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ABSTRACT. Let X = G/H be a homogeneous space of a Lie group
G. When the isotropy subgroup H is non-compact, a discrete sub-
group I' may fail to act properly discontinuously on X. In this
article, we address the following question: in the setting where G
and H are reductive Lie groups and T'\ X is a standard quotient,
to what extent can one deform the discrete subgroup I' while pre-
serving the proper discontinuity of the action on X7

We provide several classification results, including conditions

under which local rigidity holds for compact standard quotients
I\ X, when a standard quotient can be deformed into a non-standard
quotient, a characterization of the largest Zariski-closure of dis-
continuous groups under small deformations, and conditions under
which Zariski-dense deformations occur.
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1. INTRODUCTION

Let X be a homogeneous space G/H, where G and H are real re-
ductive algebraic groups. In this article, we focus on the case where
the isotropy subgroup H is non-compact, and we consider the following
two problems:
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‘mainquestion‘ Problem 1.1. To what extent can we deform cocompact discontinuous
groups for the homogeneous space X ¢

‘mainquestion’ ‘ Problem 1.2. Does there exist a Zariski-dense subgroup 1" with coho-
mological dimension greater than 2 such that ' acts properly discontin-
uously on X ?

In this context, the term “discontinuous group for X" is used dis-
tinctively from “discrete subgroup of G”. In fact, even when I is a
discrete subgroup of G, the quotient space Xp := '\ X is not always
Hausdorff when H is non-compact. We say that a discrete subgroup I'
of a Lie group G is a discontinuous group for the homogeneous space
X if the I'-action on X is properly discontinuous and free. In this case,
X carries a unique C'*°-manifold structure such that the quotient map
X — Xt is a smooth covering of X, through which the quotient space
Xr inherits any local G-invariant geometric structure on X. The re-
sulting quotient manifold Xr is also referred to as a Clifford-Klein form
of X, which is a typical example o ggﬂ%(g}l—{r_l@ﬁi%llg%s in the sense of
Ehresmann and Thurston. See e.g., [44] Tor a defailed survey.

We now briefly explain our motivations for the aforementioned prob-
lems, the existing knowledge, and the contributions presented in this
article. The necessary notations and basic concepts will be reviewed in
Section B.

The classical Selberg-Weil local rigidity theorem asserts that the
compact quotient Xt of the irreducible Riemannian symmetric space
X = G/K, where' K is a co gplixggiss%?gggys%b glaglll%gt be continuously
deformed unless dim X = 2 ([0])- In confrast, a notable feature when
F WLis non-compact, observed by the second author in the early 1990s
ZBQﬁyFﬂﬁt cocompact discontinuous groups for pseudo-Riemannian
symmetric spaces exhibit greater “flexibility”. Specifically, there exist
arbitrarily high-dimensional compact quotients Xt of irreducible s%%rt—
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obayashi98
metric spaces X = G/H that do allow continuous deformation ([43]

Thms. A and B]). On the other hand, it has also been proven that there
exist compact quotients Xr with local ri 'g%t g&%udo—Riemannian
symmetric spaces of the form X = G/H E?ﬁ;}, Erop. 1.8]).

The difficulty regarding Problem I is that when H is not com-
pact, small deformations of a di;?%i%‘gne > Sutbaroup can easily destroy the
proper discontinuity. Goldman [I5] conjectured, in the context of the
3-dimensional compact anti-de Sitter space, that any small deformation
of any standard cocompact discontinuous group preserves the TopeL, . oo
discontinuity. This conjecture was g%vegls‘géls‘blw second author &?]é,&)w
?Xﬁggn(%}lrls%g&e PLODSLRES:; criterion [37 o the general setting, as shown
in [, 41]. He also demonstrated the existence of compact “standard”
quotients that allow “non-standard” deformation when X is locally iso-
morphic to the group manifold SO(n,1) and SU(n,1) for all n > 2,
which are regarded as symmetric spaces of the form (G x G)/diagG.
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Deformation in the context of a discontinuous group involves the study
of deformation spaces of the c ﬁesggndmg geometric structures mod-
elled on (G, X). See also Ghys T4 Tor geometric interpretations in the
case of SL(2,C). These results have been gxtended to the symmetric
space G/H = SO(2,2n)/U(1,n) by Kassel S]vah_ere she constructed
a small deformation into a Zariski-dense subgroup (Definition A8 in
Appendix @A) while preserving the proper discontinuity of the action
on G/H.

The deformation of the discrete subgroup described above has the
following properties:

(1) (standard quotient) it starts with a discrete subgroup whose
Zariski closure acts properly on X = G/H, or more precisely,
}grsrseesBp%ds t% 6standard” discontinuous group in the sense
?Y, Det. T:4[, see Definition 74,

(2) (deformatlon as a discontinuous group) the deformation of the

discrete subgroup preserves its proper discontinuity;
(3) (non-standard deformation) after the deformation, the Zariski-
closure of the new discrete subgroup no longer acts properly

on X.

Keeping the assumption that a cocompact discontinuous group is
standard, we examine Problem [T in the general setting where G/H is
a homogeneous space of reductive type, i.e., where G O H are real re-
ductive algebraic groups. We begin by providing a rigorous formulation
in Question 23, which includes conditions for when local rigidity holds,
when non-standard deformations are possible, and when Zariski-dense
deformations occur.

We provide answers to these questions by dividing them into the
following cases of compact standard quotients, denoted symbolically as
I'\G/H and I',\G /'y, which are modeled on the homogeneous space
G/H and the group manifold (G x G)/ diag G, respectively. In the first
case, '\G/H, we provide answers to Question 3 in Table EZ3 for a
classification, where G is a simple Lie group (Theorem P9). In the
second case, I',\G/I"g, the answer is given in Theorem 221.

