Conformal Field Theory
and Operator Algebras

Yasuyuki Kawahigashi
University of Tokyo
(with Roberto Longo)

ICMP 2006
Rio de Janeiro
Quantum field theory:

Study of Wightman fields

→ Operator-valued distributions on spacetime with covariance with respect to spacetime symmetry group

AQFT (Algebraic Quantum Field Theory) is an operator algebraic approach to quantum field theory using a family of operator algebras and it has a history of more than 40 years.

Full/chiral/boundary conformal field theories are studied in a unified framework in AQFT and we obtain classification results up to isomorphism for all of these for $c < 1$.

Our operator algebras (of bounded linear operators on a Hilbert space) are simple von Neumann algebras and they are called factors. The Jones theory of subfactors plays an important role here.
Full CFT in AQFT:

We consider rectangles \mathcal{O} with edges parallel to $t = \pm x$ in $(1 + 1)$-dim Minkowski space as in the following picture.

Suppose we have operator-valued distributions Φ. Take test functions φ with supports in \mathcal{O}. We get many (unbounded) operators as $\langle \Phi, \varphi \rangle$. Fix \mathcal{O} and consider the operator algebra $\mathcal{A}(\mathcal{O})$ of bounded linear operators generated by these operators. In this way, we get a family $\{\mathcal{A}(\mathcal{O})\}$ of operator algebras parameterized by space-time regions \mathcal{O} (rectangles).
Boundary CFT:

We consider half-space \(\{(x,t) \mid x > 0 \} \) and only rectangles \(O \) contained in this half-space.

In this way, we have a similar family of operator algebras \(\{A(O)\} \).

The choice of the spacetime symmetry is not unique, and we can use the Poincaré symmetry, for example, but in CFT, we use \textit{conformal symmetry}, (diffeomorphism covariance).

\textbf{Full CFT \textit{restricts} to two chiral theories on the light cones} \(\{x = \pm t\} \). In this way, we have a \textit{chiral CFT} on the compactified \(S^1 \).
In chiral CFT, our “spacetime” is S^1 and a “spacetime region” is an interval I.

We have a family $\{\mathcal{A}(I)\}$ of operator algebras on a Hilbert space H. These operator algebras are called factors, and $\{\mathcal{A}(I)\}$ is called a net of factors. In the usual situation, all the algebras $\mathcal{A}(I)$ are mutually isomorphic for all nets \mathcal{A}.

1. $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$

2. [locality] $I \cap J = \emptyset \Rightarrow [\mathcal{A}(I), \mathcal{A}(J)] = 0$

3. [covariance] $u_g \mathcal{A}(I) u_g^* = \mathcal{A}(gI)$ for $g \in \text{Diff}(S^1)$

4. vacuum vector $\Omega \in H$ and positive energy
Comparison with a *vertex operator algebra*:

A vertex operator algebra (VOA) is an algebraic axiomatization of Wightman fields on S^1.

Both of one VOA and one net of factors should describe a chiral conformal field theory. So VOA’s (with unitarity) and nets of factors should be in a bijective correspondence, at least under some “nice” conditions, but no general theorems have been known. (→ Talk of Carpi on Thursday in the *Operator Algebras Session*).

However, if we have one construction on one side, we can usually “translate” it to the other side, though it can be highly non-trivial from a technical viewpoint. Fundamental methods of constructions in the two approaches are listed:

<table>
<thead>
<tr>
<th>VOA</th>
<th>net of factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kac-Moody/Virasoro algebras →</td>
<td>A. Wassermann...</td>
</tr>
<tr>
<td>integral lattices →</td>
<td>Dong-Xu</td>
</tr>
<tr>
<td>orbifold →</td>
<td>Xu</td>
</tr>
<tr>
<td>coset →</td>
<td>Xu</td>
</tr>
<tr>
<td>← Q-system (K-Longo)</td>
<td></td>
</tr>
</tbody>
</table>
Important tool to study nets of factors is a representation theory. All $\mathcal{A}(I)$’s act on the initial Hilbert space H from the beginning, but we also consider their representations on another Hilbert space, that is, a family $\{\pi_I\}$ of representations $\pi_I : \mathcal{A}(I) \to B(K)$, where K is another Hilbert space, common for all I. A representation of a net of factors corresponds to a module over a VOA.

Each representation $\{\pi_I\}$ is in a bijective correspondence to a certain endomorphism λ of an infinite dimensional operator algebra, and we can restrict λ to a single factor $\mathcal{A}(I)$ for an arbitrarily fixed interval I. Then $\lambda(\mathcal{A}(I)) \subset \mathcal{A}(I)$ is a subfactor and we have its Jones index. Its square root is the dimension of the representation (Longo).

