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Tempered representations and limit algebras — Introduction
G : connected Lie group with Lie algebra g,

H : connected closed subgroup with Lie algebra .

Plan to discuss conditions on (G, H) from 4 different disciplines:
(i) (unitary rep) G Y L*G/H)is tempered .

(ii) (combinatorics) 2py < pq.

(iii) (orbit method)  b* N gr, # @ in g*.

(iv) (limitalgebra) Ad(G)h > b, solvable.

Analysis (i)

Algebra (ii) Geometry (iii)

Topology (iv)



Plan

1. Solvable _

2. Tempered representations.

3. (1) vs (2) for algebraic group /C.

4. Approach from dynamical system for (2).
5. Coadjoint geometry vs (2).

6. Further theorems



Limit algebras (1) — Example
Consider two equi-dimensional subalgebras of g = sl(n, R):

0 *
f=s0(n), n ={[ ]}
0 0

Observation  sequence g; € SL(n, R) such that lim Ad(g;) f = n
Jj—oo

Proof (n :_2) /R[g (',/

Take g; = (20] 2(_)j). Then ’r ‘
Ad(g)) E ((1) ‘01): 12(29%. _(Z)Zj)?P /_(;‘4/' 0}

Remark # sequence g; € S L(n,R) such that lim Ad(g;))n = ¥ I
Jj—oo




Limit algebras (2) — Definition
g: Lie algebra.
bh: k-dimensional subalgebra of g.

We regard §) as a point of the Grassmann variety Gri(g).

dim g

Gr(g) := L Gre(g).

I Gr(g) -] Ad(G)Y, which may or may not be closed.

submanifold

Gr(g) 2 Ad(G)h > b, (limit algebra)

Definition (limit algebra) b, (C g) is a limit algebra of b
if ? sequence g; € G such that lim Ad(g;)bh = b in Gr(g).
]—)00



Limit algebras (3) — Properties

gD b subalgebra ~» Gr(g) D Ad(G)) > b (limit algebra)

Remark b itself is a limit algebra of §.

Basic properties
1) Any limit algebra b, is an equi-dimensional Lie algebra.

abelian abelian
2) If his { nilpotent then any limit algebra ., is also < nilpotent

solvable solvable .

“Semisimple” may collapse to “ solvable ”, but not vice versa.

Question What can we say about b if Ad(G)h > ' solvable b ?




Limit algebras (4) — Example

gD b subalgebra ~» Gr(g) D Ad(G)) > b (limit algebra)

Remark b, is determined by how ) is embedded in g .

Exercise Fix p, and consider ) = sl, — g = sl,,,
Find a necessary and sufficient condition on ¢
such that Ad(G)h > 7 solvable b .

4 A f? H(see later)

P gzp+1




Variety of all Lie algebras £ and its subset S
g: Lie algebra.
Formulation: Consider the variety of all subalgebras in g.

L := {subalgebras of g}
S :={he L:AdG)h > b, solvable }.

dim g
{solvable subalgs} ¢ & c £ < Gr(g)= I Gry(g).
closed N=0

Question (Topology of 8) Let g be a Lie algebra.

(1) Is S closedin L ?
(2) Is' S openin L7?




Topology of S = {h : Ad(G)h > b, solvable}

Theorem 1 Suppose g is an algebraic Lie algebra /C.

(1) 'S isclosedin L.
(2) 'S is open and closed in L if g is semisimple.

Recall

L := {subalgebras of g}
8:={he L:AdG) > b, solvable }.

dimg
{solvable subalgs} ¢ & ¢ £ < Grigg= U Gry(g).
closed N=0

Our proof for Theorem 1 uses unitary representation theory.



Plan
1. Solvable “limit algebras ".

2. Tempered representations .



Tempered representation — Definition
Let G be a locally compact group.

Def A unitary rep 7 of G is called tempered if 7 << L*(G) .
<< ... weakly contained

i.e., every matrix coefficient of & is a uniform limit on every
compacta of G of a sequence of sum of coefficients of L*(G).

e Any unitary rep z can be disintegrated (Mautner)
(e.g., branching law, Plancherel thm).

T fBa with o irreducible
nis tempered < o is tempered , almost everywhere




When is L?(X) tempered?
G Y L%(X): L*-sections for the half-density bundle on a G-space X
X = G/H with H connected closed subgroup

I Question When is the unitary rep on L*(X) tempered?

Examples
1. H compact = L*(G/H) is tempered.
2. H amenable = L*(G/H) is tempered.



Plan
1. Solvable “limit algebras ".
2. Tempered representations .

3. (1) vs (2) for algebraic group /C.



What can we say on L?(G/H) when Ad(G)} > b, solvable ?

G : complex algebraic group D Gy : max semisimple subgroup
H : algebraic subgroup of G

Theorem 2 The following conditions on (G, H) are equivalent:

(i) Ad(G)h > b solvable .
(i) L*(G/H)is tempered as a Gg-module.

