Proper Actions and Representation Theory. II —The Mackey analogy and proper actions

Toshiyuki Kobayashi

Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

Mini-courses of Mini-lectures
AIM Research Community
Representation Theory & Noncommutative Geometry
Organizers: P. Clare, N. Higson, and B. Speh
May 2, 2022

100 years ago ···

150 years ago Klein's Erlangen program (1872)

60 years ago Calabi–Markus (Ann Math 1962)

Any de Sitter manifold is non-compact.

100 years ago Radon–Hurwitz number (1922)

Radon-Hurwitz number (1922)

One has the following formulæ:

$$(a^{2} + b^{2})(x^{2} + y^{2}) = (ax - by)^{2} + (ay + bx)^{2}$$

$$(a^{2} + b^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = (ay + bz)^{2} + (ax + bw)^{2} + (-aw + bx)^{2} + (az - by)^{2}$$

$$(a^{2} + b^{2} + c^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = (ay + bz + cw)^{2} + (ax + bw - cz)^{2} + (-aw + bx + cy)^{2} + (az - by + cx)^{2}$$

However, no such formula for

$$(a^2 + b^2)(x^2 + y^2 + z^2) = (\underline{\hspace{1cm}})^2 + (\underline{\hspace{1cm}})^2 + (\underline{\hspace{1cm}})^2$$

<u>bilinear forms</u> on $\{(a,b,c,\cdots)\}\times\{(x,y,z,w,\cdots)\}$

Radon-Hurwitz number (1922)

$$(a^{2} + b^{2})(x^{2} + y^{2}) = (\underline{ax - by})^{2} + (\underline{ay + bx})^{2}$$

$$(a^{2} + b^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = (\underline{ay + bz})^{2} + (\underline{ax + bw})^{2} + (-\underline{aw + bx})^{2} + (\underline{az - by})^{2}$$

$$(a^{2} + b^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = (\underline{ay + bz + cw})^{2} + (\underline{ax + bw - cz})^{2} + (-\underline{aw + bx + cy})^{2} + (\underline{az - by + cx})^{2}$$
billinear forms on $\{(a, b, c, \cdots)\} \times \{(x, y, z, w, \cdots)\}$

Question For which pairs (p,q) does there exist a bilinear map $f: \mathbb{R}^{p+1} \times \mathbb{R}^q \to \mathbb{R}^q$ such that $\||v|| \|w\| = \|f(v,w)\| \quad \forall v \in \mathbb{R}^{p+1}, \forall w \in \mathbb{R}^q.$

Example
$$(p,q) = (1,2), (1,4), (2,4)$$

Example $p + 1 = q \in \{1, 2, 4, 8\}$ corresponding to \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O} .

Observation
$$(p,q) \text{ OK} \Rightarrow (p',q) \text{ OK} \quad \forall p' \leq p$$

Radon-Hurwitz number (1922)

<u>Definition</u> We define the Radon–Hurwitz number $\rho(q)$ defined by $\rho(q) := 8\alpha + 2^{\beta}$ if $q = 2^{4\alpha + \beta} \times (\text{odd integer})$.

<u>Theorem 1</u> (Radon* (1922), Hurwitz* (1923))

The following two conditions on (p,q) are equivalent:

(i) There exists a bilinear map $f: \mathbb{R}^{p+1} \times \mathbb{R}^q \to \mathbb{R}^q$ such that $||v||||w|| = ||f(v, w)|| \quad \forall v \in \mathbb{R}^{p+1}, \forall w \in \mathbb{R}^q.$

(ii)
$$p < \rho(q)$$
.

\overline{p}	N	0	1	2	3	4	5	6	7	8	9	10	
$\frac{1}{q}$	0	N	$2\mathbb{N}$	$4\mathbb{N}$	$4\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	16N	32N	64N	

^{*}J. Radon, Abh. math. Sem. Hamburg 1 (1922); **A. Hurwitz, Math. Ann. (1923).