We observe from our classification that, in roughly half of the cases
of I'\G/H, local rigidity holds, while in the case I'/\G /'y, more de-
formable cocompact discontinuous groups exist. We also observe that
in the case I',\G/I'y with G simple, there are no Zariski-dense de-
formations. In contrast, in the I'\G/H case with G simple, we show
that when deformation to a non-standard form is possible, the same
homogeneous space G/ H also admits a cocompact discontinuous group
that can be deformed into a Zariski-dense subgroup. Such homo-
geneous spaces G/H incluﬁ(gst indefinite-Kéhler symmetric space
G/H = 50(2,2n)/U(1,n) ([?4]) and the following 7-dimensional space
form, with pseudo-Riemannian metric of signature (4,3) and constant
sectional curvature —1:
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_compact_space_form‘ Theorem 1.3 (Answer to (Q3) in Table 23). There exists a standard
cocompact discontinuous group for SO(4,4)/SO(3,4) that admits a
small deformation which is Zariski-dense in SO(4,4).

So far, we have outlined our results for the case of cocompact discon-
tinuous groups in Problem 1. Now, in Problem 2, we investigate the
possibility of Zariski-dense deformations. Keeping in mind that such
deformations in GG are more likely to occur for discrete groups with
lower cohomological dimension, we allow discontinuous groups that are
not necessarily cocompact for X in addressing Problem 2.

As one of numerical invariants for an abstract group I', we recall the
projective dimension of the group ring R[I'] is called the cohomological
dimension of I', denoted as cdg(I"). Free groups and surface groups (the
fundamental groups of closed hyperbolic surfaces) have cohomological
dimensions of 1 and 2, respectively.

The general upper bound on the cohomological dimension of a sub-
group ' acting properly ?1%conthnlégusly on a homogeneous space X =
G/H was established in 5] as the inequality

Lneq:cd-upper-bound| (1.1) cdg(T) < d(X),

where we define the “non-compact dimension” of X by

(1.2) d(X) == d(G) — d(H),

and define d(G) for the group G to be the dimension of the Riemannian
symmetric space G/ K. The homogeneous space X is diffeomorphic to a
vector bundle over a compact manifold with fiber R4). %u%hg;g in
(D) holds if and only if the I'-action on X is cocompact ( ?‘%m

We have already discussed Problem 2 in the case where Xt is com-
pact as a part of Problems 1. This is the case where the equality
cdg(T") = d(X) holds.

In contrast, for cases where the cohomological dimension is lower,
some solutions to Problem I3 are already known (see also Section b3
for some open questions):

ist96
e (cdg(I') = 1) when I is isomorphic to a free group, see Benoist +F o

e (cdg(I') = 2) when I is isomorphic to a sugface }g&{ﬁé’f};do@{H
is a symmetric space, see a recent paperu}f(/él]

This article highlights Problem I3 in the setting where
2 <cdg(l') < d(X).

by considering deformations of a discrete subgroup that is isomorphic
to a cocompact discrete subgroup I' of Spin(n, 1), in particular, where
cdg(I") = n. Our answers to Problem I include the following exam-
ples, see Theorem h™ZR: there exist Zariski-dense discontinuous groups
with cohomological dimension 6 in the cases where d(X) =7, 8, or 16
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such as
SO(8,C)/SO(7,C) d(X)=7 (complex sphere),
Y SO(8,8)/S0(7,8) d(X)=8 (space form),
) SU(8,8)/U(7,8) d(X) =16 (indefinite Kéhler),
SL(16,R)/SL(15,R) d(X) = 16.

In proving the aforementioned results, particularly Theorems 29,
221, and b28, we focus on a special case of the following problem
regarding deformations of cocompact discrete subgroups of Spin(n,1).

lic-lattice-deform| Problem 1.4. Let G be a real algebraic group, I' a torsion-free cocom-
pact discrete subgroup of Spin(n, 1), and ¢: I' = G a group homomor-
phism. Find a small deformation ¢’ € Hom(I', G) of ¢ that mazimizes
the Zariski-closure of ¢'(T).

The reader may wonder why Problem T4 and Theorem @ below
are formulated in terms of Spin(n,1) rather than SO(n,1), despite
the technical difficulties involved. The main reasons for this choice are
summarized in the following remark.

¢mehipropgrsacspen| Remark 1.5. (1) (Proper actions). Some homogeneous spaces X,
such as the 15-dimensional space form SO(8,8)/S0O(7,8) men-
tioned above, admit a proper action by reductive subgroups
only if they are globally isomorphic to Spin(n,1). In particu-
lar, SO(n, 1) cannot act properly on such space X, as stated
in Theorem b=23
(2) (Direct implications). The deformation theory of discrete sub-
groups of Spin(n,1) will imply similar results for quotient
groups such as SO(n, 1), but not vice versa, as discussed below.
ift-counterexample ‘ (3) (Counterexample to the lifting for n > 4). We consider whether
the following claim (P,) holds:
(P,). Any torsion-free cocompact discrete subgroup of SOqy(n, 1)
can be lifted to Spin(n,1).
o (P,) and (Ps) holds (Culler—Shalen [l and Th rston 071 poric
e (P,) fails when n > 4 (Martelli-Riolo-Slavich [b:3])-

fﬁ%ﬁer—ShalenSB hurston-3fold

Since a torsion-free cocompact discrete subgroup of Spin(2,1) is a
surface group, Problem 4 for the case n = 2 already presents non-
trivial challenges, as it asks for the largest Zariski-closure of a surface
subgroup in G among its small defomations. This probHEumrg%§§olgzeleﬁ1ienhar 410

studie ﬁiﬂ%ﬁgws work, such as Burger—Iozzi-Wienhard [¥] and Kim—

Pansu [34], for example.