For the proof, we begin with tempered reps of real Lie group G.

Analysis (i)

Topology (iv)



Irreducible tempered reps — semisimple Lie groups
Recall

Def A unitary representation x is called tempered if 7 << L*(G) .

e For a solvable Lie group, all = are tempered .

e For a semisimple Lie group G and irreducible r,
tempered representations 7 have been studied extensively.

Known results on tempered reps and beyond ...

Many equivalent definitions, e.g., L*¢(G),
Harish-Chandra’s theory towards Plancherel formula,
Knapp—Zuckerman'’s classification (1982),

Building blocks of Langlands classification,

Selberg 1 conjecture,

Margulis work for discontinuous groups I" for G/H,
Gan-Gross—Prasad conjecture, - -




Tempered representations — Examples (irreducible cases)

V. Bargmann (1947): Irreducible unitary reps of S L,(R)
= {1} L { principal series } 11 { complementary series }
LI{ discrete series } LI { limit of discrete series }

—% Casimir operator acts on them as scalars
0,  [§.), ©, )
(G® =D :neN,}, {0}

I': congruence subgroup of G = SL(2,R)

Selberg’s % eigenvalue conjecture:
Are all eigenvalues of A on Maas wave forms for I" > %
& Is the unitary rep of G" ¥ L2, (I'\G) is tempered ?

cusp

Just one irred non-tempered rep would deny the conjecture.



When is L?(X) tempered?

I Question When is the unitary rep on L?>(G/H) tempered?

Examples

H compact = L*(G/H) is tempered.

H amenable = L*(G/H) is tempered.
LA(SLy+y(R)/SLy(R)) is tempered & g > p + 1 (later).
G/H a semisimple symmetric space (well-studied)?
Tensor product of two non-tempered reps?

ok W=

We discuss when matrix coefficients for L>(X) belong to L**¢(G).

cf. A classical result about L*(X) vs L**4(X)
(Harish-Chandra, Oshima, Bernstein ~ 80s).



Example: G/H semisimple symmetric spaces
The known “Plancherel theorem” for symmetric spaces G/H may suggest:

L*(G/H) is tempered

)
& the set of points in g/ with amenable stabilizer in H is dense.

= is true.



Example: G/H semisimple symmetric spaces
The known “Plancherel theorem” for symmetric spaces G/H may suggest:

L*(G/H) is tempered

)
& the set of points in g/ with amenable stabilizer in H is dense.

= is true, however, < is false even when G/H is a symmetric space!
Just one irred non-tempered rep would deny the implication <.

Our criterion (to be explained soon) detects
Counterexample lfp;>1, g1 21, p1+q1 =p2+q2 +1,
then Sp(p1 + p2, q1 + 2)/Sp(p1,q1) X Sp(p2, g2) is not tempered .




Example: G/H semisimple symmetric spaces
The known “Plancherel theorem” for symmetric spaces G/H may suggest:

L*(G/H) is tempered

)
& the set of points in g/ with amenable stabilizer in H is dense.

= is true, however, < is false even when G/H is a symmetric space!
Just one irred non-tempered rep would deny the implication <.

A subtle point ("What is missing?”):

— It may happen that discrete series reps n, for G/H are tempered
for generic 4, but are non-tempered for very singular A if 7, # 0.

— Langlands parameter of 7, becomes unstable when 1 is
singular, after crossing many walls.

— Condition for which 7y =~ A,(1 —2p) # 0 is complicated
if 1is very singular, (cf. K-, Memoirs of AMS 1992, Trapa 2001).




Change of approach: from PDE to dynamical system
Locally compact group G X locally compact space

G" "X proper ©{geG: SNgS #0}iscompact 'S c X compact,
e vol(S NgsS ) e C.(G) S c X compact.

Idea: Qualitative estimate of non-proper actions.

Look at asymptotic behavior of vol((\S N gS ) as g goes to infinity.
—

gs

N
< )] >
N—




Piecewise linear function py
bh: Lie algebra/R

Definition For a finite-dim’l 7: ) — Endgr(V),
~ py ih >Ry, Yo 3 TIReAY).
eigenvalues of 7(Y) € End(V)

pv is a piecewise linear function.

Remark For [ semisimple and for (r, V) = (ad, b),
Py is twice the usual p on a dominant Weyl chamber.




Temperedness criterion — dynamical approach +«

G : real algebraic Lie group D Gs: max semisimple subgroup,
H : algebraic subgroup.

Theorem 3 L*(G/H) is Gg-tempered < 2p;, < p, on b. I




Condition on 2p;, < p, — Example
Recall that for 7: ) — Endr(V), py is a piecewise linear function:

Definition py: h - Ry, Y %Z |[Re A(Y)].
eigenvalues of n(Y) € End(V)

Example g = sl(p + ¢,R) > h = sl(p,R)

P P
20y <pg = X Ixi—xl<qgXlnl V(xi---,x) with Yx;=0
1<i<j<p i=1 =

—p<qg+1

Theorem 3 tells LZ(SL(p +¢q,R)/SL(p,R)) is tempered & p < g + 1.
P~N%




Sketch of proof (easier part) of Theorem 3

G : real algebraic > H : algebraic subgroup.

