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100 years ago - - -

150 years ago Klein’s Erlangen program (1872)

60 years ago Calabi-Markus (Ann Math 1962)

Any de Sitter manifold is non-compact.

100 years ago Radon—Hurwitz number (1922)



Radon—-Hurwitz number (1922)

One has the following formulee:

(@® + b*)(x* + %) = (ax — by)* + (ay + bx)*

(@ + )+ + 22 +w?) = (ay + b2)? + (ax + bw)? + (—aw + bx)? + (az — by)*

(a2 w0+ cl)(.vc2 + y2 + :2 + wz) = (ay+ bz + rw)2 + (ax +bw — C:)2 + (—aw + bx + cy)2 +(az— by + rx)2

However, no such formula for

@ +0)F+y +7) = (= + (=) + (=)

bilinear forms on {(a, b,c,---)} X {(x,y,z,w,- )}



Radon-Hurwitz number (1922)
(a2 + bz)()c2 + y2) =(ax — by)2 + (ay + bx)2

(@ + )P+ + 22+ wh) = (ay + b2)* + (ax + bw)? + (—aw + bx)? + (az — by)*

/[_ (a2 + b27/2/)(x2 + y2 +2 wz) = (ay+ bz + ('W)2 + (ax + bw — 01)2 + (—aw + bx + cy)z +(az—by + wc)2

bilinear forms on {(a, b, ¢, -+ )} X {(x,y,z,w,---)}

Question For which pairs (p, g) does there exist a
bilinear map f: RP*! x RY — RY such that
IVl = 1IF,wll - Yv e RPHE Yw e RY.

Example (p,q) = (1,2),(1,4),(2,4)

I Example p+ 1 =¢q€{1,2,4,8} corresponding to R, C, H, O. I

Observation (p,q) OK= (p’,q) OK "p' <p |




Radon-Hurwitz number (1922)

Definition We define the Radon—Hurwitz number p(q) defined by
olg) :=8a +2F if g = 2% x (odd integer).

Theorem 1 (Radon* (1922), Hurwitz* (1923))

The following two conditions on (p, g) are equivalent:

(i) There exists a bilinear map f: R?*! x RY — RY such that
IWllwll = IIf @, w)l v e RPHL Yiw e RY.

(i) p <p(q).

1 2 3 4 5 6 7 8 9 10

p N
0

0
q N 2N 4N 4N 8N 8N &N 8N 16N 32N 64N

J. Radon, Abh. math. Sem. Hamburg 1 (1922); A. Hurwitz, Math. Ann. (1923).
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Space forms in pseudo-Riemannian geometry (definition)

(M, g): pseudo-Riemannian manifold of signature (p, g),
geodesically complete

Def. (M, g) is a space form

< sectional curvature « is constant

J. A. Wolf, Spaces of Constant Gurvature, 6th ed. AMS, 2011



Space forms (examples)

Signature (p, q) of pseudo-Riemannian metric
Space form - - - g (p,q) of p
Curvature « € {+,0, -}

Example ¢ = 0 (Riemannian manifold)
sphere S R” hyperbolic sp
k>0 k=0 k<0

Example ¢ =1 (Lorentzian manifold)
de Sitter sp  Minkowski sp  anti-de Sitter sp
k>0 k=0 k<0

O (ntl, 0 o2
~on1) “Ben)




2-dim’l compact space forms

Riemannian case (& signature (2,0))

5, (g>2)
k<0

curvature k>0 k=0

Lorenzian case (< signature (1, 1))

_® _

curvature «>0 k=0 k<0
There do NOT exist compact forms if k > 0and « < 0




Local to global problem in pseudo-Riemannian geometry

Space form problem for pseudo-Riemannian manifolds

Local Assumption
signature (p, ¢), curvature « € {+,0, —}

Global Results
e Do compact forms exist?
e What groups can arise as their fundamental groups?




Formulation in group language
Suppose p # 1 for simplicity.

Uniformization theorem: Any pseudo-Riemannian manifold M
of signature (g, p) with x = —1 is of the form

Mo+ 1,9)/0(p, q)

where IT' is a discontinuous groue for O(p + 1,9)/O(p, g)-

I' is responsible for global properties:

e.g., #I' = oo, I' = m(Z), I' cocompact, etc.

Definition (discontinuous group for X) For a G-space X, we say
I is a discontinuous group for X
if " is a discrete subgroup of G and the I'-action on X is proper.




Global properties of Space forms « = —1, signature (g, p)

Theorem 2° LetG/H = O(p + 1,q)/O(p, q).

(1) (Calabi-Markus phenomenon) G/H admits
an infinite discontinuous group if and only if p < q.

(2) If G/H admits a cocompact discontinuo'ys group,
then either ¢ = 0 orp < g and ¢ is even.