For general n > 2, and particularly when n > 3, we explore Prob-
lem 4 in the special case where the deformation starts from a stan-
dard quotient Xr. To be more explicit, we consider the setting where
¢: I' = G can be extended to a homomorphism Spin(n,1) — G, that
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is, a homomorphism of real algebraic groups. (There are several equiv-
alent definitions for homomorphisms between real algebraic groups, as
discussed in Lemma A™7 in Appendix [Al)

In this case, we introduce a real algebraic subgroup of GG, denoted
by G¥ (Definition B7), and obtain the following theorem.

1trotheorem:bending‘ Theorem 1.6 (see Theorem BY). Let n > 2, G a Zariski-connected
real algebraic group, and ¢: Spin(n,1) — G a homomorphism.

am:realization—gphi‘ (1) There ezists a cocompact arithmetic subgroup I' of Spin(n, 1)
such that o(T") can be deformed so that its Zariski-closure is
G¥.

:roitem:upper—bound‘ (2) Conversely, the group G¥ gives the upper bound for the Zariski-

closure of ¢'(I'), up to G-conjugacy, for any small deformation
" of ¢|r, provided that n > 3.

We provide a description of the largest Zariski-closure G¥ purely in
terms of finite-dimensional representations of orthogonal Lie algebras.
We then carry out explicit computations of G¥ in certain cases, includ-
ing those that arise naturally from the spin representations associated
with indefinite quadratic forms. See Theorem BT for a sufficient con-
dition for G¥ to coincide with G, for instance.

The geometric idea behind our proof of TheF JG 1) in Section @
is largel.y parallel tq that of J g}gn%qqil\/hllson 211 E;QSV geometric Ap-
proach is also used in Kassel [24] and Beyrer-Kassel [4].

However, these results highlight the case where ¢ is a natural em-
bedding from SO(n, 1) into a classical Lie group G such as SO(p, q)
or PSL(n+ 1,R) (see also Remark BR). In contrast, Theorem B ad-
dresses the situation where ¢: Spin(n,1) — G is a homomorphism to
an arbitrary real algebraic group G, thus working in full generality.

This requires considerable prep (aﬂgilﬁt% for the proof, not only in ex-
tending the bending construction [21] for SO(n,1) to Spin(n, 1), but
also in providing a detailed framework, within the context of Clifford
algebras, for iterating the appropriate bending constructions to reach
the largest Zariski-closure.

In Sections BP-H, we have discussed the geometric questions of the
quotient space Xr, including the Zariski-dense deformation addressed
in Theorems 29 and 2221 Now, turning our attention to the analytic
aspects, in Section B, we address analytic problems relate g%sle;]%lgggngashi 16 KasselKobayashi:
for the quotient space Xp. This is a new area of research |29, B0, 3T,

392, 45|, with a list &Qébg%slis %%%n%cc)lall%ns and related topics discussed
in a recent article [44[.

We observe that the quotient space Xr inherits any G-invariant dif-
fere;ntial operators from X , spch as .the psgudo—Riemanr‘lia%{a%galﬁmggg%shi 16
which are referred to as intrinsic differential operators in [29]. In con-
trast to the classical Riemannian setting, it is noteworthy that, when
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H is non-compact, there may be discrete spectra for such intrinsic dif-
ferential operators, some of which are stable under deformations of X,
while others are not.

In Section B, we highlight the analytic aspects of this study from the
perspective of deformations of discontinuous groups for X = G/H with
H non-compact. We briefly review the current state of the art regarding
the stable discrete spectrum and its multiplicities, and pose several
problems concerning the distribution of the stable discrete spectrum
and its multiplicities.

At the end of this article, for the convenience of a broader audience,
several technical details and concepts that may not be immediately
obvious to the reader are collected in Appendices BHE, on the following
topics:

e Appendix @A Basic concepts regarding real algebraic groups,
particularly topologies;

e Appendix B: Basic notations for Clifford algebras and spin
groups over a field of characteristic # 2;

e Appendix @: A sufficient condition for arithmetic groups to be
torsion-free;

e Appendix O: Describing the fundamental group of a manifold
endowed with a hypersurface in terms of an HNN extension;

e Appendix H: An upper bound for small deformations of discrete
subgroups in terms of the first cohomology;

e Appendix E: An optimal bound on the number of generators
for a continuous family of Zariski-dense subgroups.

Notation and Conventions.

e N={0,1,2,...},and N, ={1,2,...}.

e For a unital associative algebra A, we denote by A* the group
of invertible elements in A.

e We denote by idg the identity map on a set S.

e We denote by #1 the number of elements in a finite set 1.

e We assume that algebraic groups are linear.

e For an algebraic group G over a field F, and for an extension
field E of F, G(E) denotes the group of E-points of G. When
E =R or C, we write G = G(R) and G¢ = G(C).

e The Lie algebras of Lie groups G, H, L,... are denoted by
the corresponding lower-case German letters g, b, [, ..., respec-
tively.

e For a Lie group homomorphism ¢: L. — G, we denote by
dy: | — g the differential homomorphism of .
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2. DEFORMATION OF LOCALLY HOMOGENEOUS SPACES

In this section, we discuss Problem I, which addresses the extent
to which we can deform cocompact discontinuous groups for homoge-
neous spaces. To this end, we first review basic terminologies related
to the deformation of discontinuous groups for homogeneous spaces
in Section 0. We then proceed to provide a rigorous formulation in
Question 24 in Section 222, which includes conditions for when local
rigidity holds, when non-standard deformations are possible, and when
Zariski-dense deformations occur.

