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Abstract. We study 1-cohomology of discrete group actions on factors of type

II1. Characterizations of Kazhdan’s property T and amenability for discrete groups

in terms of cocycles and coboundaries are given, and we show that each of SL(n,Z),

n ≥ 3, and Sp(n,Z), n ≥ 2, has a continuous family of mutually non-cocycle

conjugate free actions on the AFD factor of type II1 as an application. We also

introduce and compute entropy for discrete amenable group action on factors of

type II1.

§0 Introduction

In this paper, we study 1-cohomology of discrete group actions on factors of type

II1. We give characterizations of Kazhdan’s property T and amenability for discrete

groups in terms of 1-cocycles and coboundaries for actions on factors of type II1.

As an application, we also show that each of SL(n,Z), n ≥ 3, and Sp(n,Z), n ≥ 2,

has a continuous family of mutually non-cocycle conjugate ergodic free actions on

the approximately finite dimensional (AFD) factor of type II1. These are typical

groups with Kazhdan’s property T. We introduce and compute entropy of discrete

amenable group actions on the AFD factor of type II1.
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Complete classification of actions of discrete amenable groups on the AFD factor

R of type II1 up to cocycle conjugacy was given in Ocneanu [O]. In particular, he

showed that any two free actions of a discrete amenable group on R are cocycle

conjugate. Then Jones [J2] showed that this statement is no longer valid for any

discrete non-amenable group. He constructed two free actions and used the ergodic-

ity at infinity to distinguish the two. This shows that non-amenable discrete groups

are quite different from amenable ones in the theory of group actions on factors. In

order to understand cocycle conjugacy of non-amenable group actions, we start to

study 1-cohomology of the actions and get several von Neumann algebra analogues

of Schmidt’s work [S] on ergodic actions on probability spaces. Major difference

between the cohomology theory on probability spaces and one on von Neumann

algebras is that we do not have the group structure on the space of cocycles in the

latter case, which causes technical difficulty.

First we work on groups with Kazhdan’s property T, which are far from be-

ing amenable. (See §1 for the definition.) Since Connes [C3], several authors

have shown that the discrete groups with Kazhdan’s property T are the opposite

extreme of amenable groups with respect to representations and actions on prob-

ability spaces and von Neumann algebras. Here a characterization of Kazhdan’s

property T in terms of cocycles and coboundaries is given in §1. Jones [J1] showed

two mutually non-cocycle conjugate free actions of discrete groups with Kazhdan’s

property T on the AFD factors of type II1, and M. Choda [Ch2] showed four of

such actions. We exhibit a continuous family of mutually non-cocycle conjugate free

actions on the AFD factor of type II1 for certain groups with Kazhdan’s property

T like SL(n,Z), n ≥ 3 and Sp(n,Z), n ≥ 2, using her construction in [Ch2]. These
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cannot be distinguished by ergodicity at infinity as in Jones [J2]. Instead, we make

use of rigidity argument of cocycles to show that “almost all” pair in the family is

not mutually cocycle conjugate. This shows another aspect of rigidity in operator

algebras. (See Connes [C3], Connes-Jones [CJ1, CJ2] Popa [P1].)

In §2, we work on amenable groups. We introduce and compute Connes-Størmer

entropy for discrete amenable group actions on the AFD factor of type II1 to dis-

tinguish continuously many non-commutative Bernoulli shifts. Then we get a char-

acterization of amenability in terms of cocycles and coboundaries, based on Oc-

neanu’s work [O]. This shows another remarkable difference between the discrete

groups with Kazhdan’s property T and discrete amenable groups.

The author is thankful to Professor M. Choda for helpful conversations, to Pro-

fessor S. Popa for letting the author know his results in [P2], and to Professor M.

Takesaki for a suggestion on writing style.

§1 Kazhdan’s property T and cohomology classes

Let G be a discrete (countable) group and α an action of G on a factor M of

type II1. Let

Z1
α = {u : G→ U(M) | ugαg(uh) = ugh, g, h ∈ G},

B1
α = {u : G→ U(M) | There exists v ∈ U(M) such that ug = vαg(v∗)}.

Topology of Z1
α is given by the strong convergence at each g ∈ G. This topology is

given by the following metric:

d(u, v) =
∞∑
n=1

1
2n

‖ugn − vgn‖2, where G = {gn | n ≥ 1}.
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Consider the induced metric on B1
α.