Proper actions and representation theory

Plan

1 Discontinuous dual and properness criterion (4/	25)
---	-----

2	The Mackey	analogy	and proper a	actions (5/2)
---	------------	---------	--------------	-----------	------

- 3 Tempered subgroups (5/9)
- 4 Tempered homogeneous spaces (5/16)

Space forms in pseudo-Riemannian geometry (definition)

(M,g): pseudo-Riemannian manifold of signature (p,q), geodesically complete

Space forms (examples)

Space form
$$\cdots$$

$$\begin{cases} \text{Signature } (p,q) \text{ of pseudo-Riemannian metric} \\ \text{Curvature } \kappa \in \{+,0,-\} \end{cases}$$

$$\begin{tabular}{lll} \hline Example & $q=0$ (Riemannian manifold) \\ & sphere S^n & \mathbb{R}^n & hyperbolic sp \\ & $\kappa>0$ & $\kappa=0$ & $\kappa<0$ \\ \hline \end{tabular}$$

2-dim'l compact space forms

Lorenzian case
$$\iff$$
 signature $(1,1)$)
$$-\qquad \qquad -\qquad \qquad -$$
 curvature $\kappa>0 \qquad \kappa=0 \qquad \kappa<0$ There do NOT exist compact forms if $\kappa>0$ and $\kappa<0$

Local to global problem in pseudo-Riemannian geometry

Space form problem for pseudo-Riemannian manifolds

Local Assumption

signature (p,q), curvature $\kappa \in \{+,0,-\}$

Global Results

- Do compact forms exist?
- What groups can arise as their fundamental groups?

Formulation in group language

Suppose $p \neq 1$ for simplicity.

<u>Uniformization theorem:</u> Any pseudo-Riemannian manifold M of signature (q, p) with $\kappa \equiv -1$ is of the form $\Gamma \setminus O(p+1, q)/O(p, q)$

where Γ is a discontinuous group for O(p+1,q)/O(p,q).

 Γ is responsible for global properties:

e.g.,
$$\#\Gamma = \infty$$
, $\Gamma \simeq \pi_1(\Sigma_g)$, Γ cocompact, etc.

<u>Definition</u> (discontinuous group for X) For a G-space X, we say Γ is a <u>discontinuous group</u> for X if Γ is a <u>discrete subgroup</u> of G and the Γ -action on X is proper.

Global properties of Space forms $\kappa \equiv -1$, signature (q, p)

Theorem 2* Let G/H = O(p+1,q)/O(p,q).

- (1) (Calabi–Markus phenomenon) G/H admits an infinite discontinuous group if and only if p < q.
- (2) If G/H admits a <u>cocompact</u> discontinuous group, then either q = 0 or p < q and q is even.
- (3) If (p,q) is in the table below, then G/H admits a cocompact discontinuous group.

p	M	0	1	3	7
q	0	N	$2\mathbb{N}$	$4\mathbb{N}$	8

Conjecture** The converse of (3) holds.

^{*} Calabi–Markus (1962), Wolf (1962), Kulkarni (1981), Kobayashi (1996), Tholozan (2015), Morita (2017).

^{**} T. Kobayashi, Conjectures on reductive homogeneous spaces, arXiv:2204.08854.

Cohomological dimension $cd(\Gamma)$

Consider $\mathbb{Z}^k \cap \mathbb{R}^n$ affine action

Observation

- (1) If \mathbb{Z}^k acts properly discontinuously on \mathbb{R}^n , then $k \leq n$.
- (2) Furthermore, \mathbb{Z}^k acts cocompactly on \mathbb{R}^n if and only if k = n.
- What is k for \mathbb{Z}^k ? Use cohomology of abstract groups.
- What is n for \mathbb{R}^n ? (next slide)

<u>Definition</u> (cohomological dimension)

For an abstract group Γ , we define

 $cd_{\mathbb{R}}(\Gamma)\quad:=\mbox{ the projective dimension of }\mathbb{R}$ as the trivial $\mathbb{R}[\Gamma]\mbox{-module}$

 $= \sup\{n \in \mathbb{N} : H^n(\Gamma; A) \neq 0 \text{ for some left } \mathbb{R}[\Gamma]\text{-module } A\}.$

Example
$$\operatorname{cd}_{\mathbb{R}}(\mathbb{Z}^k) = k$$
 $\operatorname{cd}_{\mathbb{R}}(\pi_1(\Sigma_g)) = 2$

Handy criterion for cocompactness

K: maximal compact subgroup of a connected reductive Lie group G.

 $G \approx K$ homotopy equivariant

$$d(G) := \dim G - \dim K$$
 ("non-compactness dimension").