We will provide answers to this question by dividing it into the fol-
lowing cases of compact standard quotients, denoted symbolically as
I'"\G/H and I'/\G/I'y, where G is a simple Lie group.

In the first case, I'\G/H, which is modeled on the homogeneous
space G/H, we provide answers to Question 233 in Table 23 for a
classification (Theorem 279). In the second case, I'/\G/T'y, which is
modeled on the group manifold (G' x G)/diag G, the answer is given
in Theorem P21

We observe from our classification that, in roughly half of the cases
of I'\G/H, local rigidity holds, while in the case I'/\G /'y, more de-
formable cocompact discontinuous groups exist. We also observe that
in the case I'L\G/I"y, there are no Zariski-dense deformations, whereas
in the I'\G/H case, some spaces of G/H admit Zariski-dense deforma-
tions of cocompact discontinuous groups.

The proof of the main results of this section, Theorems 229 and 2Z21,
will be given in Sections b2 and b, respectively.

2.1. Deformation space R(I',G; X). As mentioned in Introduction,
not every discrete subgroup I' of a Lie group G acts properly discontin-
uously on the homogeneous space X = G/H when H is non-compact.
Moreover, a small deformation of a discrete subgroup I' in G may de-
stroy the proper discontinuity of the action on X. In light of these
considerations, we provide a precise definition and notation here to
formalize Problems [Tl and 2 in the next section (see Question P3).

First, we set aside the space X, and consider the classical setting in
which the I'-action on X = G/H is not relevant.

Let T be a finitely-generated discrete subgroup of a Lie group G.
By deformation, we mean fixing an abstract group I' and varying the
homomorphisms from I' into the group G. We set:

R(I',G) :={p € Hom(I', G) | ¢ is faithful and discrete}

We topologize Hom(T', G) by pointwise convergence and equip the sub-
space R(I', G) by the relative topology.

. oldman-millson87 . .
Remark 2.1 (Goldman-Millson Tlh', Thm. I.I]). When G is a linear

group, R(I',G) is a closed subset of Hom(I', G) for any torsion-free
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group I' that can be realized as a Zariski-dense subgroup of a real
semisimple algebraic group.

The group G acts on itself through inner autom phisms, that is,
the subset R(I',G) invariant. We recall from Weil [[ZI] The following
definition:

Definition 2.2. A discrete and faithful representation ¢ € R(I', G) is
locally rigid if the G-orbit of ¢ is open in R(I', G).

Next, we return to the main theme of this article: the deformation of
discontinuous groups for homogeneous spaces X = G/H. To formulate
this properly, it is important to note that when H is non-compact, a
discrete subgroup of G does not necessarily act properly discontinu-
ously on G/H obayashi93 [Kobayashi98 . . .

We recall from %(39] (see also [43]) the definition of the following subset
of R(I', G):

R, G; X) :={p e R(I', G) | p(I) is a discontinuous group for G/H },

which plays a basic role in the deformation theory of discontinuous
groups for X.

There are two natural actions: those of the automorphism group
Aut(I") and the inner automorphism group of G on Hom(I', G). These
actions commute with each other and both leave the subset R(I', G; X)
Invariant. obayashi-unlimit

We recall further from [44;, Sect. 5.3] the definitions of M(I", G; X)
and T (I", G; X) as follows:

M, G; X) = Auwt(D)\R(T',G; X)/G.

In the case where G acts faithfully on X, we can think of M(I', G; X) as
the moduli space of quotients of X by discontinuous groups isomorphic
to I'. Geometrically, this means that, for @1,y € R(I',G; X), the
locally homogeneous spaces ¢ (I')\X and ¢(I")\ X are isomorphic to
each other if and only if [p1] = [p2] in M(I',G;X). The “higher-
dimensional Teichmiiller space”, which represents the local properties
of the “moduli space”, is defined as follows.

TG, X):=R(I,G; X)/G.

" C e . . obayashi98
Definition 2.3. (local rigidity as discontinuous groups, &(7{3, ect.

We say that ¢ € R(I',G; X) is locally rigid as a discontinuous group
for X or that (I')\X is locally rigid, if the G-orbit of ¢ is open in
R(I', G; X); equivalently, [¢] is an isolated point in T (I, G; X).

If this is not the case, we say that ¢ € R(I', G; X) is deformable as
a discontinuous group for X, or that ¢(I')\ X is deformable.

In the group case where X = G/{e}, we have R(I',G; X) = R([', G),
and ¢ € R(I',G) is locally rigid if and only if it is locally rigid as a
discontinuous group for X = G/{e}. We summarize in Section Bl
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some known results regarding local rigidity of discrete subgroups of G,
without considering their actions on X = G/H. In Section B, we
discuss the difference between the concepts of local rigidity as discrete
groups and local rigidity as discontinuous groups.

formulate-question ‘

2.2. Question about deformations of standard cocompact dis-
continuous groups. In this section, we provide a rigorous formulation
of Problem [ concerning deformations of standard cocompact discon-
tinuous groups for homogeneous spaces G/ H of reductive type. This
is one of the central questions addressed in this article, and it includes
conditions for when local rigidity holds (Q1), when non-standard defor-
mations are possible (Q2), and when Zariski-dense deformations occur
(Q3).

The basic setup involves standard quotients X, which we now recall.