Theorem 3 L*(G/H) is Gg-tempered < 2p;, < p, on b. I

Sketch of the proof for the easier part = in the reductive case:

Forasmallball S nearo =eH € G/Hand Y € b,

Cse®™M < vol(e¥SNS) < Cie™
geometry temperedness

The general case and the converse < are much more involved.

« Global picture

=



Temperedness criterion — dynamical approach +a«

G : real algebraic Lie group D Gg: max semisimple subgroup,
H : algebraic subgroup.

Theorem 3 L*(G/H) is Gg-tempered < 2p;, < p, on b. I

References for Theorem 3
[BK] Tempered homogeneous spaces LILIV

G reductive > H reductive (I, J. Eur. Math., 2015)
G reductive > H any (I, Margulis Festschrift, 2021)
G any D H any (IV, preprint)



Another direction of generalization — Almost L” representation
G: real reductive O H real reductive, p € 2N,

I Theorem 3’ L*(G/H) is almost L? &= -L3py < p; on b

n X -

Example (arxivi2108.12125) G/H = GL(n,R)/GL(n1,R) X - - - X GL(n,,R)
The smallest even integer p for which L?(G/H) is aimost L?

amountsto p = 2[2(n m)]WIthm max(ng,--- ,n.).

\ g =

EREEECOOOD -

pP=2
p=4
pP=6
pP=8
p =10
p =12
p=14
p =16
p =18
p =20

[ TR ny,

N,



4 different disciplines — G complex reductive

Thm 4 Let g be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra I are equivalent.

(i) (unitary rep) L*(G/H) is tempered .

(i) (combinatorics) 2py < pg.
(iii) (orbit method)  b* N gy, # @ in g
(iv) (limitalgebra) bHe S, ie, Ad(G)h> b solvable .

Analysis (i)

Algebra (ii) Geometry (iii)

Topology (iv)




From orbit philosophy by Kirillov—Kostant
Explain (iii) (Geometric condition) b* N g, # 0

8" D g := {1 € ¢" 1 Ad"(G)A is of maximal dimension},
g“oht ={1eg : =0}

Orbit philosophy by Kirillov—Kostant

Supp(L(G/H)) = Ad'(G*/ Ad'(G)
n N
G = "/ Ad*(G)
Y U
ac111p = g:eg / Ad*(G)

Remark b Ngy, #0 &= b Ngr, C bF I
dense




4 different disciplines — G complex reductive

Thm 4 Let g be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra §) are equivalent.

(i) (unitary rep) L*(G/H)is tempered .
(ii) (combinatorics) 2py < pq.

(iii) (orbit method)  b* N gy, # @ in g

(iv) (limitalgebra) Ad(G)h > b, solvable.

Analysis (i)
dynamical system / \ geometric quantization

Algebra (ii) = Geometry (iii)

AV 7

Topology (iv)




Proof of Theorem 1
Recall: Variety of all Lie algebras £ and its subset S
L := {subalgebras of g}
S:={he L£:AdG)h > ', solvable }.

dim g
{solvable subalgs} ¢ & c £ < Gr(g)= I Gry(g).
closed N=0

Recall

Theorem 1 Suppose g is an algebraic Lie algebra /C.

(1) 'S isclosedin L.
(2) 'S is open and closed in L if g is semisimple.

Theorem 4 says
(iv) 83 b & (i) 20y < pg < (iii) b= N gffeg # 0.



Sketch of proof of Theorem 4 — complex case

Thm 4 Letgbe a comEIex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra I) are equivalent.

(i) (unitary rep) LX(G/H)is tempered .
(i) (combinatorics) 2py < p.

(iii) (orbit method) b+ N gs, # 0ing".

(iv) (limitalgebra) Ad(G)h > b, solvable.

Analysis (i)
dynamical system / \ geometric quantization
Classification < Algebra (ii) = Geometry (iii)
Topology (iv)

Full classification of pairs of real reductive groups G > H for which
L*(G/H) is non-tempered, ([BKIII, 2021]).



More general setting — Real case
G : real algebraic Lie group > H : algebraic subgroup

Recall

() (unitary rep) L*(G/H) is G¢-tempered.
(ii) (combinatorics) 2pp < pg.

(iii) (orbit method) b N gr, # 0 in g*.
Theorem 3 tells (i) < (ii) in this general setting.

Corollary If G is real reductive, then (iii) = (i) & (ii). I

Analysis (i)
dynamical system / N\ G reductive /R

Algebra (ii) G redﬁve /RGeometry (iii)

Remark G/H = SL(3,H)/SL(2, H) satisfies (i) and (ii) but not (iii).




Thank you very much!
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