We can also compose endomorphisms and this composition gives a notion of tensor products (Doplicher-Haag-Roberts + Fredenhagen-Rehren-Schroer). We then get a braided tensor category.
In representation theory of VOA (and also of a quantum group), it happens that we have only finitely many irreducible representations. Such finiteness is often called *rationality*.

K-Longo-Müger (CMP 2001) gave an operator algebraic characterization of such rationality for a net \{\(\mathcal{A}(I)\}\) of factors and it is called *complete rationality*.

![Diagram](image)

We split the circle into \(I_1, I_2, I_3, I_4\) as above. Then complete rationality is given by the finiteness of the Jones index for a subfactor

\[
\mathcal{A}(I_1) \vee \mathcal{A}(I_3) \subset (\mathcal{A}(I_2) \vee \mathcal{A}(I_4))'
\]

where \(\,'\) means the commutant. Then we automatically get a *modular* tensor category.
For an inclusion of nets of factors, $\mathcal{A}(I) \subset \mathcal{B}(I)$, we have an induction procedure analogous to the group representation. This procedure is called the α-induction and depends a choice of braiding, so we write α^+ and α^-.

[Longo-Rehren, Xu] + Ocneanu
→ Böckenhauer-Evans-K (CMP 1999)

The intersection of the images of α^+ induction and α^- induction gives the true representation category of $\{\mathcal{B}(I)\}$. The others are called soliton sectors.
A modular tensor category produces a unitary representation π of $SL(2, \mathbb{Z})$ through its braiding, and its dimension is the number of irreducible objects. So a completely rational net of factors produces such a unitary representation. This is not irreducible in general, but is often *almost irreducible*.

Böckenhauer-Evans-K (CMP 1999) have shown that the matrix $(Z_{\lambda, \mu})$ defined by

$$Z_{\lambda, \mu} = \dim \text{Hom}(\alpha_\lambda^+, \alpha_\mu^-)$$

is in the commutant of the representation π. (using Ocneanu’s graphical calculus).

Such a matrix Z is called a *modular invariant*, and we have only finitely many such Z for a given π. For any completely rational net $\{\mathcal{A}(I)\}$, any extension $\{\mathcal{B}(I) \supset \mathcal{A}(I)\}$ produces such Z. Matrices Z are much easier to classify than extensions.
Classification of chiral CFT with $c < 1$:

For a net of factors, we can naturally define a central charge and it is known to take discrete values below 1. We have the Virasoro net $\{\text{Vir}_c(I)\}$ for such c and it corresponds to the Virasoro VOA. Any net of factors $\{\mathcal{A}(I)\}$ with central charge $c < 1$ is an extension of the Virasoro net with the same central charge and it is automatically completely rational. So we can apply the above theory and we get the following complete classification list. (K-Longo, Ann. Math. 2004)

(1) Virasoro nets $\{\text{Vir}_c(I)\}$ with $c < 1$

(2) Simple current extensions of the Virasoro nets with index 2

(3) Four exceptionals at $c = 21/22, 25/26, 144/145, 154/155$

They are labeled with pairs of $A-D_{2n}-E_{6,8}$ Dynkin diagrams — McKay correspondence.
Three in (3) are identified with coset models, but the other does not seem to be related to any other known constructions. This is constructed with “extension by Q-system”. A Q-system of Longo is a certain analogue of a Hopf algebra, and is essentially same as an “algebra in a tensor category”.

From a viewpoint of tensor category, the above classification problem of extensions of a completely rational net of factors is the same as the following problem for VOA. (cf. Huang-Kirillov-Lepowsky)

Let V be a (rational) VOA and W_i be its irreducible modules. Classify VOA’s arising from putting a VOA structure on $\bigoplus_i n_i W_i$ and using the same Virasoro element, where n_i is multiplicity and $W_0 = V$, $n_0 = 1$.

So the above classification theorem implies classification theorem of such extensions of the Virasoro VOA’s with $c < 1$.
Classification of full CFT with $c < 1$:

Using the above results and more techniques, we can also completely classify full conformal field theories within AQFT framework for the case $c < 1$.

Full conformal field theories are given as certain nets of factors on 1+1-dimensional Minkowski space. Under natural symmetry and maximality conditions, those with $c < 1$ are completely labeled with the pairs of A-D-E Dynkin diagrams with the difference of their Coxeter numbers equal to 1. (K-Longo, CMP 2004). We now naturally have D_{2n+1}, E_7 as labels, unlike the chiral case.

The main difficulty in our work lies in proving uniqueness of the structure for each matrix in the Cappelli-Itzykson-Zuber list. This is done through 2-cohomology vanishing for certain tensor categories.
Classification of boundary CFT with $c < 1$:

Using the above results and further techniques, we can also completely classify boundary conformal field theories for the case $c < 1$.

Boundary conformal field theories are given as certain nets of factors on a $1+1$-dimensional Minkowski half-space. Under a natural maximality condition, these with $c < 1$ are completely labeled with the pairs of $A-D-E$ Dynkin diagrams with distinguished vertices having the difference of their Coxeter numbers equal to 1. (K-Longo-Pennig-Rehren, math.OA/0505130 ver. 3).