.. _gasselKobavashil6
def :standard| Definition 2.4. (29, Def. T.4]). Let X = G/H be a homogencous

space of reductive type. A discontinuous group I' for X is called stan-
dard if there exists a closed reductive subgroup L of G which contains
I and acts properly on X.

We address the following question:

question:deform—ck‘ Question 2.5. Let L C G D H be a triple of real reductive algebraic
groups such that

}H_cocompact_proper| (2.1) L acts properly and cocompactly on X = G/H.

Classify the triples (G, H, L) for which L admits a (torsion-free), co-
compact discrete subgroup 1 satisfying each of the following proper-
ties: (Q1), (Q2), or (Q3), where the conditions become progressively
stronger, when H is non-compact.

(Q1). T is deformable, i.e., it is not locally rigid as a discontinuous
group for X (Definition [223);

(Q2). T can be deformed into a non-standard discontinuous group for
X;

(Q3). T can be deformed into a Zariski-dense discrete subgroup of G
(Definition (A8 in Appendiz [A), while preserving the proper
discontinuity of the action on X.

Clearly, the difference in the compact factors of the subgroups H does
not affect the answer to Question ZZ3. We will provide the classification
in Theorem P79 for Question P73, based on the list of triples (G, H, L)
satisfying (E-1), as presented in Tables B and P72, see Notation E8.
If a triple (G, H, L) satisfies the condition (), that is, if L acts
properly and Cocompactly on X = G/H, then the dogble cos'et r H\ﬁ a/s I; L1Kobayashii6
becomes a compact manifold, referred to as an exotic quotient in [29];
for any discrete subgroups I'y and I';, that have no torsion of H and
L, respectively. (The term ezotic quotient is also used to mean some-
thing different in other literature.) This quotient manifold I'y\G/T'L,
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is a special case of the standard quotient of the group manifold G, con-
sidered as the symmetric space (G x G)/ diag G. We will examine the
deformation of these (exotic) quotients 'y \G/I';, and provide the clas-
sification results in Theorem P21, which answer Question 223, based
on the same list of triples (G, H, L).

2.3. List of triples (G, H,L) with proper and cocompact ac-
tions. In this section, we provide a list of the triples of reductive Lie
groups (G, H, L) for which Question P23 will be considered. The ba-
sic assumption is that the triple (G, H, L) satisfies the condition (21),
equivalently, one of the following equivalent conditions is satisfied:

(i) L acts properly and cocompactly on G/H,
(ii) H acts properly and cocompactly on G/L;
(iii) H x L acts properly and cocompactly on (G x G)/diagG.

These conditions are obviously satisfied if G is compact. Furthermore,
these conditions are unchanged under taking a finite covering or re-
placing the connected component of the groups. The following list,
Tables P11 and 222, exhibits such triples when G is a simple Lie group
and when both H and L are non-compact. There are no new results
in this section, but we provide a few comments.

A criterion for a triple (G, H, L) of reductive Lie gr ps. to,eugure

. ) obayashi
that L acts properly on X = G/H was established in [37, Thm. 4, .
. . o ) Obayashi89
in the late 1980s, along with a criterion for cocompactness in [B7,

]%m. 4h7,1r Thegg criteria are computable. Table 21 is taken from

\obayashiYoshino . . R .

AU[, by the second author and Yoshino, and lists irreducible symmet-
ric spaces G/H that admit proper ar}d 8%858?@&;1%%%%%2 tl:)% nredqctive
subgroups L. A recent work by Tojo [68] asserfs that this list is ex-
haustive, as mentioned in Remark 228 below.

We have listed the triples (G, H, L) satisfying the condition (EZI) in
Table 20 where G/ H is a symmetric space and G is simple. Since the
condition () is symmetric with respect to H and L, additional triples
can be obtained by switching H and L. The following table is derived
in this way, with cases where both G/H and G /L are symmetric spaces
omitted.

The numbering i (1 < < 12) of Case i’ in Table 22 corresponds to
the numbering of Case ¢ in Table P, with H and L switched.

Regarding the subgroup L, there are several possible choices. While
we will see eventually that the answers to Question 23 remain unaf-
fected by these choices, we introduce some notation for clarity.

.ion:compact-factor| Notation 2.6. e Let L, be as given in Tables -1 or 272.

o Let L,,q: be the identity component of the normalizer of L
in (G in the sense of Definition [A-G.

e For a subgroup L satisfying L., C L C L.z, we denote by L.
the compact factor of L.
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Case G/H L Loz
1 SU(2n,2)/Sp(n, 1) SU(2n,1) U(2n,1)
2 SU(2n,2)/U(2n,1) Sp(n, 1) —

3 SO(2n,2)/U(n,1) SO(2n,1) —

4 SO(2n,2)/S0(2n, 1) SU(n,1) U(n,1)

5 S0O(4n,4)/SO(4n, 3) Sp(n,1) | Sp(n,1) x Sp(1)
G SO(8,8)/SO(8,7) Spin(8, 1) =

7 150(4,4)/(SO(4,1) x SO(3)) | Spin(4,3) —

8 SO(8,C)/SO(7,C) Spin(7,1) —

9 SO(8,C)/S0O(7,1) Spin(7,C) —

10 SO*(8)/U(3,1) Spin(6,1) —

11 | SO*(8)/(S0O*(6) x SO*(2)) | Spin(6,1) —

12 1 S0O(4,3)/(SO(4,1) x SO(2)) Ga2) —

TABLE 2.1. Symmetric spaces G/H with G simple that
admit a proper and cocompact action by a reductive sub-
:kobayashi-yoshino group L of G with Ly C L C Liaq-

