitian Hamiltonians. (a) Flattening of a Hermitian Hamiltonian with an
energy gap. A Hermitian Hamiltonian can be flattened to another Hermitian Hamiltonian with H2 ¼ 1 without closing the energy gap.
(b) Unitary flattening of a non-Hermitian Hamiltonian with a point gap. A non-Hermitian Hamiltonian can be flattened to a unitary
Hamiltonian with H†H ¼ 1 without closing the point gap. (c) Hermitian flattening of a non-Hermitian Hamiltonian with a line gap.
A non-Hermitian Hamiltonian can be flattened to a Hermitian (an anti-Hermitian) Hamiltonian with H2 ¼ þ1 (H2 ¼ −1) in the
presence of a real (an imaginary) gap.

KAWABATA, SHIOZAKI, UEDA, and SATO PHYS. REV. X 9, 041015 (2019)

041015-4

Kawabata et al. (real line gap)

• 𝐻 homotopically deformed to spectrally flattened
hamiltonian 𝑄

• 𝑄 = 𝑄∗ = 𝟙 − 2𝑃 ⟷ 𝑃 = 𝑃 2 = 𝑃 ∗

• In general 𝑃 not a spectral projection of 𝐻!

• Choice of line gap ⇔ choice of contour
⇝ Line gap part of an infinite contour

• 𝑄, 𝑃 not unique (choice of scalar product)
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Jordan Blocks Do Not Enter the Line Gap Classification

𝑃rel ∶= i
2𝜋 ∫

Γ(𝜎rel)
d𝑧 (𝐻 − 𝑧)−1

⋆= 1𝜎rel
(𝐻) = 1𝜎rel

(𝑆) = 𝑃 ∗𝑊
rel

• Equality marked with ⋆ only works when 𝐻 is spectral

• 𝑃rel is independent of the quasi-nilpotent part (Jordan block)!
⟹ Topological phase determined solely by scalar part
⟹ Jordan blocks do not enter topological classification

• Relevant projection is always orthogonal
(with respect to a suitably chosen scalar product)

• Becomes classification problem of orthogonal projections

⟹ Assume 𝐻 = 𝑆 is a scalar operator
(simplifies presentation)
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Symmetries of Diagonalizable Operators

Example
Time-reversal symmetry

𝑇 𝐻 𝑇 −1 != +𝐻
𝑇 𝐻Re 𝑇 −1 − i𝑇 𝐻Im 𝑇 −1 != 𝐻Re + i𝐻Im

Eqiuvalent to

𝑇 𝐻 𝑇 −1 = +𝐻 ⟺ {𝑇 𝐻Re 𝑇 −1 = +𝐻Re

𝑇 𝐻Im 𝑇 −1 = −𝐻Im
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Symmetries of Diagonalizable Operators

Example
Pseudohermiticity

𝑉∗ 𝐻 𝑉 −1
∗

!= +𝐻∗ = +𝑊 𝐻∗𝑊 𝑊 −1

𝑉∗ 𝐻Re 𝑉 −1
∗ + i𝑉∗ 𝐻Im 𝑉 −1

∗
!= 𝑊 (𝐻Re − i𝐻Im ) 𝑊 −1

Eqiuvalent to

𝑉∗ 𝐻 𝑉 −1
∗ = +𝐻∗ ⟺ {𝑉∗ 𝐻Re 𝑉 −1

∗ = +𝑊 𝐻Re 𝑊 −1

𝑉∗ 𝐻Im 𝑉 −1
∗ = −𝑊 𝐻Im 𝑊 −1
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Symmetries of Diagonalizable Operators

General symmetries

𝑈 𝐻 𝑈−1 = ±𝐻 ⟺ {𝑈 𝐻Re 𝑈−1 = ±Re 𝐻Re

𝑈 𝐻Im 𝑈−1 = ±Im 𝐻Im

𝑈∗ 𝐻 𝑈−1
∗ = ±𝐻∗ ⟺ {𝑈∗ 𝐻Re 𝑈−1

∗ = ±Re 𝑊 −1 𝐻Re 𝑊
𝑈∗ 𝐻Im 𝑈−1

∗ = ±Im 𝑊 −1 𝐻Im 𝑊
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Example: Pseudoselfadjoint Operator with Odd TR and Odd TR∗

Im E

Re E

!+−!−−

!−+ !++

Symmetries of 𝐻
1 Pseudo: 𝑈∗ 𝐻 𝑈−1

∗ = +𝐻∗

(simplifying assumption: 𝐻 normal ⇔ 𝑊 = 𝟙ℋ)

