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Abstract

We explain a strong similarity between Ocneanu’s paragroups in classifi-
cation of subfactors and solvable lattice models. Especially we show that an
idea of orbifold models in the theory of solvable lattice models proves an an-
nouncement of Ocneanu for the first time that each of the Dynkin diagrams
D2n has a unique corresponding subfactor but D2n+1 have none.

§0 Introduction

In 1983, V. F. R. Jones introduced a new notion index for subfactors in
[J1]. Since then, more and more deep connections among subfactors, knot
invariants, conformal field theory, quantum groups, etc., have appeared and
a great deal of research has been done in this area. Among them, A. Ocneanu
introduced a new notion paragroup for classification of subfactors in [O1]. In
a sense, this is a kind of quantized Galois groups, and at the same time, this
can be regarded as a discrete version of a compact manifold and as a solvable
lattice model without a spectral parameter. We work on this paragroup with
emphasis on its similarity to solvable lattice models.

We work on pairs of factor-subfactor. In a sense, a factor is a simple ∗-
algebra of bounded linear operators on a Hilbert space which is closed under
a certain topology. It can be regarded as an infinite dimensional analogue
of matrix algebras Mn(C). For a factor M , we can consider a subfactor N ,
which is a simple ∗-subalgebra of M . Roughly speaking, the Jones index
measures a relative size of the bigger algebra M with respect to the smaller
algebra N . Because we are interested in the case M and N are infinite
dimensional, this need a rigorous definition, but it can be done by a coupling
constant of von Neumann as in [J1]. The Jones index, denoted by [M : N ],
is a positive real number bigger than or equal to 1 a priori, but Jones showed
the following surprising result in [J1].

Theorem (Jones). The index value [M : N ] is contained in the set

{4 cos2 π

n
| n = 3, 4, 5, . . . } ∪ [4,∞],
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and all the values in this set can be realized.

Since this work, classification of subfactors has become one of the central
problems in the theory of operator algebras. This problem is related to the
following topics.

(1) Classification of group actions on factors
(2) Fundamental groups for factors
(3) link invariants
(4) quantum groups
(5) solvable lattice models

This paper deals with connections to the last topic mainly.

A viewpoint emphasized by A. Ocneanu for study of subfactors is an ana-
logue of the Galois theory. That is, instead of a field and a subfield in the
Galois theory, we work on a factor and a subfactor. From this viewpoint, the
Jones index can be regarded as the order of this “quantized Galois group”.
Ocneanu calls this “quantized Galois group” a paragroup. In this picture,
the underlying set of a group is replaced by a graph, and the order of the
group corresponds to the square of the Perron-Frobenius eigenvalue of the
incidence matrix of the graph. For example, a finite graph of order n is rep-
resented by a graph with a central vertex which has n edges from it. The
Perron-Frobenius eigenvalue for this graph is n, and the eigenvector is re-
alized as (

√
n, 1, 1, . . . , 1). (Here the first entry corresponds to the central

vertex and the others to the other n vertices.)

Since the first work of Jones [J1], the index value 4 has had a special
meaning as shown in the above theorem. In a paragroup setting, the index
less than 4 means that the Perron-Frobenius eigenvalue of the graph is be-
tween 1 and 2. It is known since Kronecker that such a graph must be one
of the Dynkin diagrams An, Dn, E6, E7, E8. (See [GHJ] for more on this.)

For one of these graphs, the Perron-Frobenius eigenvalue is given by 2 cos
π

N
,

where N is the Coxeter number of the graph. These are represented by the
following pictures.

An : ·— ·— · · ·—·, N = n+ 1,

Dn :
·\

·/
·—·—· · ·—·, N = 2n− 2,

E6 : ·— ·—
·
|
·— ·—·, N = 12,
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E7 : ·— ·—
·
|
·— ·— ·—·, N = 18,

E8 : ·— ·—
·
|
·— ·— ·— ·—·, N = 30,

We will work on these graphs. A. Ocneanu announced a complete classifi-
cation of subfactors with index less than 4 in [O1], but his proof has not been
presented. His outline is divided into the following three steps. Let N ⊂ M
be a subfactor with index less than 4 of the AFD type II1 factor. (See [GHJ,
O1, P1] for related definitions.)

(1) Prove that for a certain choice of tunnel N ⊃ N1 ⊃ N2 ⊃ · · · , the pairs
of the relative commutants N ′

k ∩N ⊂ N ′
k ∩M generate the pair N ⊂ M .

(2) Characterize the pairs N ′
k ∩N ⊂ N ′

k ∩M combinatorially.
(3) Determine all the possible pairs N ′

k ∩N ⊂ N ′
k ∩M using (2).

