ファン・カンペンの定理の証明

 $X=U_1\cup U_2,\,U_1,\,U_2$ は開集合で、 $U_1,\,U_2,\,U_{12}=U_1\cap U_2$ は弧状連結とする。基点 $b\in U_{12}=U_1\cap U_2$ をとり、包含写像を $i_1:U_{12}\longrightarrow U_1,\,i_2:U_{12}\longrightarrow U_2$ とし、これにより誘導される準同型写像を $i_{1*}:\pi_1(U_{12},b)\longrightarrow\pi_1(U_1,b),\,i_{2*}:\pi_1(U_{12},b)\longrightarrow\pi_1(U_2,b)$ とする。次の群の完全列があることを示す。

$$1 \longrightarrow \mathcal{N} \longrightarrow \pi_1(U_1, b) * \pi_1(U_2, b) \longrightarrow \pi_1(X, b) \longrightarrow 1$$

ここで、 $\pi_1(U_1,b)*\pi_1(U_2,b)$ は群の自由積、 $\mathcal N$ は、 $\pi_1(U_1,b)*\pi_1(U_2,b)$ の部分集合 $\{i_{1*}\alpha(i_{2*}\alpha)^{-1}\mid \alpha\in\pi_1(U_{12},b)\}$ を含む最小の正規部分群である。(このように定義される群は融合積と呼ばれ、 $\pi_1(U_1,b)*\pi_1(U_2,b)$ と書かれる。)

証明。

(1) $f:([0,1],\{0,1\})\longrightarrow (U_1\cup U_2,b)$ に対し、 $f^{-1}(U_1),\,f^{-1}(U_2)$ に対するルベーグ数を考えると、十分大きな自然数 N に対し、[0,1] 区間を N 等分すると、 $[rac{m-1}{N},rac{m}{N}]$ の像は U_1 または U_2 に含まれる。 $f(rac{m}{N})$ が $U_1\setminus U_{12},\,U_2\setminus U_{12},\,U_{12}$ の点の時、 $f(rac{m}{N})$ と b を結ぶ曲線 γ_m を $U_1,\,U_2,\,U_{12}$ 内に取る。 $f[rac{m-1}{N},rac{m}{N}]=f_m$ とおして、

$$f \simeq f_1 \natural \overline{\gamma_1} \natural \gamma_1 \natural f_2 \natural \overline{\gamma_2} \natural \gamma_2 \natural f_3 \natural \overline{\gamma_3} \natural \dots \natural \gamma_{N-1} \natural f_N$$

(2) 自由積として得られた $f:([0,1],\{0,1\})\longrightarrow (U_1\cup U_2,b)$ が b への定値写像に ホモトピックとすると、写像 $F:[0,1]^2\longrightarrow U_1\cup U_2$ で、F(1,t)=f(t), F(0,t)=b, F(s,0)=F(s,1)=b をみたすものが存在する。 $F^{-1}(U_1)$, $F^{-1}(U_2)$ についてのルベーグ数を考えると、十分大きな自然数 N に対し、正方形 $[0,1]^2$ を N^2 等分すると、 $[\frac{m-1}{N},\frac{m}{N}]\times [\frac{n-1}{N},\frac{n}{N}]$ の像は U_1 または U_2 に含まれる。 $F(\frac{m}{N},\frac{n}{N})$ が $U_1\setminus U_{12}$, $U_2\setminus U_{12}$, U_{12} の点の時、 $F(\frac{m}{N},\frac{n}{N})$ と b を結ぶ曲線 γ_{mn} を U_1 , U_2 , U_1 2 内に取る。この γ_{mn} を使って、F をホモトピーで変形して、 $G(\frac{m}{N},\frac{n}{N})=b$ となる写像 $G:[0,1]^2\longrightarrow U_1\cup U_2$ をつくる。 $G(1,t)=f_{N1}$ は、、は f_{NN} の f_{Nn} は、 $\pi_1(U_1,b)$ または $\pi_1(U_2,b)$ の関係式で書き換えたものである。([f] と自由積の中で同じ元である。)