“Chiral fields” in boundary CFT should produce a net of factors on the boundary (which is compactified to S^1) as in the AQFT approach of Longo-Rehren. Then a general boundary CFT restricts to the boundary to produce a non-local extension of this chiral conformal field theory on the boundary.
Moonshine Conjecture (Conway-Norton 1979)

Mysterious relations between finite simple groups and modular functions (since McKay)

Monster: the largest among 26 sporadic finite simple groups whose order is about 8×10^{53}

Its non-trivial irreducible representation having the smallest dimension is 196883 dimensional.

The following function, called j-function, has been classically studied.

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \cdots$$

For $q = \exp(2\pi i \tau)$, Im $\tau > 0$, we have modular invariance property, $j(\tau) = j \left(\frac{a\tau + b}{c\tau + d} \right)$ for $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, \mathbb{Z})$, and this is the only function satisfying this property and starting with q^{-1}, up to freedom of the constant term.
McKay noticed $196884 = 196883 + 1$, and similar simple relations for other coefficients of the j-function and dimensions of irreducible representations of the Monster group turned out to be true. Then Conway-Norton formulated the Moonshine conjecture roughly as follows, which has been now proved by Borchers in 1992.

(1) We have a “natural” infinite dimensional graded vector space $V = \bigoplus_{n=0}^{\infty} V_n$ with some algebraic structure having a Monster action preserving the grading and each V_n is finite dimensional.

(2) For any element g in the Monster, the power series $\sum_{n=0}^{\infty} (\text{Tr } g |_{V_n}) q^{n-1}$ is a special function called a Hauptmodul for some discrete subgroup of $SL(2, \mathbb{R})$. When g is the identity element, we obtain the j-function minus constant term 744.

Leech lattice Λ: an exceptional lattice in dimension 24

\Rightarrow lattice VOA V_Λ, which is “close” to our final object

We take a fixed point algebra under a natural action of $\mathbb{Z}/2\mathbb{Z}$, and then make a simple current extension of order 2. The resulting VOA is the Moonshine VOA $V^{1/2}$. (Twisted orbifold construction). The series $\sum_{n=0}^{\infty} (\dim V_n) q^{n-1}$ is indeed the j-function minus constant term 744.

Miyamoto’s new construction (2004): realization of $V^{1/2}$ as an extension of a tensor power of the Virasoro VOA with $c = 1/2$, $L(1/2, 0)^{\otimes 48}$ (based on Dong-Mason-Zhu). This kind of extension of a Virasoro tensor power is called a framed VOA.
Operator algebraic counterpart:

We realize a Leech lattice net of factors on S^1 as an extension of $\text{Vir}_{1/2} \otimes 48$ using certain \mathbb{Z}_4-code. Then we can perform the twisted orbifold construction to get a net of factors, the Moonshine net \mathcal{A}^\dagger. Theory of α-induction is used for getting various decompositions. We then get a Miyamoto-type description of this construction, as a counterpart of the framed VOA’s. We then obtain the following properties.

(1) $c = 24$

(2) Representation theory is trivial

(3) The automorphism group is the Monster

(4) Hauptmodul property (as above)
Outline of the proof of these four properties is as follows.

It is immediate to get $c = 24$. We can show complete rationality passes to an extension (and an orbifold) in general with control over the size of the representation category, using the Jones index. With this, we get (2) very easily. Such a net is called *holomorphic*.

Property (3) is the most difficult part. For the Virasoro VOA $L(1/2, 0)$, the vertex operator is indeed a well-behaved Wightman field and smeared fields produce the Virasoro net $\text{Vir}_{1/2}$. Using this property and the fact that $\bigcup_g \lambda_g(L(1/2, 0)^{\otimes 48})$ for all $g \in \text{Aut}(V^\dagger)$ generate the entire Moonshine VOA V^\dagger, we can prove that the automorphism group as a VOA and the automorphism group as a net of factors are the same. Then (4) is now a trivial corollary of the Borcherds theorem.
We note that the Baby Monster, the second largest among the 26 sporadic finite simple groups, can be treated similarly with Höhn’s construction of the shorter Moonshine super VOA.

Still, these examples are treated with various tricks case by case. We expect a bijective correspondence between VOA’s and nets of factors on S^1 under some nice conditions.

On the VOA side, the most natural candidate for such a “nice” condition is C_2-finiteness condition of Zhu (with unitarity).

On the operator algebraic side, our complete rationality seems to be such a “nice” condition. The essential condition for this is the finiteness of the Jones index arising from four intervals on the circle, and this finiteness somehow has formal similarity to the finiteness appearing in the definition of the C'_2-finiteness. But the actual relation is unknown.