In [O1], A. Ocneanu claimed that (1) is valid if the subfactor has finite
index, finite depth, and the trivial relative commutants. (Subfactors with
index less than 4 automatically have the trivial relative commutants and
the finite depth condition.) He called this Spanning Theorem, but his proof
has not been presented. S. Popa then gave a proof for this statement in
[P1] without an assumption of the trivial relative commutants, and further
announced necessary and sufficient conditions for this spanning condition in
[P2].

In this paper we explain on the above (2) and work on (3).

§1 String algebras and connections

We fix a graph and choose a vertex of it, which will be denoted by ∗.
Then consider all the paths on the graph starting from ∗ with length k. A
string is a pair of such paths (ξ, η) with equal endpoints. That is, we require
s(ξ) = s(η) = ∗, r(ξ) = r(η), |ξ| = |η|, where s(ξ), r(ξ), |ξ| denote the starting
point, the end point, and the length of ξ. We construct a string algebra Strk∗
as follows. The C-algebra Strk∗ is spanned by pairs (ξ, η) as above as a linear
space. We define a multiplication and a ∗-structure by

(ξ, η) · (ξ′, η′) = δη,ξ′(ξ, η
′),

(ξ, η)∗ = (η, ξ).

We also define an embedding Strk∗ ⊂ Strk+1
∗ by

(ξ, η) 7→
∑

α,|α|=1

(ξ · α, η · α).
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This gives an increasing sequence of finite dimensional ∗-algebras Str1∗ ⊂
Str2∗ ⊂ Str3∗ ⊂ · · · . Taking a certain closure of

⋃
k Str

k
∗, we get a factor, which

is called the AFD II1 factor. It is known since Murray and von Neumann
that any graph produces a unique factor.

As an easy example, consider a graph having two vertices and double edges
connecting these two. Applying the above construction to this graph, we get
a sequence

M2(C) ⊂ M4(C) ⊂ M8(C) ⊂ · · · ,

and the inclusion is given by

(
a b
c d

)
7→


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 ,

for example.
We would like to construct not only a factor but also a subfactor. For this

purpose, we need another construction.
Label the sequence Str1∗ ⊂ Str2∗ ⊂ Str3∗ ⊂ · · · as A0,0 ⊂ A0,1 ⊂ A0,2 ⊂ · · · ,

and also construct A0,0 ⊂ A1,0 ⊂ A1,1 ⊂ A1,2 ⊂ · · · , A0,0 ⊂ A1,0 ⊂ A2,0 ⊂
A2,1 ⊂ · · · , and so on in the same method. By this way, we get

A0,0 ⊂ A0,1 ⊂ A0,2 · · · → A0,∞
∩

A1,0 ⊂ A1,1 ⊂ A1,2 · · · → A1,∞
∩

A2,0 ⊂ A2,1 ⊂ A2,2 · · · → A2,∞
∩
...

We would like to get vertical inclusions, too, and we use a connection for
this purpose. Take A2,2 for example. To get a string in this algebra, we
use vertical paths of length 2 composed with horizontal paths of length 2.
But we would like to use other type of paths, too. For example, we could
use horizontal path of length 2 composed with vertical paths of length 2. In
general, we get several mutually isomorphic finite dimensional string algebras
corresponding to choices of types of paths. (There are k+lCk types of paths
for Ak,l.) We give explicit isomorphisms between these algebras. When
we regard paths as a basis of a finite dimensional Hilbert space, strings
are rank one operators given by them. So it is enough to give unitaries
identifying other types of paths. For this purpose, it is enough to give a
unitary identification of the following type.
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ay
b −−−−→ d

=
∑
c

W


a −−−−→ cy y
b −−−−→ d


a −−−−→ cy

d

,

where the left hand side is a vector in a finite dimensional Hilbert space and
the right hand side is a linear combination of vectors with complex scalar

coefficients W


a −−−−→ cy y
b −−−−→ d

 defined for each 1 × 1-square whose vertices

and edges come from the original graph. This W is called a connection,

and we often use a notation

a −−−−→ cy y
b −−−−→ d

for W


a −−−−→ cy y
b −−−−→ d

. This is

an analogue of a Boltzmann weight in the theory of solvable lattice models
and our unitarity requirement corresponds to the first inversion relations in
solvable lattice model theory. (See [B], [DJMO] for general background in
solvable lattice model theory.) With the connection, we can get the following
double sequence of string algebras.

A0,0 ⊂ A0,1 ⊂ A0,2 · · · → A0,∞
∩ ∩ ∩ ∩

A1,0 ⊂ A1,1 ⊂ A1,2 · · · → A1,∞
∩ ∩ ∩ ∩

A2,0 ⊂ A2,1 ⊂ A2,2 · · · → A2,∞
∩ ∩ ∩ ∩
...