Case G/H L, Loox
1" | SU(2n,2)/SU(2n,1) | Sp(n,1)
4 | SO(2n,2)/SU(n, SO(2n,1) —
5 | SO(4n,4)/Sp(n,1 3

6" | SO(8,8)/Spin(s, 3,7 =
7 | SO4,4)/Spin(4,3) | SO(4,1) | SO, 1) x SO(3)
8 | SO(8,C)/Spin(7,1) | SO(7,C) -
9" | SO(8,C)/Spin(7,C) | SO -

) )
107 SO*(8)/Spin(6, 1) ) U(3,1)
11 SO*(8)/Spin(6,1) SO*(6) | SO*(6) x SO*(2)
127 S0(4,3)/ G SO(4,1) | SO(4,1) x SO(2)
TABLE 2.2. Non-symmetric spaces G/H with G simple
that admit a proper and cocompact action by a reductive
\yashi-yoshino-dual subgroup L of G with Lys C L C Lyae-

Remark 2.7. (1) We have included n = 1 in Cases 3 and 4 in
Table 1 and in Case 4’ in Table P2, although G is not a
simple Lie group.

(2) The table includes triples that are locally isomorphic in the
case of low dimensions; however, we have not excluded overlaps
in the table. See Remark P18 for such examples.

_kobayashi_yoshino | Remarkw&lﬁag%%%m%%ﬂpégd 22 Cowae&gsmgse%%a&a% presented I o0 yobayashi1997discor

Kulkarni [b1] a L fhe seeendl, ?c%cel%or 30T

37,838, B2]. In particular Lases ko
and 5 are from [bl], and Cases 1, 1’, 2, 3, 4’, and 5" are from [34[.
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It is plausible that Tables 271 and 272 list all the homogeneous spaces
G/H with G simple, H non-compact and reductive, that admit a proper
and cocompact action by a reductive subgroup L.

Based on the Fnﬁmgﬁ,@ al%og%éﬁcag%ntof irreducible symmetric
spaces by Berger [B], To JO \[hN] proved that irreducible symmetric spaces
G /H that admit a reductive subgroup L satisfying the properness and
cocompactness condition (Z) are either listed in Table 71, Riemann-
ian symmetric spaces G/K, or group manifolds (F henglgl(ilra%§2 4

A more recent preprint of Bochenski-Tralle [6] shows, under the
assumption that G is absolutely simple, that Tables 21 and 22 contain
all the homogeneous spaces of the form G/H with H non-compact and
reductive that admit a proper and cocompact action by a reductive
subgroup L. We note that our list also includes the cases, such as
Cases 8 and 9, where GG is a complex simple Lie group.

2.4. Answers to Question 2Z28: Classification of the triples (G, H, L).
In this section, we provide classification results, as stated in Theo-
rem 79, for (Q1), (Q2), and (Q3) of Question PZ5. This is based on
the list of triples (G, H, L) that satisfy (21), as presented in Tables 21
and 272

cal-nonstd-zariski| Theorem 2.9. Let (G, H, L) be one of the triples in Tables 21 and 23,
where Lgs C L C Lypas. Then, the answer to (Q1), (Q2), and (Q3) in
Question 23 is provided in Table 3.

to_compact_factors ‘ Remark 2.10. (1) Theorem P9 includes the claim that the choice
of L, where Ly, C L C Liyyq., does not affect the answer to any
of (Q1), (Q2), or (Q3) in Question ZA.

(2) Theorem P9 remain unchanged if we replace (G, H, L) with
locally isomorphic triples (Definition Z12), as can be seen from
the proof and Remark 2Z—13.

section:answer \

Theorem 29 will be proved in Section b2, using Theorem B9 from
Section B.

The triples (G, H, L) listed in Table 223 appear in either Table E711 or
Table 2. The interpretation of Theorem 29 is illustrated using Case
1 as an example:

Example 2.11. In the first row of the table, Case 1 shows that for
the symmetric space G/H = SU(2n,2)/Sp(n,1) and L = SU(2n,1),
(Q1) is “yes”, (Q2) is “no” (and thus (Q3) is also “no”). This means
that there exists a torsion-free cocompact discrete subgroup I' of L such
that I" is deformable as a discontinuous group for G/H (Q1). However,
[’ cannot be deformed into a non-standard discontinuous group (Q2),
and, in particular, it cannot be deformed into a Zariski-dense subgroup
while preserving the proper discontinuity of the action on G/H (Q3).

Regarding th cgnce&t o%gézabl 1so&n&)rrplllgnjs_lcfctrlg:g1 es, we adopt the

definition from 4h], Wmcn allows tor 1nd1v1dual apphca‘mons of inner




r_isomorphic_triple‘

al_isomorphic_trip ‘

;e—up—to—local—isom‘

)-local-isom—nonstd‘
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automorphisms at the infinitesimal level. This definition fits well with
(Q1)—(Q3) of Question 21 and is given as follows.

.. obayashi_2022_bounded_multiplicty_theorems
Definition 2.12 (|46, Def. 7.1]). The triples L1 C G; O H; and Ly C

G5 D H, are said to be locally isomorphic if there exists an isomor-
phism g; =~ go between the Lie algebras of the Lie groups G; and Gs,
such that under this isomorphism, b, is conjugate to ho by an inner au-
tomorphism, and [; is conjugate to I, by another inner automorphism.

we say that the homogeneous spaces G1/H; and Go/Hy are locally
isomorphic if the triples {e} C G D H; and {e} C Gy D H, are locally
isomorphic.