2 −TR: 𝑇 𝐻 𝑇 −1 = +𝐻 , 𝑇 2 = −𝟙ℋ

3 −TR∗: 𝑇∗ = 𝑈∗ 𝑇 : [𝑇 , 𝑈∗] = 0
⟹ 𝑇∗ 𝐻 𝑇 −1

∗ = +𝐻∗, 𝑇 2
∗ = −𝟙ℋ

Symmetries of the relevant spectrum

𝜎rel = 𝜎++ ∪ 𝜎−− = −𝜎rel

⟹ incompatible with two symmetries!
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Example: Pseudoselfadjoint Operator with Odd TR and Odd TR∗

Im E

Re E

!+−!−−

!−+ !++

Symmetries of 𝐻
1 Pseudo: 𝜎(𝐻) = +𝜎(𝐻)
2 −TR: 𝜎(𝐻) = +𝜎(𝐻)
3 −TR∗: 𝜎(𝐻) = +𝜎(𝐻)

Symmetries of the relevant spectrum

𝜎rel = 𝜎++ ∪ 𝜎−− = −𝜎rel

⟹ incompatible with two symmetries!
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Example: Pseudoselfadjoint Operator with Odd TR and Odd TR∗

Im E

Re E

!+−!−−

!−+ !++

Symmetries of 𝐻

1 Pseudo: 𝑈∗ 𝐻 𝑈−1
∗ = +𝐻∗ ⟺ {𝑈∗ 𝐻Re 𝑈−1

∗ = +𝐻Re

𝑈∗ 𝐻Im 𝑈−1
∗ = −𝐻Im

2 −TR: 𝑇 𝐻 𝑇 −1 = +𝐻 ⟺ {𝑇 𝐻Re 𝑇 −1 = +𝐻Re

𝑇 𝐻Im 𝑇 −1 = −𝐻Im

3 −TR∗: 𝑇∗ 𝐻 𝑇 −1
∗ = +𝐻∗ ⟺ {𝑇∗ 𝐻Re 𝑇 −1

∗ = +𝐻Re

𝑇∗ 𝐻Im 𝑇 −1
∗ = +𝐻Im

Projection onto relevant states

𝑃rel = 1𝜎++
(𝐻) + 1𝜎−−

(𝐻)
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Example: Pseudoselfadjoint Operator with Odd TR and Odd TR∗

Im E

Re E

!+−!−−

!−+ !++

Projection onto relevant states

𝑃rel = 1𝜎++
(𝐻) + 1𝜎−−

(𝐻)

Symmetries of 𝑃rel

1 Chiral: 𝑈∗ 𝑃rel 𝑈−1
∗ = 𝟙ℋ − 𝑃rel

2 −PH: 𝑇 𝑃rel 𝑇 −1 = 𝟙ℋ − 𝑃rel, 𝑇 2 = −𝟙ℋ

3 −TR: 𝑇∗ 𝑃rel 𝑇 −1
∗ = 𝑃rel, 𝑇 2

∗ = −𝟙ℋ

⟹ Class CII + Index

Coincides with class AII + imaginary line gap classification by
Kawabata et al. even though 𝜎rel does not fit the gap type!
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Example: Pseudoselfadjoint Operator with Odd TR and Odd TR∗

Im E

Re E

!+−!−−

!−+ !++

Choices for 𝜎rel

𝜎rel = Our classification Kawabata et al. Agreement?

𝜎++ class AII + index AII, 𝜂+, P Accidental?!*

𝜎++ ∪ 𝜎+− 2 × class AII AII, 𝜂+, Lr Yes

𝜎++ ∪ 𝜎−+ class CII + index AII, 𝜂+, Li Yes*

𝜎++ ∪ 𝜎−− class CII + index Not covered No

For other examples: comparison of two classifications more subtle

* In principle, a relative index between two projections can be defined,
although I do not know whether it can be non-zero.
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Symmetries and Constraints of 𝑃rel
Im E

Re E

!+−!−−

!−+

!++

"(!rel)

Im E

Re E

!outer

!inner

Presence of symmetries of

• the operator 𝐻 and

• the relevant spectrum 𝜎rel
?= −𝜎rel, ±𝜎rel

leads to

1 (∗)-Symmetries

𝑈 𝑃rel 𝑈−1 = 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 𝑃∗,rel 𝑊 −1

2 (∗)-Constraints

𝑈 𝑃rel 𝑈−1 = 𝟙ℋ − 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 (𝟙ℋ − 𝑃∗,rel) 𝑊 −1

between of 𝑃rel ∶= 1𝜎rel
(𝐻) and 𝑃∗,rel ∶= 1𝜎rel

(𝐻)
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Symmetries and Constraints of 𝑃rel
Im E