We say two cocycles ug, vg are cohomologous and write ug ∼ vg if there exists a

unitary u ∈ M such that ug = uvgαg(u∗). LetH1
α = Z1

α/∼ be the set of cohomology

classes. Araki-Choda [ACh] called an action α strong if any asymptotically α-fixed

sequence in M is equivalent to a bounded sequence in Mα and showed that a

discrete group has Kazhdan’s property T if and only if every action of it on a factor

of type II1 is strong. This is a non-commutative analogue of Connes-Weiss [CW]

to the effect that a discrete group has Kazhdan’s property T if and only if every

ergodic measure-preserving action of it on a probability space is strongly ergodic.

We show that a strong actions have a certain good property about cocycles. The

following technique is based on that of Connes [C1, Theorem 3.1], and we note an

analogy between central sequences and asymptotically α-fixed sequences.

Proposition 1. If α is strong in the above context, then the space of coboundaries

B1
α is closed.

Proof. We define a bijective map Φ from the coset space U(M)/U(Mα) to Z1
α by

Φ(v) = {vαg(v∗)}. Because the metric defined by L2-norm is translation invariant,

U(M)/U(Mα) is a Polish space. We show that this Φ is a homeomorphism.

If vnU(Mα) → vU(Mα) in the topology of the coset space, then there exists

a sequence of unitaries (wn) in U(Mα) such that ‖vnwn − v‖ → 0. This implies

‖vnαg(v∗n) − vαg(v∗)‖2 → 0, hence Φ is continuous.

On the other hand, suppose vnαg(v∗n) → vα(v∗). Then the sequence (v∗vn)

is asymptotically α-fixed, hence there exists a sequence (wn) in Mα such that

‖v∗vn − wn‖2 → 0. We may assume each wn is a unitary by changing wn by
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a small operator if necessary, by Proposition 1.1.3 in Connes [C2]. Then the

cosets vnU(Mα) converges to vU(Mα), hence Φ−1 is also continuous. Thus there

exists a positive number εn such that d(uαg(u∗), 1) < εn implies existence of

w ∈ U(Mα) with ‖uw − 1‖2 <
1
2n

. Suppose we have a sequence (vnαg(v∗n))

converging to ug in Z1
α. Choosing a subsequence if necessary, we may assume

d(vnαg(v∗n), vn+1αg(v∗n+1)) < εn. We choose a sequence of unitaries (un) in U(Mα)

by induction so that ‖vnun − vn+1un+1‖2 <
1
2n

. Suppose u1, . . . , un are chosen.

Then there exists a unitary w ∈ U(Mα) such that ‖v∗n+1vnwn+1 −1‖2 <
1
2n

by the

definition of εn. Now set un+1 = unwn+1. The sequence (vnun) converges to some

unitary u ∈ M. We then have ug = vαg(v∗). Q.E.D.

Here we recall the definition of Kazhdan’s property T for later use. A discrete

group G is said to have Kazhdan’s property T if it has the following condition:

There exists a finite subset F ⊂ G and a positive number ε such that for any

unitary representation Ug of G on H, if there exists a vector ξ ∈ H such that

‖ξ‖ = 1 and ‖Ugξ − ξ‖ < ε for all g ∈ F , then there exists a non-zero vector η ∈ H

such that Ugη = η for all g ∈ G. (See Kazhdan [K] or Zimmer [Z2] for more about

property T.)

We have the following characterization of Kazhdan’s property T. Equivalence of

(1), (2), and (3) are a non-commutative analogue of Theorem 3.2 in Schmidt [S].

Because H1
α is not a group here, we consider all the cohomology classes in (3). (See

Example 8.)

Theorem 2. Let G ba a discrete group. Then the following conditions are equiv-

alent.

(1) G has Kazhdan’s property T.
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(2) Any action of G on a factor of type II1 is strong.

(3) For any action α of G on a factor of type II1, each cohomology class is

closed in Z1
α.

(4) For any action α of G on a factor of type II1, the cohomology space H1
α

with the quotient topology is Hausdorff.

Proof. The equivalence of (1) and (2) was proved in Araki-Choda [ACh].