(3) If (p, q) is in the table below, then G/H admits a cocompact
discontinuous group.

p N 1 3 7
qg O 8

0
N 2N 4N

Conjecture™ The converse of (3) holds.

*
Calabi-Markus (1962), Wolf (1962), Kulkarni (1981), Kobayashi (1996), Tholozan (2015), Morita (2017).

*
T. Kobayashi, Conjectures on reductive homogeneous spaces, arXiv:2204.08854.



Cohomological dimension cd(I')

Consider ZF Y R" affine action

Observation
(1) If Z* acts properly discontinuously on R”, then k < n.
(2) Furthermore, Z* acts cocomBactIx on R" if and only if k = n.

e What is k for Z¥? Use cohomology of abstract groups.
e What is n for R"? (next slide)

Definition (cohomological dimension)

For an abstract group I', we define

cdg(I™) := the projective dimension of R as the trivial R[I']-module
=sup{n e N: H'([';A) #0 for some left R[I']-module A}.

Example cdgp(Z¥) =k
cdp(m (Zg)) =2




Handy criterion for cocompactness

K : maximal compact subgroup of a connected reductive Lie group G.
G ~ K homotopy equivariant
d(G) :=dimG - dim K (“non-compactness dimension”).

Proposition™** Suppose I is a torsion-free discontinuous gp for G/H.
(1) cdr) < d(G) — d(H).
(2) The equality holds iff I' is cocompact (i.e. I'\G/H is compact).

Use Serre’s spectral sequence for

G/H=~K x R¥O-dH o  K/HNK
i HNK homotopic

ING/H

if H is reductive such that H N K is a maximal compact subgp in H.
* J. P. Serre, Cohomologie des groupes discrétes, Annals of Math. Studies, 1971;

Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).



Cohomological obstruction to cocompact discont gp

def /Y 7\
Recal H~H < HcSH'S and H c SHS L,

(? compact set S c G)

Theorem 3" (non-existence) If there exists H’ € G such that
H ~ H and d(H) < d(H"),
then G/H does not admit a cocompact discontinuous group I'.

Proof If such I' existed, then

I'hMH and I'h H because H ~ H',

cdr(D) = d(G) — d(H) > d(G) — d(H") 2 cdr(I),
which would be a contradiction.

Example™ (G,H) = (SL(3,C),SL(2,C))
Take H =SU(Q2,1). Then H ~ H and d(H') =4 > d(H) = 3.
= SL(3,C)/SL2,C) does not admit a cocompact discontinuous gp.

3 sk
T. Kobayashi, Duke Math. J., 1992; T. Kobayashi, Proc. ICM-1990 satellite (Kawaguchi Lake).



Nonexistence of Compact quotients for SL(n, F)/SL(m,F)

b A Labourie-Zimmer (Mat Res Let '95)

m O Benoist (Ann Math '96)

8 TV Y.Morita (2017, PhD), ©v &G

7 L Tholozan (preprint) e o A A @ @

st 0 ©rOOOO®
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41 ©EOOOR®®®®®

3 1 - ORI ®®®

2| PEPIIIIR®®®®

T K—(Proc/.‘ Lakel KaV\IlaguE:hi 'SI)O) O K%(Snl?(leom;tﬁngé\)ﬂath 2000)

1 2 3 4 5 6 7 8 9 10 11 12 13 n

X Zimmer (Jour. AMS '94)
A Labourie-Mozes—Zimmer (GAFA '95)

The figure is for F = C. Some results depend slightly on F = R, C or H.



Construction of cocompact discontinuous groups
Suppose that G D H are a pair of real reductive linear Lie groups.

Theorem 4* (existence)
If there exists a reductive subgroup L of G such that
diL) +dH)=d(G) & a.NnWag={0}
then both G/H and G/L admits cocompact discontinuous groups.

Example Z*¥ cRf “YRYR! if k+€=n.
Example
r cL "“G/H

Proof. Properness criterion (“Theorem 4” in 1st talk)
LhH < HMNL < a, N Wag = {0}.

wk

Take a cocompact lattice I in L, which exists by Borel’s theorem
Then I' is a cocompact discontinuous group for G/H.

*
Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989).

EE
A. Borel, Gompact Clifford—Klein forms of symmetric spaces, Topology 2 (1963).
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Cartan motion group G,

G :real reductive linear Lie group

0 : Cartan involution, g=f+p
K ={g € G:0g = g} maximal compact subgroup of G
G =Kexpp

Definition (Cartan motion group Gy)
Gyg:=Kwxp

(ky, X1) - (k2, X2) := (kiko, X1 + Ad(k1)X2)

a9 =T+ p with p abelian subalgebra.

cf. Mackey analogy for the unitary dual

6<—)69



Mackey analogy — from geometric viewpoints

G=Kexpp ~ Gyg=Kwxp (Cartan motion group)

Example Riemannian manifold with constant sectional curvature «

k<0 k=0 k>0
O > K
hyperbolic space H* R"  sphere "
I [ I
G/K G¢/K  Gyl/K

G = Isom(H")y = Kexpp =~ SOp(n, 1)
change g

Gy = Isom(R") = K= p = SO() = R”
change C

Gy = Isom(S™)y = Kexp(V—1p) =~ SO(n + 1)




“Tangential homogeneous space” G,/H,
Let H be a reductive subgroup of G.
Take a Cartan involution 8 such that 6H = H.