<u>Proposition</u>*** Suppose Γ is a torsion-free discontinuous gp for G/H.

- (1) $\operatorname{cd}_{\mathbb{R}}(\Gamma) \leq d(G) d(H)$.
- (2) The equality holds iff Γ is cocompact (i.e. $\Gamma \backslash G/H$ is compact).

Use Serre's spectral sequence for

$$G/H \simeq K \underset{H \cap K}{\times} \mathbb{R}^{d(G)-d(H)} \underset{\text{homotopic}}{\approx} K/H \cap K$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma \backslash G/H$$

if *H* is reductive such that $H \cap K$ is a maximal compact subgp in *H*.

^{*} J. P. Serre, Cohomologie des groupes discrètes, Annals of Math. Studies, 1971;

^{**} Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).

Cohomological obstruction to cocompact discont gp

Recall
$$H \sim H' \stackrel{\text{def}}{\Longleftrightarrow} H \subset SH'S$$
 and $H' \subset SHS$
($^{\exists}$ compact set $S \subset G$)

Theorem 3* (non-existence) If there exists $H' \subset G$ such that $H \sim H'$ and d(H) < d(H'),

then G/H does not admit a cocompact discontinuous group Γ .

<u>Proof</u> If such Γ existed, then

$$\Gamma \pitchfork H$$
 and $\Gamma \pitchfork H'$ because $\underline{H} \sim \underline{H}'$,

$$\operatorname{cd}_{\mathbb{R}}(\Gamma) = d(G) - d(H) > d(G) - d(H') \ge \operatorname{cd}_{\mathbb{R}}(\Gamma),$$

which would be a contradiction.

Example**
$$(G, H) = (SL(3, \mathbb{C}), SL(2, \mathbb{C}))$$

Take H' = SU(2, 1). Then $H \sim H'$ and d(H') = 4 > d(H) = 3.

 $\Rightarrow SL(3,\mathbb{C})/SL(2,\mathbb{C})$ does not admit a cocompact discontinuous gp.

^{*} T. Kobayashi, Duke Math. J., 1992; ** T. Kobayashi, Proc. ICM-1990 satellite (Kawaguchi Lake).

Nonexistence of Compact quotients for $SL(n, \mathbb{F})/SL(m, \mathbb{F})$

The figure is for $\mathbb{F} = \mathbb{C}$. Some results depend slightly on $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} .

Construction of cocompact discontinuous groups

Suppose that $G \supset H$ are a pair of real reductive linear Lie groups.

Theorem 4* (existence)

If there exists a reductive subgroup L of G such that

$$\frac{d(L) + d(H) = d(G)}{d(L) + d(H)} \quad \& \quad \mathfrak{a}_L \cap W\mathfrak{a}_H = \{0\}$$

then both G/H and G/L admits cocompact discontinuous groups.

Example
$$\mathbb{Z}^k \subset \mathbb{R}^k \stackrel{\curvearrowright}{\curvearrowright} \mathbb{R}^n/\mathbb{R}^\ell$$
 if $\frac{k+\ell=n}{\Gamma}$.

Proof. Properness criterion ("Theorem 4" in 1st talk)

$$L \pitchfork H \iff H \pitchfork L \iff \mathfrak{a}_L \cap W\mathfrak{a}_H = \{0\}.$$

Take a cocompact lattice Γ in L, which exists by Borel's theorem **. Then Γ is a cocompact discontinuous group for G/H.

^{*} Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).

^{**} A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963).

Proper actions and representation theory

Plan

1	Discontinuous dual	and	properness	criterion ((4/25)
		~ ~	0.000000	0	,

2	The Mackey	analogy	and proper a	actions (5/2)
---	------------	---------	--------------	-----------	------

- 3 Tempered subgroups (5/9)
- 4 Tempered homogeneous spaces (5/16)