(2) ⇒ (3) : Fix a unitary cocycle ug for α. Because Ad(ug) · αg is strong, we

know that {vugαg(v∗)u∗g | v ∈ U(M)} is closed by Proposition 1. Then it follows

that {vugαg(v∗) | v ∈ U(M)} is closed.

(3) ⇒ (4) : Because the metric in Z1
α is invariant under the action of U(M), we

have a metric on H1
α and get the conclusion. (This is not just a pseudo-metric by

closedness of each class.)

(4) ⇒ (2) : If we define an action of U(M) on Z1
α by v · ug = vugαg(v∗), then

(U(M), Z1
α) is a Polish transformation group in the sense of Effros [E]. The or-

bit space H1
α is Hausdorff, hence T0, thus Theorem 2.1 in [E] implies that Bα1 is

homeomorphic to U(M)/U(Mα). Suppose a sequence (xn) in M is asymptot-

ically α-fixed. We show that the sequence is equivalent to another sequence in

Mα. We may assume all xn’s are unitaries by a standard argument. Then the se-

quence (xnαg(x∗n)) in B1
α converges to 1, thus the sequence (xnU(Mα)) converges

to U(Mα) in U(M)/U(Mα). This shows (2) and complete the proof. Q.E.D.

Next we deal with openness of B1
α. The following technique is taken from Connes

[C3]. This is also a non-commutative analogue of Theorem 3.4 (3) of Schmidt [S]

and Theorem 2.11 of Zimmer [Z1].
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Proposition 3. If α is an ergodic action of a discrete group G with Kazhdan’s

property T on a factor M of type II1, then the set of coboundaries B1
α is open in

Z1
α.

Proof. Take a coboundary uαg(u∗) ∈ Z1
α. Let F and ε be as in the definition of

Kazhdan’s property T. Choose ε0 so that d(uαg(u∗), vg) < ε0 implies ‖uαg(u∗) −

vg‖2 < ε for all g ∈ F , and let

V = {vg ∈ Z1
α | d(uαg(u∗), vg) < ε0}.

It is enough this neighborhood V of uαg(u∗) is contained in the set of coboundaries.

We assume M acts on the L2-completion H of M by the left multiplication. Define

a unitary representation Ug of G on H by Ug(xξ0) = uαg(u∗)αg(x)v∗g ξ0, where ξ0 is

the vector in H corresponding to 1 ∈ M. (The equality Ugh = UgUh follows from

the cocycle conditions of vg .) We now have

‖Ug(ξ0) − ξ0‖ = ‖uαg(u∗) − vg‖2 < ε, for all g ∈ F.

Thus there exists a non-zero vector η ∈ H such that Ug(η) = η for all g ∈ G. The

operator ηη∗ is well-defined and belongs to L1(M)+. This operator is fixed by

Ad(u) · α · Ad(u∗), which is ergodic. Thus η is a unitary up to scalar, and we get

a unitary v such that v = uαg(u∗)αg(v)v∗g , which means that the cocycle vg is a

coboundary. Q.E.D.

In Theorem 2 (3), we did not need an assumption on the action α, but we assumed

ergodicity of α in Proposition 3. We show that we cannot drop this assumption in
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general by the following example. The difference arised from the lack of the group

structure of Z1
α.

Example 4. Let G be a discrete group with infinite conjugacy classes and Kazh-

dan’s property T. (Take G = SL(3,Z), for instance.) Then consider the left regular

representation ug of G, and let R(G) be the factor of type II1 generated by ug’s.

Let M = R(G) ⊗̄ R(G), and α be the trivial action of G on M. Define

v(n)
g = ug ⊗ en + 1 ⊗ (1 − en), for n ∈ N, g ∈ G,

where en is a projection in R(G) with the trace 1/n. Then these v(n)
g are cocycles

for the trivial action α, and ‖1 − v
(n)
g ‖2 ≤ 2/

√
n → 0 as n → ∞. But the set of

coboundaries of α is just {1}. This shows that B1
α is not open.

Thus, we concentrate on ergodic actions. We would like to show openness of

each cohomology class for ergodic actions, but Proposition 3 does not imply it im-

mediately because of lack of group structure in Z1
α. Indeed, cohomology classes are

not open in general as Example 8 shows. For this reason, we consider only cocycles

connecting ergodic actions. For this purpose, we show the following continuity first.