G Gy
reductive Liegp = Cartan motion gp

|G=Kexpp = Gy=Kxp

H=HnKexphNnp) = Hy=HNK)=OHNp) |

I G/H - GQ/HQ




Mackey analogy for Gy/Hy «— G/H

G real reductive ~w o Gpg=Kxp
U U

L H reductive subgps ~» Ly, Hy
(6-stable)

Proposition 5 (Mackey analogy)*
(1) 1K-equivariant diffeomorphism G/H =~ Gy/H.

(2))LNHInG & Ly N Hy in Gy.
(3) L~HInG — Ly~ Hyin Gy.
(4) (Calabi-Markus phenomenon)

No infinite discont gp for G/H <= No infinite discont gp for Gy/H,.
(5) LNG/H properly and cocomeactly — L.qu(;/H(; properly and cocompactly.

*
T. Kobayashi, T. Yoshino, Compact Clifford Klein forms of symmetric spaces — revisited, Pure and Appl. Math.

Quarterly 1, (2005), 603-684.



Compare G,/H, and G/H (space form conjecture)

Let G/H = O(p + 1,9)/O(p, q).
G/H is a (p + g)-dimensional space form with signature (g, p),

with sectional curvature k = —1

Conjecture* G/H admits a cocompact discontinuous group
if and only if (p, ¢) is in the following list.

»p N 0 1 3 7
g 0 N 2N 4N 8

“if” part is true (Theorem 2).

*
T. Kobayashi, Conjectures on reductive homogeneous spaces, arXiv:2204.08854.



Existence of cocompact discontinuous group for G,/ H,

G/H = O(p,q + 1)/O(p,q) ~ Go/Hy |

space form

Theorem 6*
There exists a cocompact discontinuous group for Gy/Hjy
« p < p(q) (Radon—Hurwitz number)

1 2 3 4 5 6 7 8 9 10

p N O
g 0 N 2N 4N 4N 8N 8N 8N 8N 16N 32N 64N

%
T. Kobayashi, T. Yoshino, Pure and Appl. Math. Quarterly 1, (2005), 603-684. Special Issue: In Memory of A. Borel.



Key lemma for Theorem 6

Let Gy/Hy be the “tangential homogeneous sp” of G/H =
O(p+ 1,9/0(p,q)

Proposition 7* The following conditions on (p, ¢) are equivalent.

(i) Gy/Hy admits a cocompact discontinuous group.

(i) 7 bilinear map f: RP*! x R? — R such that
fw,w)y=0onlyifv=0o0rw=0.

Trivial case p = 0. Hy = O(g) compact!
(i) holds by putting
f:RXR?—RY, (a,%) ak.

Discontinuous group I' ~» Continuous analog W.
() & W c p subspace such that
W h HyinGy and d(W)+ d(Hy) = d(Gy)
= dimgp W = g.

%
T. Kobayashi, T. Yoshino, Pure and Appl. Math. Quarterly 1, (2005), 603-684.



Proof of Proposition 7

ldea Use p ~ Homp(RP*1, RY) for g = o(p + 1,9) =  + p.

Given a subspace W c p, one obtains a bilinear map
fw: RPFL X W — RY.

ac p maximally abelian subspace w.r.t. [, ]ing.

H=0(p,q9)cG=0p+1,90 (p=<q
dima=rankpG=p+1>rankg H = p
WHy) =W -RP~{Xea:Xv=0 TveR}cyp

Then WM Hyin Gy = (W) N u(Hy) = {0} in a.
— fwl,w)=0onlyif v=0 or w=0.



After Hurwitz—Radon—-Eckmann—-Adams

Theorem 8 The following conditions on (p, g) are equivalent.
(i) 7 bilinear map f: RP*! x R? — R? such that
fw,w)y=0onlyifv=0o0rw=0.
(iii) 7 bilinear map f: RP*! x RY — RY such that
IF Wl = [Vl wll Vv € RPFL Yiw € RY.

(i) => (ii) Clear.
Lem

(ii) 0 There exist p vector fields on the sphere S9! which
are linearly independent at every point.

= p<pQ)

Adams *
= (iii)
Radon—Hurwitz ** (1922)

*
J. F. Adams, Vector fields on spheres, Ann. Math., 75 (1962), 603-632.

EE
J. Radon, Abn. math. Sem. Hamburg, 1 (1922); A. Hurwitz, Math. Ann., (1923).