Remark 2.13. In Definition T2, we do not require the existence of
a morphism between G; and G. However, if there is another triple
L C G D H with the following properties:

(1) all the three triples of linear Lie groups are locally isomorphic;
(2) there exists a morphism ¢;: G — G, for each j =1,2;
(3) T is a discrete subgroup of L, and T'; = 1;(T),

then we have the following easy consequences:

(1) the following three conditions are equivalent:
(i) the I'j-action on X; = G;/H; is properly discontinuous
(respectively, cocompact),
(ii) the I's-action on Xy = Go/H, is properly discontinuous
(respectively, cocompact),
(iii) the T-action on X = G//H is properly discontinuous (re-
spectively, cocompact);
(2) if T is deformable as a discontinuous group for X, then T is
deformable as a discontinuous group for X, (j = 1,2).

Remark 2.14. For Cases 1’, 2, and 5, there is an isomorphism of Lie
groups L, Sp(1,1) ~ Spin(4,1). As can be seen in the proof, it is this
isomorphism that causes the differences in the answers to Question 223
(for each of Cases 17, 2, and 5).

As a direct consequence of Theorem 279, we obtain the following list
of homogeneous spaces G/H that have the property that (Q2) holds
(and (Q3) holds as well). Since this property is unaffected by replacing
H with a connected cocompact subgroup, the following classification
result in (iii) is stated with this consideration in mind.

Theorem 2.15. Let (G, H, L) be one of the triples in Tables 22 and 23,
or let H be replaced by a connected cocompact subgroup of H. Then the
following are equivalent:

(1) ((Q2) in Question 23 for G/H ) There ezists a torsion-free, co-
compact discrete subgroup I' of L such that the quotient '\G/H
can be deformed into a non-standard quotient.
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Case G/H L Q1| Q2|Q3
1 SU(2n,2)/Sp(n, 1) SU(2n,1) |yes | no | no
1’-1 | SU(2n,2)/SU((2n,1) (n>2)| Sp(n,1) | no | no | no
1-2 SU(2,2)/SU(2,1) Spin(4,1) | yes | yes | yes
2-1 | SU(2n,2)/U(2n,1) (n>2) | Sp(n,1) | no | no | no
2-2 SU(2,2)/U(2,1) Spin(4,1) | yes | yes | yes
3 SO(2n,2)/U(n, 1) SO(2n,1) |yes | yes | yes
4-1 | S0(2n,2)/SO(2n,1) (n>2)| SU(n,1) |yes| no | no
4-2 S0(2,2)/50(2,1) SU(1,1) |yes |yes|yes
4 SO(2n,2)/SU(n, 1) SO(2n,1) | yes | yes | yes
5-1 | SO(4n,4)/SO(4n,3) (n >2) | Sp(n,1) | no | no | no
5-2 S0O(4,4)/50(4,3) Spin(4,1) | yes | yes | yes
5 SO(4n,4)/Sp(n, 1) SO(4n,3) | no | no | no
6 SO(8,8)/SO(8,7) Spin(8,1) | no | no | no
6’ SO(8,8)/Spin(8,1) SO(8,7) | no | no | no
7 150(4,4)/(SO(4,1) x SO(3)) | Spin(4,3) | no | no | no
7 SO(4,4)/Spin(4,3) SO(4,1) |yes |yes |yes
8 SO(8,C)/S0O(7,C) Spin(7,1) | no | no | no
8’ SO(8,C)/Spin(7,1) SO(7,C) | no | no | no
9 SO(8,C)/SO(7,1) Spin(7,C) | no | no | no
9 SO(8,C)/Spin(7,C) SO(7,1) | no | no | no
10 SO*(8)/U(3,1) Spin(6,1) | yes | yes | yes
10° SO*(8)/Spin(6,1) SU(3,1) |yes| no | no
11 | SO*(8)/(SO*(6) x SO*(2)) | Spin(6,1) | yes | yes | yes
Ik SO*(8)/Spin(6,1) SO*(6) | no | no | no
12 [ S0(4,3)/(S0O(4,1) x SO(2)) G2 no | no | no
12’ S0(4,3)/ G SO(4,1) |yes|yes |yes

TABLE 2.3. Complete answers to Question 23 for the
triples (G, H, L) with non-compact semisimple factors
tab:cpt_CK_Sym‘ LSS ln Tables Q:]] and E:Z

isom-zariski-dense ‘ (i1) ((Q3)in Question 2 for G/ H ) There exists a torsion-free, co-
compact discrete subgroup I of L such that I' can be deformed
into a Zariski-dense subgroup in G, keeping the proper discon-
tinuity of the action on G/H.
;e—up—to—local—isom‘ (111) (Classification). G/H is one of the following homogeneous
spaces, modulo compact factors of the subgroup H :

e SU(2,2)/U(2,1);

e 50(2,2n)/U(1,n) (n > 2);

e 50(4,4)/50(4,3);

e SO*(8)/U(3,1);

e SO*(8)/(SO*(6) x SO*(2));

e SU(2,2)/SU(2,1);

e SO(2,2n)/SU(1,n) (n >2);




em:isom_GH_low_dim ‘

eqn:S1_bundle|
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e SO(4,4)/Spin(4,3);
3)

L 50(4, /Gg(g);
e 507(8)/5U(3,1);
o SO*(8)/SO*(6).

Contrary to the equivalence (i) < (ii) in Theorem P13 for I'N\G/H,
such an equivalence does not hold for the exotic quotients I'y\G/T'z,
as stated in Theorem 2721 (2).

