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1 Introduction

The relations between operator algebras and low-dimensional topology originate from
the celebrated Jones polynomial of links [J], and since A. Ocneanu has invented para-
group theory [O1], topological quantum field theories (TQFT) arising from subfactors
—certain pairs of von Neumann algebras— have been interesting topics. We survey
a relation between 3-dimensional topological quantum field theory and subfactor the-
ory and present some interesting examples due to the first author and U. Haagerup
in [AH] which do not seem to arise from quantum or classical groups.

2 The Turaev-Viro type TQFT’s

Several mathematically rigorous formulations of (3-dimensional) topological quantum
field theory have been worked out by many authors. From the operator algebraic
viewpoint, the most important methods are the one by Reshetikhin-Turaev [RT] and
the one by Turaev-Viro [TV]. In this section, we explain the Turaev-Viro type TQFT
first. (See [EK, Chapter 12] for details.) In the case of compact oriented manifolds of
dimension three without boundary, the Turaev-Viro TQFT gives a complex number
as a topological invariant of the manifold, using quantum 6j-symbols. The 6j-symbols
are defined as an assignment of a complex number to each tetrahedron labelled by
elements of a certain finite set as in Fig. 1. Then we triangulate a given 3-manifold,
label each tetrahedron in all the possible ways, multiply all the values of the 6j-
symbols over the tetrahedra, and sum the the products over all the possible ways of
labelling. Such a sum is called a state sum. In order to get the topological invariance,
we need to know how different triangulations of a same manifold are related. Such
a relation has been classically known and two triangulations give a same manifold
if and only if they are transformed to each other by a finite number of Alexander
moves. In order for a state sum to be invariant under the Alexander moves, we have
to require some axioms for 6j-symbols. The axioms are called unitarity, tetrahedral
symmetry, and the pentagon identity. If a finite set of data for 6j-symbols satisfying
these axioms, we can construct a TQFT with this method of Turaev-Viro. We now
explain how to get such data from the theory of operator algebras. (Actually, one
can come back to operator algebras from 6j-symbols, but we do not explain it here.)
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Figure 1: A labelled tetrahedron

We start with a hyperfinite II1 subfactor N ⊂ M of finite index and finite depth.
Here, a “factor” means a “simple” von Neumann algebra which is a ∗-algebra of
bounded linear operators on a Hilbert space closed in a certain topology. The ad-
jective “hyperfinite” means that the operator algebra is represented as a closure of a
union of finite dimensional algebras, and the term “II1” specifies a certain category
in the classification theory of Murray and von Neumann. Actually, it means that the
von Neumann algebra is infinite dimensional and it has a unique trace with tr(1) = 1.
Our setting means that a von Neumann algebra M and its subalgebra N are both
II1 factors. We will explain the other two finiteness conditions below.

Using the trace on M , we define the inner product ⟨·, ·⟩ on M by ⟨x, y⟩ = tr(y∗x)
for x, y ∈ M . By completing M with respect to the inner product, we get a Hilbert
space. We denote this Hilbert space by L2(M). Since N is in M , we have a natural
left action of N on M by usual multiplication of the algebra. We extend the action
to L2(M), and then we have a left N -module NL

2(M). We also have the right
action of M on L2(M) similarly, and then we have an N -M bimodule NL

2(M)M .
For simplicity, we write this bimodule NMM . In a similar way, we have bimodules

NNN , MMM , and MMN . We say a bimodule NXM is irreducible when its bimodule
endomorphism space End(NXM) is trivial. The bimodule NMM is irreducible if and
only if N ′ ∩M = C.

Next we consider fusion rules. In general, suppose that we have three von Neu-
mann algebras A,B,C and two bimodules AXB, BYC . Then there is a method to
define a relative tensor product AX ⊗B YC . This is an A-C bimodule and we have
some technical subtlety in the definition, but we omit details. Suppose X,Y are ir-
reducible. We can make an irreducible decomposition of X ⊗ Y , if we have a certain
finiteness condition, called the finite index condition. This decomposition rule of the
relative tensor product is called a fusion rule.

We start with a bimodule NMM . The finite index condition for N ⊂ M is assumed
and it is used to make irreducible decomposition as mentioned above. We make



2 THE TURAEV-VIRO TYPE TQFT’S 3

A
A
A
A
A
A

������������

�
�

�
�

�
�

�
�� @

@
@

@
@

@I�
�

�
�
�

�
�
�

�
�
��U�

+

�

�

X3

X1 X5

X4

X2

X6

σ1

σ2

σ3

σ4

Figure 2: A labelled tetrahedron

finite tensor powers · · ·NM ⊗M M ⊗N M ⊗M M ⊗N MM · · · and make irreducible
decompositions. We consider all the irreducible bimodules arising in this way. Note
that we have four kinds of bimodules; N -N , N -M , M -N , M -M . In general, we have
infinitely many bimodules in this way, but we say that the subfactor N ⊂ M has a
finite depth if we get only finitely many irreducible bimodules in this way.