小正方形は U_1,U_2 のいずれかに写されるから、隣り合う小正方形の共通部分となる辺は、小正方形がともに U_1 または U_2 に写されれば、 U_1 または U_2 に写され、一方が U_1 、他方が U_2 に写されるときには、 U_{12} に写される。このとき、この辺に対応する $\alpha\in\pi_1(U_{12},b)$ をとると、 U_1 に写る正方形の側では、この元を $\pi_1(U_1,b)$ の元と見た $i_{1*}\alpha$ と書き、 U_2 に写る正方形の側では、 $\pi_1(U_2,b)$ の元と見た $i_{2*}\alpha$ と書いているはずである。

図のように、辺からの写像に、それぞれの小正方形の側から名前が付けられているとする。 $f_{mn},\,g_{mn},\,h_{mn},\,k_{mn}$ は、それぞれ小正方形の写る先の $\pi_1(U_1,b)$ または $\pi_1(U_2,b)$ の元を表す。

小正方形によるホモトピーによって、 $f_{mn}\simeq\overline{k_{m,n-1}}$ は $g_{m-1,n}$ は h_{mn} であるが、これは小正方形が写される $U_1,\,U_2$ の基本群 $\pi_1(U_1,b),\,\pi_1(U_2,b)$ のなかの関係式である。一方、 $h_{m,n}$ は $\overline{k_{m,n}},\,\overline{f_{m,n}}$ は、その辺の両側が、ともに U_1 または U_2 に写されていれば、 $\pi_1(U_1,b),\,\pi_1(U_2,b)$ のなかの関係式であるが、その辺の一方が U_1 、他方が U_2 に写されるときには、その辺のあらわす $\alpha\in\pi_1(U_{12},b)$ を使って $i_{1*}\alpha(i_{2*}\alpha)^{-1}$ の形にかかれている。

次のように変形すると、 $f_{N1}
atural f_{N2}
atural f_{NN} は <math>g_{N-1,1}
atural g_{N-1,2}
atural f_{N-1,N} に <math>\mathcal{N}$ の元を掛けたものである事がわかる。

さらに次のように変形すると、 $g_{N-1,1}$ は $g_{N-1,2}$ は \dots は $g_{N-1,N}$ は $f_{N-1,1}$ は $f_{N-1,2}$ は \dots は $f_{N-1,N}$ に $\mathcal N$ の元を掛けたものである事がわかる。

$$g_{N-1,1} \natural g_{N-1,2} \natural \cdots \natural g_{N-1,N}$$

$$\simeq f_{N-1,1} \natural f_{N-1,2} \natural \cdots \natural f_{N-1,N}$$

$$\natural \overline{f_{N-1,2} \natural \cdots \natural f_{N-1,N}} (\overline{f_{N-1,1}} \natural g_{N-1,1}) \natural f_{N-1,2} \natural \cdots \natural f_{N-1,N}$$

$$\natural \overline{f_{N-1,3} \natural \cdots \natural f_{N-1,N}} (\overline{f_{N-1,2}} \natural g_{N-1,2}) \natural f_{N-1,3} \natural \cdots \natural f_{N-1,N} \natural \cdots$$

$$\natural (\overline{f_{N-1,N}} \natural g_{N-1,N})$$

これを続けると、 $g_{1,1}
mathridg_{1,2}
mathridg_{1,N}$ は b への定値写像で単位元を表すから、もとの元は $\mathcal N$ の元であったことがわかる。

	f_{45}	$k_{\rm EA}$	f_{55}
	f_{44}	$g_{44} \ k_{53}$	f_{54}
	f_{43}	$egin{array}{c} h_{53} \ g_{43} \ k_{53} \end{array}$	f_{53}
	f_{42}	h_{52}	f_{52}
	f_{41}	h.=1	f_{51}