Proposition 5. Let α be an action of a discrete group G with Kazhdan’s property

T on a factor M of type II1. Then the correspondence ug ∈ Z1
α �→ MAd(ug)·αg is

uniformly continuous in the following sense: For any ε0 > 0, there exists δ > 0

such that if d(ug, vg) < δ, then ‖MAd(ug)·αg −MAd(vg)·αg‖2 < ε0. (See Definition

in p. 21 of Christensen [Chr] for notation.)

Proof. Let F ⊂ G and ε > 0 be as in the definition of Kazhdan’s property T.

Choose δ so that d(ug, vg) < δ implies ‖ug − vg‖ < εε0/2 for all g ∈ F , and let x
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be an element in MAd(vg)·αg with ‖x‖∞ ≤ 1. Set N = MAd(ug)·αg , y = EN (x),

and z = x− y, where EN is a conditional expectation onto N .

By the GNS representation with respect to the trace τ , we may assume M

acts on the L2-completion of M by the left multiplication. Let ξ0 be the vector

corresponding to 1 ∈ M. We get a unitary representation Ug of G on this Hilbert

space defined by Ug(xξ0) = (Ad(ug) ·αg(x))ξ0 , x ∈ M. Then this Ug restricts onto

the orthogonal complement H of the L2-completion of N . Because we do not have

a non-trivial invariant vector in H for Ug, we have an inequality

‖Ad(ug′) · αg′(x) − x‖2 = ‖Ad(ug′ ) · αg′ (z) − z‖2 ≥ ε‖z‖2,

for some g′ ∈ F . Because

‖Ad(ug′ ) · αg′ (x) − x‖2 = ‖Ad(ug′v∗g′ )(x) − x‖2 ≤ 2‖ug′ − vg′‖2 ≤ εε0,

we get MAd(vg)·αg
ε0⊂N . By symmetry, we get the conclusion. Q.E.D.

Now we work on ergodic actions of discrete groups. Let α be an ergodic action

of a discrete group G on a factor M of type II1. Define

Z1
α,erg = {u : G→ U(M) | ug ∈ Z1

α,Ad(ug) · αg is also ergodic.} ⊃ B1
α,

and H1
α,erg = Z1

α,erg/∼. Consider the induced metric on Z1
α,erg. We assume now

G has Kazhdan’s property T and α is ergodic in the rest of this section. Then we

get the following immediately from Proposition 5.
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Corollary 6. In the above context, Z1
α,erg is closed in Z1

α.

Proof. The inequality ‖N − C‖2 < δ for any δ > 0 implies N = C. Q.E.D.

We show that property T implies the discreteness of the space H1
α,erg . The

following proof is similar to that of Theorem 3. It implies the number of “different”

cocycles connecting ergodic actions is “small”. This is a rigidity result for cocycles.

Theorem 7. Under the above context, H1
α,erg is at most countable.

Proof. Since H1
α,erg is separable, it is enough to show that each cohomology class

in Z1
α,erg is open and closed. Then, since Z1

α,erg is a disjoint union of classes, it is

sufficient to show that each class is open.

Take a cocycle ug ∈ Z1
α,erg. Let F and ε be as in the definition of Kazhdan’s

property T. Choose ε0 so that d(ug, vg) < ε0 implies ‖ug − vg‖2 < ε for all g ∈ F ,

and let

V = {vg ∈ Z1
α,erg | d(ug, vg) < ε0}.

It is enough this neighborhood V of ug is contained in the class of ug. We assume

M acts on the L2-completion H of M by the left multiplication. Define a unitary

representation Ug of G on H by Ug(xξ0) = ugαg(x)v∗g ξ0, where ξ0 is the vector in

H corresponding to 1 ∈ M. (The equality Ugh = UgUh follows from the cocycle

conditions of ug and vg .) We now have ‖Ug(ξ0) − ξ0‖ = ‖ug − vg‖2 < ε for all

g ∈ F . Thus there exists a non-zero vector η ∈ H such that Ug(η) = η for all

g ∈ G. The operator η∗η is well-defined and belongs to L1(M)+. This operator is

fixed by Ad(vg) · αg, which is ergodic. Thus η is a unitary up to scalar, and we get

a unitary v such that v = ugαg(v)v∗g , which means ug ∼ vg . Q.E.D.
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A direct analogue of Theorem 3.4 (3) of Schmidt [S] and Theorem 2.11 of Zimmer

[Z1] would be that each cohomology class of an ergodic action of a discrete group

with Kazhdan’s property T would be open. But this statement is invalid in general

as the following example, similar to Example 4, shows. This justifies we considered

only Z1
α,erg in the above Theorem.