Re E

!+−!−−

!−+

!++

"(!rel)

Im E

Re E

!outer

!inner

Presence of symmetries of

• the operator 𝐻 and

• the relevant spectrum 𝜎rel
?= −𝜎rel, ±𝜎rel

leads to

1 (∗)-Symmetries

𝑈 1𝜎rel
(𝐻) 𝑈−1 = 1𝜎rel

(𝐻)
𝑈∗ 1𝜎rel

(𝐻) 𝑈−1
∗ = 1𝜎rel

(𝐻∗)

2 (∗)-Constraints

𝑈 1𝜎rel
(𝐻) 𝑈−1 = 𝟙ℋ − 1𝜎rel

(𝐻)
𝑈∗ 1𝜎rel

(𝐻) 𝑈−1
∗ = 𝟙ℋ − 1𝜎rel

(𝐻∗)

1𝜎rel
(𝐻∗) = 𝑊 1𝜎rel

(𝐻∗𝑊 ) 𝑊 −1 = 𝑊 1𝜎rel
(𝐻) 𝑊 −1
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Symmetries and Constraints of 𝑃rel
Im E

Re E

!+−!−−

!−+

!++

"(!rel)

Im E

Re E

!outer

!inner

Presence of symmetries of
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• the relevant spectrum 𝜎rel
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𝑈 𝑃rel 𝑈−1 = 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 𝑃∗,rel 𝑊 −1

2 (∗)-Constraints

𝑈 𝑃rel 𝑈−1 = 𝟙ℋ − 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 (𝟙ℋ − 𝑃∗,rel) 𝑊 −1

between of 𝑃rel ∶= 1𝜎rel
(𝐻) and 𝑃∗,rel ∶= 1𝜎rel

(𝐻)
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Classification of (Pairs of ) Projections with Symmetries and Constraints

1 (∗)-Symmetries

𝑈 𝑃rel 𝑈−1 = 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 𝑃∗,rel 𝑊 −1

2 (∗)-Constraints

𝑈 𝑃rel 𝑈−1 = 𝟙ℋ − 𝑃rel

𝑈∗ 𝑃rel 𝑈−1
∗ = 𝑊 (𝟙ℋ − 𝑃∗,rel) 𝑊 −1

between of 𝑃rel ∶= 1𝜎rel
(𝐻)

and 𝑃∗,rel ∶= 1𝜎rel
(𝐻)

• Our approach does not rely on any particular classification technique
⇝ suitable 𝐾-theories (e. g. à la Freed & Moore)
⇝ vector bundles with symmetries (De Nittis & Gomi)

• Our approach clearly delineates two classes of topological phenomena:

1 Analogs of topological phenomena in selfadjoint systems
⇝ classification only involves 𝑃rel

2 True non-selfadjoint topological phenomena
⇝ classification involves 𝑃rel and 𝑃∗,rel

• Presence of similarity transform 𝑊 does not impact classification in at
least the periodic case (under very mild conditions on 𝑊 )
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1 Kawabata et al.’s 38-Fold Classification of Non-Selfadjoint
Operators

2 Spectral Operators
3 Physics Determines Relevant Line Gap Classification
4 Mathematical Point Gap Classification
5 Summary
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Mathematical Point Gap Classification via Unitary Phase Operator

Our approach

• Define modulus as |𝐻| via analytic functional
calculus (𝐸 ↦ |𝐸| analytic away from 𝐸 = 0)

• Phase operator 𝑈 ∶= 𝐻 |𝐻|−1

• [𝑈, |𝐻|] = 0
• 𝑈 unique

• No homotopy argument, extended hamiltonian

• At present I only fully understand the
diagonalizable case

nature of non-Hermitian topological phases. We
clarify this fundamental issue and find that the
complex nature of the energy spectrum leads to
the two types of complex-energy gaps, a point gap
and a line gap (Fig. 1), as described in Sec. III.
Whereas a point gap and the corresponding topo-
logical classification were considered in Ref. [122],
a line gap was not considered there, and the present
work has developed the unified understanding of
complex-energy gaps. Importantly, the two types of
complex-energy gaps enrich non-Hermitian topo-
logical phases in a fundamental manner that has no
analogs to the Hermitian ones; non-Hermitian top-
ology strongly depends on the type of complex-
energy gaps.