...
...

...

Note that for identifications in general, we use the following method. We
make all the possible fillings of squares for a large diagram, whose four edges
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are given, as follows.

· −−−→ · −−−→ · · · · −−−→ ·y y y y
· −−−→ · −−−→ · · · · −−−→ ·y y y y
...

...
...

...
· −−−→ · −−−→ · · · · −−−→ ·y y y y
· −−−→ · −−−→ · · · · −−−→ ·

Such a choice is called a configuration. We multiply the connection values of
all the small squares in a configuration and sum them over all the configu-
rations. This is the value assigned to the above large diagram, and we mean
this value by the diagram. This is an analogue of a partition function in
solvable lattice model theory. Our main goal is computing certain partition
functions explicitly which have operator algebraic meanings.

But in order to get an interesting information on the subfactor, we need
another condition as follows.

a −−−−→ by y
c −−−−→ d

=

√
µ(b)µ(c)

µ(a)µ(d)

b −−−−→ ay y
d −−−−→ c

=

√
µ(b)µ(c)

µ(a)µ(d)

c −−−−→ dy y
a −−−−→ b

,

where µ(·) denote the entries of the Perron-Frobenius eigenvector of the in-
cidence matrix of the graph. This condition corresponds to the famous com-
muting square condition of Jones. If we make a connection arising from
a subfactor by Ocneanu’s Galois functor, this condition is always satisfied.
This ia an analogue of the crossing symmetry condition in solvable lattice
model theory. An example of µ(·) is given as follows. If we take the Dynkin
diagram An and label its vertices 1, 2, . . . , n, then the entry µ(k) is given by
sin kπ

n+1 . Then the Perron-Frobenius eigenvalue arises as follows.

sin
(k − 1)π

n+ 1
+ sin

(k + 1)π

n+ 1
= 2 cos

π

n+ 1
sin

kπ

n+ 1
.
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There are also explicit formulas for µ for the other (extended) Dynkin dia-
grams. See [GHJ] for example.

The unitarity and the crossing symmetry are strong enough to determine
connection on the Dynkin diagrams. Indeed, there is a unique connection for
each of An and Dn, and there are two (and only two) connections for each of
E6, E7, E8, up to certain equivalence relation explained in [O1]. These can
be expressed by the single following formula as in [O1, O2].

a −−−−→ by y
c −−−−→ d

= δbcε+

√
µ(b)µ(c)

µ(a)µ(d)
δadε̄,

where ε =
√
−1 exp

π
√
−1

2N
and N is the Coxeter number of the diagram.

In general cases arising from subfactors, we have two graphs as in [O1,
O2], but in the case index less than or equal to 4, the two graphs are the
same and they are (extended) Dynkin diagrams, so our above explanation is
enough for this case.

§2 Flatness for connections

Connections arising from subfactors satisfy another condition which is
called flatness. Flat connections are complete invariants for subfactors with
finite depth and finite index of the AFD type II1 factor. (See [GHJ], [O1],
[P1] for related definitions.) From Popa’s viewpoint, subfactors are classified
by the towers of relative commutants, and in the finite depth case, the canon-
ical commuting square in the sense of Popa contains complete information.
Ocneanu’s paragroup gives a combinatorial characterization of the canonical
commuting square.

In the double sequence of the string algebras, flatness means that the
vertical strings and the horizontal strings commute. That is, for x ∈ Ak,0

and y ∈ A0,l, we get xy = yx. (This equality holds in a bigger string algebra
to which we embed Ak,0 and A0,l The algebra Ak,l is an example of such an
algebra.) This condition depends on the choice of the starting point ∗ of the
graph. (If we have two graphs, we also require this condition for the case
two graphs are interchanged.) M. Izumi has a remark in [I] that the starting
vertex ∗ must have the smallest entry of the Perron-Frobenius eigenvector.
The name “flat connection” comes from its analogy to flat connections in
differential geometry. (See [K, Theorem 2.1]. Flatness can be stated in the
form that a loop does not change its form under parallel transport from the
origin ∗ to the origin.)

Operator algebraic meaning of flatness is as follows. Crossing symmetry
implies that each line of the double sequence of the string algebras gives an
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algebra of the Jones tower. That is, A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ · · · is the Jones
tower for a factor-subfactor pair A0,∞ ⊂ A1,∞. Ocneanu’s compactness ar-
gument in [O2] shows that A′

0,∞ ∩ Ak,∞ ⊂ Ak,0. Flatness of the connection
means that we have equalities A′

0,∞ ∩ Ak,∞ = Ak,0 for all k, thus the tower
of relative commutants is given by the first vertical line of the double se-
quence. Because we have another flatness for the other graph, we get that
the canonical commuting squares in the sense of Popa [P1] are given by the
two vertical lines of the double sequence of the string algebras. In this way,
we get one-to-one correspondence between the paragroups and the towers of
the relative commutants of subfactors with finite index and finite depth.