Example 8. Let G,ug,M be as in Example 4. Let α be the action of G×G on M

defined by α(g,h) = Ad(ug ⊗ uh) for g, h ∈ G. Note that G×G also has Kazhdan’s

property T (see Connes [C3]), and this action α is ergodic. Define v(g,h) = u∗g ⊗ u∗h

and

v
(n)
(g,h) = 1 ⊗ (enu∗h) + u∗g ⊗ (1 − en)u∗h, n ∈ N, g, h ∈ G,

where en is a projection in R(G) with the trace 1/n. An easy computation shows

that these are α-cocycles. Then ‖v(g,h)−v(n)
(g,h)‖2 ≤ 2/

√
n→ 0 as n→ ∞. If we have

v(g,h) ∼ v
(n)
(g,h) for some n, then it implies v(g,h) = v

(n)
(g,h), which is a contradiction.

This show that the cohomology class of v(g,h) is not open.

If we have “too many” ergodic actions compared to cocycles, then it means

the number of cocycle conjugacy classes is large. Jones [J1] first showed that a

discrte group with Kazhdan’s property T has two mutually non-cocycle conjugate

free actions on the AFD factor of type II1. M. Choda [Ch1, Ch2] constructed

a continuous family of mutually non-conjugate ergodic free actions of SL(n,Z),

n ≥ 3, and Sp(n,Z), n ≥ 2, on the AFD factor R of type II1, and she asked in

the first question of page 534 of [Ch2] whether a discrete group with Kazhdan’s

property T has two non-cocycle conjugate ergodic free actions on the AFD factor
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of type II1, and obtained an affirmative answer in it by constructing two different

crossed product algebras. We get the following Corollary about this question. It

shows that these groups have the totally opposite property of amenable groups with

respect to free actions on the AFD factor of type II1. (Theorem 2.7 in Ocneanu

[O] asserts that every discrete amenable group has the unique free action, up to

cocycle conjugacy, on the AFD factor R of type II1.)

Corollary 9. Each of the groups SL(n,Z), n ≥ 3, and Sp(n,Z), n ≥ 2, has a

continuous family of ergodic free actions on the AFD factor of type II1 such that

any two of it are not cocycle conjugate.

Proof. Suppose the number of different cocycle conjugacy classes of actions in the

family M. Choda constructed is countable. Then at least one class contains con-

tinuously many actions. Let α be an action in this class. Since the other actions

in this class are ergodic and cocycle conjugate to α, there exist continuously many

cocycles such that any two of them are not cohomologous, hence H1
α,erg for this α

is uncountable, which is a contradiction. Q.E.D.

Noe that in Corollary to Theorem 4 of Popa [P2], he shows that a countable

groupG with Kazhdan’s property T have uncountably many mutually nonconjugate

properly outer cocycle-actions on the AFD factor R of type II1.

Remark 10. All the above actions are ergodic, hence ergodic at infinity in the

sense of Jones [J2]. Thus any two of them cannot be distinguished by the method

of Jones [J2]. All the crossed product algebras of the above actions have property

T as shown in Choda [Ch2]

§2 Entropy and cohomology for amenable group actions
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In this section, we study what follows from Ocneanu’s work [O] about cohomo-

logical properties of free actions of discrete amenable groups on the AFD factor R

of type II1. In Proposition 7.2 in Ocneanu [O], he obtained 1-cohomology vanishing

in the ultraproduct algebra. His method appeals to Shapiro’s lemma type argu-

ment based on his non-commutative Rohlin theorem. If we go back to the original

algebra, we get the following by his method.

Proposition 11. Let α be a free action of a discrete amenable group G on the

AFD factor R of type II1. Then B1
α is dense in Z1

α.

Proof. Apply the proof of Proposition 7.2 in [O] to a given cocycle vg. Though vg is

not in the ultraproduct, the proof works until line 11 of page 63 if we think w in the

proof is an element of Mω, because we have a non-commutative Rohlin Theorem

for our α. Then vg is equal to a coboundary wαg(w∗) in the ultraproduct algebra

with a small error. Then choosing a unitary un from the sequence representing w in

the proof, we get a coboundary unαg(u∗n) such that ‖unαg(u∗n)− vg‖1 < 1/n for all

g ∈ Fn, where Fn is an increasing sequence of finite subsets of G with ∪nFn = G.