Our complete classification of non-Hermitian topological
phases relies on these fundamental insights in non-Hermitian
physics. Crucially, although the previous classification [122]
cannot correctly describe the recent experiments on non-
Hermitian topological systems, the present classification
encompasses them because of the above fundamental
insights into symmetry and energy gaps, as described in
Sec. VII A. Moreover, our work systematically predicts
novel non-Hermitian topological phases that enable richer
phenomena and functionalities due to the interplay of non-
Hermiticity and topology. For example, our theory predicts
novel symmetry-protected topological lasers and dissipative
topological superconductors, as described in Secs. VII B
and VII C.

II. SYMMETRY

For Hermitian Hamiltonians, internal (nonspatial) sym-
metries fall into the AZ symmetry class [205]: time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS), where TRS and PHS are antiunitary,
whereas CS is unitary. These symmetries lead to the
10-fold classification of Hermitian topological insulators
and superconductors [206–208]. On the other hand, it is
nontrivial whether the AZ symmetry fully describes all the
internal symmetries even in the presence of non-Hermiticity.
In fact, PHS is defined with transposition as Eq. (13) and
cannot be described in terms of complex conjugation any
longer for non-Hermitian BdG Hamiltonians due to the
distinction between complex conjugation and transposition.
Correspondingly, CS does not coincide with sublattice
symmetry (SLS), although they are equivalent in the
presence of Hermiticity. As a consequence, the total number
of symmetry classes is 38 as shown below, each of which
describes intrinsic non-Hermitian topological phases as well
as non-Hermitian random matrices.

A. Symmetry ramification and unification

Before describing our 38-fold symmetry in detail, we
summarize the changes in the nature of symmetry in non-
Hermitian physics. In fact, non-Hermiticity ramifies and
unifies symmetry in a fundamental manner. First, to see the
symmetry ramification, let us consider PHS as an example.
For Hermitian systems, PHS is defined by

FIG. 2. Flattening procedures of Hermitian and non-Hermitian Hamiltonians. (a) Flattening of a Hermitian Hamiltonian with an
energy gap. A Hermitian Hamiltonian can be flattened to another Hermitian Hamiltonian with H2 ¼ 1 without closing the energy gap.
(b) Unitary flattening of a non-Hermitian Hamiltonian with a point gap. A non-Hermitian Hamiltonian can be flattened to a unitary
Hamiltonian with H†H ¼ 1 without closing the point gap. (c) Hermitian flattening of a non-Hermitian Hamiltonian with a line gap.
A non-Hermitian Hamiltonian can be flattened to a Hermitian (an anti-Hermitian) Hamiltonian with H2 ¼ þ1 (H2 ¼ −1) in the
presence of a real (an imaginary) gap.
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• 𝐻 homotopically deformed to unitary 𝑉𝐻
• 𝜎(𝑉𝐻) is “angular part” of spectrum

• Unless 𝐻 is normal [𝑉𝐻, 𝑀] ≠ 0
• 𝑉𝐻 not unique! ⇝ one per scalar product
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What Physical Data Choose the Point Gap Over the Line Gap Classification

Page 1 of 1

Untitled 5 18.12.2020, 10:37!

I do not know yet.
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1 Kawabata et al.’s 38-Fold Classification of Non-Selfadjoint
Operators

2 Spectral Operators
3 Physics Determines Relevant Line Gap Classification
4 Mathematical Point Gap Classification
5 Summary
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Today’s Take-Away

• General classification theory for spectral operators
• Extends 38-fold classification from periodic tight-binding to

generic spectral operators
⇝ Inclusion of effects of disorder
⇝ More/less symmetry classes? Unclear.

• Eliminates superfluous steps from Kawabata et al.
⇝ No homotopy arguments, no extended operator

• Point gap classification
Mathematics well-understood, but I do not understand physics

• “Line gap” classification
Mechanism of identifying symmetries of the relevant operator
and their nature more explicit
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Future Developments
• Proof of continuity of spectra for spectral operators

⇝ Gap in my current work that needs to be filled
• Classification of spectral operators on Banach spaces?