Crossing symmetry implies that the subalgebra of Ak,0 generated by the
vertical Jones projections commute with the horizontal string algebra from
∗. In [O2], this fact is referred as flatness of the Jones projections. For the
Dynkin diagrams An, the string algebra is generated by the Jones projections
as in [J1], so we get flatness for An. These An’s have fundamental importance
in subfactor theory and other theories. These subfactors correspond to the
famous link invariant, the Jones polynomial, [J2], in knot theory, to Uq(sl2)
in quantum group theory, and to Andrews-Baxter-Forrester model [ABF] in
solvable lattice model theory. In solvable lattice model theory, we have the
Yang-Baxter equation. Because the Yang-Baxter equation implies flatness of
the face operators as in [R] and the face operators in the An cases are linear
combinations of the identity and the Jones projection, we may also say that
the flatness for An follows from the Yang-Baxter equation.

§3 Orbifold methods

For the Dynkin diagrams Dn, A. Ocneanu announced in [O1] that the
connections on D2n are flat and those on D2n+1 are not flat, but his proof
has been unavailable. Here we show that we can prove this statement with
an idea of orbifold models in solvable lattice model theory. (Recently, M.
Izumi showed non-flatness of the connections on D2n+1 independently in [I]
by a different method based on Longo’s sector theory [L1, L2].)

First note that the graph A2n−3 has a flip fixing the central vertex. If
we construct a string algebra with A2n−3 using paths starting from either
of the two endpoints, the flip can acts on this string algebra as a ∗-algebra
automorphism. Then it is easy to see that the fixed point algebra under
this automorphism is isomorphic to the string algebra of Dn. In this way,
the graph Dn can be regarded as an orbifold of A2n−3 by this Z2-action.
(See [C] for more about this in operator algebraic situations.) The point in
this construction is that the connection of the A2n−3 graph defined in the
above section is also invariant under the Z2-flip. In this case, we can get a
connection on the Dn graph in this orbifold procedure. This is an analogue
of orbifold models [FG, Ko] in solvable lattice models. Then we get the same
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connection on Dn as the one defined above. That is, we label A2n−3 and Dn

as follows.

An : 0 — 1 · · ·n− 2 — n− 1

Dn :
0 \

1
/
2—3 · · ·n− 1,

Then we have the cell system is given as in [R]. Here all the values for

small squares are 1,
1√
2
, or

−1√
2
. With this cell system, one can embed

the string algebra of Dn into that of A2n−3 with the double starting points.
Now we would like to embed the string algebra double sequence of Dn into
that of A2n−3 with the double starting points. For this, we have to check
identifications based on connections are compatible with this embedding. It
is enough to check the following formula, a kind of the star triangle relation,
as follows. Take a hexagon

↙→↘
↘→↙

where the left two downward edges are from the graph Dn, the right two
downward edges from A2n−3, and the two horizontal edges connect the two

graphs. For each such fixed hexagon, we first consider configurations ↘
↙→

for inside of the hexagon. For each configuration, we have a connection
of Dn for the left parallelogram and two cell system values for the right
parallelograms. We multiply these three numbers and make a sum over all
the configurations as in the partition functions. Similarly we make another

sum over configurations →↙
↘. We have to show these two sums for all the

hexagons, but this can be done by direct computations. (There are 34 cases
to be checked.)

With these, we can embed the string algebra double sequence of Dn into
that of A2n−3 with double starting points, and we can reduce the flatness
problem for Dn to a certain problem of computing partition functions for
A2n−3. By several combinatorial arguments, it is shown that flatness of Dn
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is equivalent to the following equality

Re

0 −−→ 1 −−→ · · · −−→ 2n− 5 −−→ 2n− 4y y
1 2n− 5y y
...

...y y
2n− 5 1y y
2n− 4 −−→ 2n− 5 −−→ · · · −−→ 1 −−→ 0

= 1

for A2n−3.
Then another combinatorial argument using induction shows that the

above value is (−1)n, which proves Ocneanu’s announcement.
In short, there arises a Z2-obstruction for flatness when we make an orb-

ifold from A2n−3 and D2n+1’s are killed by this obstruction.
Further details on orbifold subfactors and applications are found in [K]

and forthcoming papers of the author with David Evans and Masaki Izumi.
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