This shows the desired density. Q.E.D.

We consider the number of unitary cocycles next. As in Choda’s result used

in §1, we would like to obtain a large number of conjugacy classes of ergodic free

actions. In order to distinguish general discrete amenable group actions, we extend

Connes-Størmer entropy in [CS] to countable amenable group actions. It will give us

continuous conjugacy classes of non-commutative Bernoulli shifts. (See Ornstein-

Weiss [OW] for entropy of group actions on probability spaces.)

For reference, we list basic definitions and properties of Connes-Størmer entropy

from [CS].
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[Definition 1 of [CS]]. For finite dimensional von Neumann subalgebras

N1, . . . , Nk of R, define

H(N1, . . . , Nk) = sup
x∈Sk

(
∑

η(τ (xi1,...,ik ))−
∑

τ (η(ENl(x
l
il )))),

where η(x) = −x log x, Sk is the set of all families (xi1 ,...,ik), ij ∈ N, of positive

elements of R, zero except for a finite number of indices, and with the sum equal

to 1, and

xlil =
∑

i1,...,il−1,il+1,...,ik

xi1,...,ik .

[Properties of H].

H(N1, . . . , Nk) ≤ H(P1, . . . , Pk) when Nj ⊂ Pj ,(A)

H(N1 , . . . , Np) ≤ H(N1, . . . , Nk) +H(Nk+1, . . . , Np),(B)

P1, . . . , Pn ⊂ P ⇒ H(P1, . . . , Pn, Pn+1, . . . , Pm) ≤ H(P,Pn+1, . . . , Pm),(C)

H(N) =
∑

η(τ (eα)), when
∑

eα = 1, eα : minimal,(D)

H(N1, . . . , Nk) = H((N1 ∪ · · · ∪ Nk)′′),(E)

when (N1 ∪ · · · ∪Nk)′′ is generated by pairwise commuting subalgebras Pj ⊂ Nj ,

H(N1, . . . , Nk) ≤ H(P1, . . . , Pk) +
∑

H(Nj |Pj),(F)

where H(N |P ) = sup
x∈S1

∑
(τ (η(EP (xi))) − τ (η(EN(xi)))).
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[Theorem 1 of [CS]]. For each n ∈ N and ε > 0, there is a δ > 0 such that for

any pair of von Neumann subalgebras N,P ⊂ R, the conditions dimN = n and

N
δ⊂ P imply H(N |P ) < ε.

Let G be a countable amenable group. Choose an increasing sequence of finite

subsets {An} by amenability such that

lim
n→∞

|gAn�An|
|An| = 0, for all g ∈ G.

(It is well-known that existence of such a sequence is equivalent to amenability. See

Greenleaf [G] for instance.)

For an action α of G on a factor M of type II1, we define

H(N,α,A) = H(αg1 (N), . . . , αgm(N)), where A = {g1, . . . , gm} ⊂ G,

H(N,α) = lim sup
n→∞

1
|An|H(N,α,An),

H(α) = sup
N⊂M,finite dimensional

H(N,α).

Note that H(N,α) ≤ H(N) by property (B) in Connes-Størmer [CS]. The sup in

the third definition may be infinity.

The following is the non-commutative Kolmogorov-Sinai theorem and an ana-

logue of Theorem 2 in [CS].

Proposition 12. Let Pq, q ≥ 1, be an increasing sequence of finite dimensional

subalgebras of the AFD factor R of type II1 with ∪∞
q=1Pq = R. Then

H(α) = lim
q→∞H(Pq , α).
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Proof. The same proof as that of Theorem 2 in [CS] works. (Use property (F) and

Theorem 1 in [CS] to get H(N,α) ≤ H(Pq , α) + ε for given ε.) Q.E.D.

The following is a computation of entropy for Bernoulli shifts and corresponds

to Theorem 3 in [CS].

Proposition 13. Represent the AFD factor R of type II1 as the infinite tensor

product of k-dimensional matrix algebra Mk(C) with respect to the trace over a

countable amenable group G. Define an action αg of G on R by the Bernoulli shift.