Cartan motion group G_{θ}

G: real reductive linear Lie group

 θ : Cartan involution, g = f + p

$$K = \{g \in G : \theta g = g\}$$
 maximal compact subgroup of G

 $G = K \exp \mathfrak{p}$

 $\begin{array}{l} \underline{\text{Definition}} \quad \text{(Cartan motion group } G_{\theta}\text{)} \\ \hline G_{\theta} := K \ltimes \mathfrak{p} \\ (k_1, X_1) \cdot (k_2, X_2) := (k_1 k_2, X_1 + \operatorname{Ad}(k_1) X_2) \\ g_{\theta} = \mathfrak{k} + \mathfrak{p} \quad \text{with } \mathfrak{p} \text{ abelian subalgebra.} \end{array}$

cf. Mackey analogy for the unitary dual

$$\widehat{G} \longleftrightarrow \widehat{G}_{\theta}$$

Mackey analogy — from geometric viewpoints

$$G = K \exp \mathfrak{p} \iff G_{\theta} = K \ltimes \mathfrak{p}$$
 (Cartan motion group)

Example Riemannian manifold with constant sectional curvature
$$\kappa$$
 $\kappa < 0$ $\kappa = 0$ $\kappa > 0$

hyperbolic space H^n \mathbb{R}^n sphere S^n
 G/K G_θ/K G_U/K
 $G = \mathrm{Isom}(H^n)_0 = K \exp \mathfrak{p} \simeq SO_0(n,1)$
change ζ
 $G_\theta = \mathrm{Isom}(\mathbb{R}^n)_0 = K \ltimes \mathfrak{p} \simeq SO(n) \ltimes \mathbb{R}^n$
change ζ
 $G_U = \mathrm{Isom}(S^n)_0 = K \exp (\sqrt{-1}\mathfrak{p}) \simeq SO(n+1)$

"Tangential homogeneous space" G_{θ}/H_{θ}

Let H be a reductive subgroup of G. Take a Cartan involution θ such that $\theta H = H$.

$$G \hspace{1cm} G_{ heta}$$
 reductive Lie gp \implies Cartan motion gp

$$G = K \exp \mathfrak{p} \implies G_{\theta} = K \ltimes \mathfrak{p}$$

$$H = (H \cap K) \exp(\mathfrak{h} \cap \mathfrak{p}) \implies H_{\theta} = (H \cap K) \ltimes (\mathfrak{h} \cap \mathfrak{p})$$

$$G/H \implies G_{\theta}/H_{\theta}$$

Mackey analogy for $G_{\theta}/H_{\theta} \longleftrightarrow G/H$

$$G$$
 real reductive \longleftrightarrow $G_{\theta} = K \ltimes \mathfrak{p}$ \cup U L,H reductive subgps \longleftrightarrow L_{θ},H_{θ} $(\theta ext{-stable})$

Proposition 5 (Mackey analogy)*

- (1) $\exists K$ -equivariant diffeomorphism $G/H \simeq G_{\theta}/H_{\theta}$.
- $(2) \underline{L} \pitchfork H \text{ in } G \qquad \longleftrightarrow \underline{L_{\theta}} \pitchfork H_{\theta} \text{ in } G_{\theta}.$
- (3) $L \sim H \text{ in } G \qquad \iff L_{\theta} \sim H_{\theta} \text{ in } G_{\theta}.$
- (4) (Calabi–Markus phenomenon) No infinite discont gp for G/H \iff No infinite discont gp for G_{θ}/H_{θ} .
- (5) $L \cap G/H$ properly and cocompactly $\iff L_{\theta} \cap G_{\theta}/H_{\theta}$ properly and cocompactly.

^{*} T. Kobayashi, T. Yoshino, Compact Clifford Klein forms of symmetric spaces — revisited, Pure and Appl. Math. Quarterly 1, (2005), 603–684.

Compare G_{θ}/H_{θ} and G/H (space form conjecture)

Let
$$G/H = O(p + 1, q)/O(p, q)$$
.

G/H is a (p+q)-dimensional space form with signature (q,p), with sectional curvature $\kappa \equiv -1$

<u>Conjecture</u>* G/H admits a cocompact discontinuous group if and only if (p,q) is in the following list.

p	N	0	1	3	7
q	0	N	$2\mathbb{N}$	$4\mathbb{N}$	8

"if" part is true (Theorem 2).

^{*} T. Kobayashi, Conjectures on reductive homogeneous spaces, arXiv:2204.08854.