Under the finite index and finite depth assumption, we concentrate on one kind
of bimodules. Let

X = {X = NXN |N -N bimodules arising as above}

It is easily shown that a relative tensor product of two bimodules in X decomposes
into a sum of bimodules in X . We can also define a dual or a contragredient bimodule
X for X, and for X ∈ X , we have X ∈ X .

We use this set X as labels for edges of a tetrahedron. Next, we set

HZ
X,Y = Hom(X ⊗ Y, Z)

and fix an orthonormal system SZ
X,Y , where we have dropped the subscripts N for

simplicity. We use this set for labels of the faces of tetrahedron. Now we define
6j-symbol using X and {SZ

X,Y }X,Y,Z∈X as follows. We label a tetrahedron as in Fig.

2, where Xi’s are bimodules in X and σ1 ∈ SX3
X1,X2

, σ2 ∈ SX4
X5,X2

, σ3 ∈ SX5
X6,X1

, and

σ4 ∈ SX4
X6,X3

. We then assign a complex number σ2 · (σ3 ⊗ idX2) · (idX6 ⊗ σ1)
∗ · σ∗

4 ∈
End(X4) = C to this labelled tetrahedron. By using this 6j-symbol, we have a
TQFT3 constructed from a subfactor.

It is easy to construct two different subfactors giving the same TQFT of Turaev-
Viro type. So there is a natural question to determine when two subfactors give the
same TQFT. A sufficient condition called equivalence of subfactors is known and it
is conjectured that this is also necessary.



3 EXOTIC TQFT’S 4

3 Exotic TQFT’s

Now, we have 6j-symbols and the corresponding TQFT constructed from each sub-
factor. We are certainly interested in finding new kinds of TQFT’s in this way. Many
subfactors have been constructed from quantum groups or rational conformal field
theory (see [EK, Chapters 12, 13]), but TQFT’s for such subfactors are already known
in topology and there is no advantage in using subfactors for topological studies on
them. (The orbifold construction and conformal inclusions may be useful to some
extent, but still, they do not give an entirely new TQFT.) So we have a problem
whether we have a subfactor not arising from quantum groups, classical groups, or
rational conformal field theory. (Here by a “subfactor”, we mean a subfactor of the
special class specified in the previous section.)

Until recently, no such examples of subfactors were known. U. Haagerup then
gave a list of several candidates for subfactors which do not come from quantum
groups, etc. in 1993. We have used the word “candidates” because they seemed to
exist, but he could prove existence rigorously only for one particular example in the
list. In 1998, the first author and Haagerup gave a proof of existence of another one
in the list [AH]. These two are the only examples known today which do not seem to
come from quantum groups, etc. So they are called “exotic” subfactors. (The exact
meaning of “do not seem to come from quantum groups, etc.” is as follows. There
have been several known constructions of subfactors from quantum or classical groups,
or rational conformal field theory. None of these do not give these two subfactors and
these subfactors look “remote” from these constructions.) We have an analogue of
the quantum dimension for bimodules and those for these two subfactors are algebraic
numbers involving

√
13 and

√
17. We expect that the corresponding TQFT’s are also

“exotic”, but no concrete results have been obtained about them. Theoretically, there
is a possibility that these TQFT’s coincide with TQFT’s arising from some quantum
group, though we feel it is rather unlikely. We can also construct a complex number
valued invariant for links from these “exotic” subfactors. (See the next section.) So
these examples might give some useful information about a famous problem whether
all the Vassiliev invariants come from quantum groups or not.

4 The Reshetikhin-Turaev type TQFT’s

Another famous construction of TQFT is due to Reshetikhin-Turaev [RT]. It can
be regarded as a rigorous realization of a physical idea of Witten. It is possible to
construct this type of TQFT from a subfactor and we explain this construction. See
[O2] for more details.

The Reshetikhin-Turaev construction is based on surgery of links. They start
with a link invariant of special type and prove invariance under Kirby moves. For
this construction, we need a braiding, which is a special type of commutativity of
the relative tensor product from a viewpoint of subfactor theory. In general, the
relative tensor product of the N -N bimodules arising from N ⊂ M as above is
not commutative at all. So it seems that we cannot make a Reshetikhin-Turaev type
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construction from a given subfactor. But there is a method analogous to the quantum
double construction of Drinfel′d. That is, we start with a subfactor N ⊂ M (of a
special type as above) and construct a new subfactor M ∨ (M ′ ∩M∞) ⊂ M∞ called
the asymptotic inclusion. (We do not explain details here. See [EK, Chapter 12].)
Then use this new subfactor instead of the original one N ⊂ M . One can show that
all the axioms for the Reshetikhin-Turaev construction are satisfied and we get a
TQFT in this way.

A natural problem is to find a relation between the Turaev-Viro type TQFT
arising from a subfactor N ⊂ M and the Reshetikhin-Turaev type TQFT arising
from the asymptotic inclusion M ∨ (M ′∩M∞) ⊂ M∞. Ocneanu claims that they are
equal, but no proof has been published on this equality.
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