Derivation seems to only depend on algebra, not geometry
• Classification beyond spectral operators? (I am skeptical …)
• Understanding of “truly non-selfadjoint” topological classes

1 Analogs of topological phenomena in selfadjoint systems
⇝ classification only involves 𝑃rel

2 True non-selfadjoint topological phenomena
⇝ classification involves 𝑃rel and 𝑃∗,rel

• Bulk-boundary correspondences for “truly non-selfadjoint”
topological classes

• Other topological phenomena in non-selfadjoint systems not
covered by existing theory
⇝ Yes, they exist! I know of at least one example.
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Thank you!
Q&A
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Diagonalizable Operators are Normal WRT a Weighted Scalar Product

𝐺 𝐻 𝐺−1 = ∫
ℂ

𝐸 d𝑃(𝐸)

implies 𝐻 is normal with respect to the adjoint 𝐻∗𝑊 = 𝑊 −1 𝐻∗ 𝑊
where the weight 𝑊 = 𝐺∗ 𝐺 enters the scalar product

⟨𝜑, 𝜓⟩𝑊 ∶= ⟨𝐺𝜑, 𝐺𝜓⟩ = ⟨𝜑, 𝐺∗ 𝐺𝜓⟩.

⟨ ⋅ , ⋅ ⟩𝑊 is a scalar product

• 𝐺 ∈ ℬ(ℋ)−1 implies 𝑊 ∈ ℬ(ℋ)−1

• 0 < 𝑐 ≤ 𝑊 ≤ 𝐶
• Scalar product not unique!

• 𝐺 ⇝ 𝑈 𝐺 𝑉 where 𝑈 is unitary and
𝑉 ∈ ℬ(ℋ)−1 commutes with 𝐻

𝐻 is normal with respect to ∗𝑊

• [𝐻 , 𝐻∗𝑊 ] = 0 ⟺
[𝐺 𝐻 𝐺−1 , (𝐺 𝐻 𝐺−1)∗] = 0

• 𝐻 admits functional calculus

• 𝐻 = 𝐻Re + i𝐻Im , [𝐻Re , 𝐻Im ] = 0
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Characterizations of Diagonalizability

Theorem
The following are equivalent:

1 𝐻 is diagonalizable.

2 𝐺 𝐻 𝐺−1 is normal for some 𝐺 ∈ ℬ(ℋ).
3 ∃ 𝐺 ∈ ℬ(ℋ)−1: 𝐺 𝐻 𝐺−1 admits a functional calculus

𝑓 ↦ 𝑓(𝐺 𝐻 𝐺−1).
4 𝐻 is normal with respect to ∗𝑊 for some 𝐺 ∈ ℬ(ℋ).
5 𝐻 admits a functional calculus 𝑓 ↦ 𝑓(𝐻).
6 𝐻 = 𝐻Re + i𝐻Im has a cartesian decomposition,

[𝐻Re , 𝐻Im ] = 0, 𝐻Re ,Im = 𝐻∗𝑊
Re ,Im for some 𝐺 ∈ ℬ(ℋ)−1.
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Characterizations of Diagonalizability

Theorem
1 𝐻 ∈ ℬ(ℋ) is diagonalizable exactly when it has a unique

cartesian decomposition

𝐻 = 𝐻Re + i𝐻Im , [𝐻Re , 𝐻Im ] = 0,

and 𝐻Re ,Im = 𝐻∗𝑊
Re ,Im for some 𝐺 ∈ ℬ(ℋ)−1.

2 𝐻 ∈ ℬ(ℋ)−1 is diagonalizable with bounded inverse
exactly when it has a unique polar decomposition

𝐻 = 𝑉𝐻 |𝐻|, [𝑉𝐻, |𝐻|] = 0,

where 𝑉𝐻 is ∗𝑊 -unitary and |𝐻| = |𝐻|∗𝑊 for some
𝐺 ∈ ℬ(ℋ)−1.
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Characterizations of Diagonalizability

Theorem
Let 𝐻 ∈ ℬ(ℋ) be diagonalizable and 𝑉 ∈ ℬ(ℋ)−1 a
similarity transform. Thenwe have:

1 𝑉 𝐻 𝑉 −1 is diagonalizable.

2 𝐶 𝐻 𝐶 is diagonalizable where 𝐶 is a complex conjugation.

3 𝐻∗ is diagonalizable where ∗ is any adjoint on ℋ.

4 (𝑉 𝐻 𝑉 −1)
Re ,Im = 𝑉 𝐻Re ,Im 𝑉 −1

5 𝑓(𝑉 𝐻 𝑉 −1) = 𝑉 𝑓(𝐻) 𝑉 −1

33 / 33


	Kawabata et al.'s 38-Fold Classification of Non-Selfadjoint Operators
	Spectral Operators
	Physics Determines Relevant Line Gap Classification
	Mathematical Point Gap Classification
	Summary