Existence of cocompact discontinuous group for G_{θ}/H_{θ}

$$G/H = O(p, q + 1)/O(p, q) \rightsquigarrow G_{\theta}/H_{\theta}$$

space form

Theorem 6*

There exists a cocompact discontinuous group for G_{θ}/H_{θ} $\iff p < \rho(q)$ (Radon–Hurwitz number)

p	\mathbb{N}	0	1	2	3	4	5	6	7	8	9	10	• • •
q	0	N	$2\mathbb{N}$	$4\mathbb{N}$	$4\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	$8\mathbb{N}$	16№	32N	64N	

^{*} T. Kobayashi, T. Yoshino, Pure and Appl. Math. Quarterly 1, (2005), 603-684. Special Issue: In Memory of A. Borel.

Key lemma for Theorem 6

Let G_{θ}/H_{θ} be the "tangential homogeneous sp" of G/H = O(p+1,q)/O(p,q)

<u>Proposition 7</u>* The following conditions on (p, q) are equivalent.

- (i) G_{θ}/H_{θ} admits a cocompact discontinuous group.
- (ii) \exists bilinear map $f: \mathbb{R}^{p+1} \times \mathbb{R}^q \to \mathbb{R}^q$ such that f(v, w) = 0 only if v = 0 or w = 0.

Trivial case
$$p=0$$
. $H_{\theta}=O(q)$ compact! (ii) holds by putting $f\colon \mathbb{R}\times\mathbb{R}^q\to\mathbb{R}^q, \quad (a,\vec{x})\mapsto a\vec{x}.$

Discontinuous group $\Gamma \leadsto$ Continuous analog W.

(i)
$$\iff$$
 $\exists W \subset \mathfrak{p}$ subspace such that $W \pitchfork H_{\theta}$ in G_{θ} and $\underline{d(W)} + \underline{d(H_{\theta})} = \underline{d(G_{\theta})}$ $\implies \dim_{\mathbb{R}} W = q$.

^{*} T. Kobayashi, T. Yoshino, Pure and Appl. Math. Quarterly 1, (2005), 603–684.

Proof of Proposition 7 / +

Idea Use $\mathfrak{p} \simeq \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^{p+1}, \mathbb{R}^q)$ for $\mathfrak{g} = \mathfrak{o}(p+1,q) = \mathfrak{f} + \mathfrak{p}$.

Given a subspace $W \subset \mathfrak{p}$, one obtains a bilinear map $f_W \colon \mathbb{R}^{p+1} \times W \to \mathbb{R}^q$.

 $\mathfrak{a} \subset \mathfrak{p}$ maximally abelian subspace w.r.t. [,] in \mathfrak{g} .

$$H = O(p,q) \subset G = O(p+1,q) \quad (p \leq q)$$

$$\dim \mathfrak{a} = \operatorname{rank}_{\mathbb{R}} G = p+1 > \operatorname{rank}_{\mathbb{R}} H = p$$

$$\mu(H_{\theta}) = W_G \cdot \mathbb{R}^p \simeq \{X \in \mathfrak{a} : Xv = 0 \quad \exists v \in \mathbb{R}^{p+1}\} \subset \mathfrak{p}.$$

Then
$$W \cap H_{\theta}$$
 in $G_{\theta} \iff \mu(W) \cap \mu(H_{\theta}) = \{0\}$ in \mathfrak{a} .
 $\iff f_{W}(v, w) = 0$ only if $v = 0$ or $w = 0$.

After Hurwitz-Radon-Eckmann-Adams

Theorem 8 The following conditions on (p,q) are equivalent.

- (ii) \exists bilinear map $f: \mathbb{R}^{p+1} \times \mathbb{R}^q \to \mathbb{R}^q$ such that f(v, w) = 0 only if v = 0 or w = 0.
- (iii) \exists bilinear map $f: \mathbb{R}^{p+1} \times \mathbb{R}^q \to \mathbb{R}^q$ such that $||f(v,w)|| = ||v|| ||w|| \forall v \in \mathbb{R}^{p+1}, \forall w \in \mathbb{R}^q.$
- (iii) ⇒ (ii) Clear.
- (ii) $\stackrel{\text{Lemma}}{\Longrightarrow}$ There exist p vector fields on the sphere S^{q-1} which are linearly independent at every point.

$$\Longrightarrow_{\mathsf{Adams}^*} p < \rho(q)$$

^{*} J. F. Adams, Vector fields on spheres, Ann. Math., **75** (1962), 603–632.

^{**} J. Radon, Abn. math. Sem. Hamburg, 1 (1922); A. Hurwitz, Math. Ann., (1923).