Then we get H(α) = log k.

Proof. For q ≥ 1, define

Pq =
⊗
g∈Aq

Mk(C) ⊗
⊗
g/∈Aq

C.

It is clear that Pq is an increasing sequence of finite dimensional algebras in R and

∪∞
q=1Pq is weakly dense in R. Thus we can apply Proposition 12, and get

H(α) = lim
q→∞ lim

n→∞
1

|An|H(Pq , α,An)

= lim
q→∞ lim

n→∞
|AqAn|
|An| log k

= log k,

by the definition of An. Q.E.D.

The following shows that this entropy for group actions is more poweful than

entropy of single automorphisms.
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Example 14. Let G = Z2 and apply the above construction for k = 2, 3 to get

actions α and β of Z2 on R. Then for any g ∈ Z2, g �= 0, αg and βg have the

entropy infinity as single automorphisms. Actually, they are both conjugate to the

shift on
⊗

Z R ∼= R. But as group actions, they have different entropy, and thus

they are non-conjugate.

Let G = Z[1/2]/Z and apply the above construction for k = 2, 3 to get actions

α and β of Z[1/2]/Z on R. Then for any g ∈ Z[1/2]/Z, αg and βg have the

entropy zero as single automorphisms because they are both periodic, by Remark

6 of Connes-Størmer [CS]. But as group actions, they have different entropy, and

thus they are non-conjugate.

We would like to get continuously many values of the entropy, so we introduce

the following as in Theorem 4 in [CS].

Let M be the infinite tensor product of Mk(C) with respect to the product state

ψλ = ⊗ϕλ, λ = (λ1, . . . , λk), where ϕλ on Mk(C) is defined by

ϕλ(x) = Tr


x ·



λ1

. . .
λk





 , λ1 + · · · + λk = 1, λj > 0.

Let βλg be the ergodic action of a countable amenable group G on M given by

the Bernoulli shift. The centralizer Mψλ is isomorphic to R as in the proof of

Theorem 4 of Connes-Størmer [CS]. Define the action αλg to be the restriction of

βλg on Mψλ . This is also ergodic, and this is a free action. We use entropy as a

conjugacy invariant to distinguish these actions.
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Proposition 15. The entropy H(αλ) of the above action αλg is given by

H(αλ) =
k∑
j=1

−λj log λj .

Proof. Define

Fp = (⊗g∈Ap(Mk(C), ϕλ))⊗ϕλ ; Dp = ⊗g∈Ap

( ∗ 0
0 ∗

)
.

Then using Properties (C), (D), (E) and (C) of Connes-Størmer [CS], we get

H(Fp, α,An) ≤ H((⊗g∈ApAn(Mk(C), ϕλ))⊗ϕλ )

= |ApAn|
k∑
j=1

−λj logλj

= H(Dp, α,An)

≤ H(Fp, α,An),

as in the computation in p. 304 of [CS]. Thus we have

H(αλ) = lim
p

lim
n

1
|An|H(Fp, α,An)

=
k∑
j=1

−λj logλj .

as in the proof of Proposition 13. Q.E.D.
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Theorem 16. For a free action α of a discrete amenable group G on the AFD

factor R of type II1, H1
α is uncountable. For an ergodic free action α of G on R,

H1
α,erg is uncountable.

Proof. By Proposition 15, we know that G has a continuous family of mutually

non-conjugate ergodic free actions on R. By Ocneanu’s result [O, Theorem 2.7], its

members are all cocycle conjugate. Thus we get the conclusion. Q.E.D.

Now we get the following. This is a von Neumann algebra analogue of Schmidt

[S, Remark 3.5].

Theorem 17. Let G be a countable group. Then the following conditions are

equivalent.

(1) G is amenable.

(2) No free action α of G on the AFD factor R of type II1 is strong.

(3) B1
α � B1

α = Z1
α for all free actions a of G on the AFD factor R of type II1.

Proof. (2) ⇒ (1) : If G is not amenable, then G has a strongly ergodic free action

α on R obtained by the Bernoulli shift as in Jones [J2].

(1) ⇒ (3) : If G is amenable, we get the conclusion by Proposition 11 and

Theorem 16.

(3) ⇒ (2) : This follows from Proposition 1. Q.E.D.
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