. assell2 .
Remark 2.16. Kassel proved in &(27 [ that the answer to (Q3) is affir-
mative when G/H = SO(2,2n)/U(1,n). To clarify the relationship
between this space and the other homogeneous spaces in the list in
Theorem PZTH [iii), we introduce the following symbols: --+, =, and
=,
(i) G'/H' =~ G/H: two homogeneous spaces G'/H' and G/H are
locally isomorphic to each other;
(ii) G/H' N G/H: a G-equivariant S* fiber bundle when H is a
subgroup of H' such that H'/H is isomorphic to S*;
(iii) G'/H" --» G/H: an injective homomorphism ¢: G’ — G in-
duces the diffeomorphism G’/H’ onto G/H.

1
Obviously, the relation = does not affect the answer to (Q3). A
typical example of this relation is:

2.9) SO(2,2n)/SU(L,n) 25 SO2,2n)/U(1,n).

—~

1
Using the binary relation symbols --+, ~, and S—), the homogeneous
spaces of lower dimensions in the list in Theorem 2T3 can be
grouped into two categories, which are connected to (22) as follows:

(1) (n=2in (Z2))

SU(2,2)/SU(1,2) 25 SU(2,2)/U(1,2)
2 2

SO(2,4)/SU1,2) =5 S0(2,4)/U(1,2)

SO(4, 3)/G2(2)
SO(4,4)/Spin(4,3)

2
SO(4,4)/S0(4,3)



trivial_for_diffeo \
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?) (n=3n (@)

S0(2,6)/SU(1,3) 25 S0O(2,6)/U(1,3)
Q Q

SO*(8)/50*(6) g, SO*(8)/(SO*(6) x SO*(2))
Q Q

SO*(8)/SU(1,3) SO*(8)/U(1,3)

To be precise, we recall that Gy = Aut(Q') (where O’ is the 8-

dimensional nonassociative algebra of split-octonions) has a maximal
compact subgroup (Sp(1) x Sp(1))/ diag{=%1}.

Second, We examine whether the binary relation = affects the answer
to (Q3).

As a typical example of the relation G'/H' ~ G/H, we consider the
case where ¢: G' — G is a covering map. In this case, given a torsion-
free cocompact discrete subgroup I' of (G, it may happen that there
does not exist a torsion-free discrete subgroup I'" of G’ such that I' =
('), as discussed in Remark [ for ¢: Spin(n,1) — SOy(n,1)
with n > 4. Thus, the relation ~ may, a priori, affect the answer to
(Q3). This is why we formulate the deformation theory in Spin(n, 1)
in Section B, rather than SO(n,1). From this formulation, we get the
conclusion that our results remain unaffected by the binary relation ~.

Third, regarding the relation G'/H' --» G/H, where the dimension
of G is larger than that of G, the answers to (Q1)—(Q3) generally differ
between the two (see Remark 217 below). However, somewhat surpris-
ingly, it does not affect the results concerning the series of homogeneous
spaces discussed above.

Remark 2.17. Consider the relation G'/H' --+ G/H in Remark 218,
which is given by a group homomorphism ¢: G' — G that induces a
diffeomorphism

G'/H = G/H
between the two homogeneous spaces G'/H' and G/H. For a discrete
subgroup I of G, we set

(2.3) I'=y(), L:=y(L)
Regarding (Q1)—(Q3) in Question ZH, we may compare the I'-action

on G/ H' with the I'-action on G/H. Since the bijection G'/H' = G /H
is a homeomorphism, any topological properties like proper disconti-
nuity or cocompactness are the same for G'/H' and G/H, and some of
obvious relationships follow: for instance, the existence of a cocompact
discontinuous group for G'/H’ implies that there exists a cocompact
discontinuous group for G/H. However, there are delicate differences

regarding deformations as follows:
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On (Q1) Even if I' is locally rigid as a discontinuous group for G'/H’,
it is possible that I' = ¢ (I") is deformable as a discontinuous
group for G/H.

On (Q2) Even if IV cannot be deformed into a non-standard discontinu-
ous group for G'/H’, it is possible that I' = ¥ (I") is deformed
into a non-standard discontinuous group for G/H.

On (Q3) Even if I" is deformable into a Zariski-dense discrete sub-
group of G’ preserving the proper discontinuity of the action
on G'/H’, T is not necessarily deformable into a Zariski-dense
discrete subgroup of G.

2.5. Group manifold case. In contrast to the Selberg—Weil rigid-
ity theorem for the Riemannian symmetric space G/K, an irreducible
pseudo-Riemannian symmetric space may admit a cocompact discon-
tinuous group that is not locally rigid, eyen in higher dimensions. This
was first observed in the early 90s (seejFI;Q or the group manifold G,
viewed as a homogeneous space (G x )/ diag G. The classification for
such simple Lie groups G is obtained by the second author as follows:

b hig8
Fact 2.18 (%(ﬂ?i,a Fhim, Al). Let G be a non-compact linear semisimple
Lie group. Then the following three conditions on G are equivalent:

(i) the Lie algebra g of G is isomorphic to either so(n, 1) orsu(n,1);

(i) (affirmative answer to (Q1) in Question Z2) there exists a
cocompact discrete subgroup I' of G such that I' x {1} is not
locally rigid as a discontinuous group for (G x G)/ diag G;

(i) (affirmative answer to (Q2) in Question [ZZ) there exists a co-
compact discrete subgroup I' of G such that the compact man-
ifold T\G admits a non-standard deformation of the quotient
of (G x G)/diagG (~ G).

The implication (i) = (iii) in Fac‘k;oQEal;ng in the case where g =

annons

50(2,1) ~ su(1,1), is due to Goldman [[Ia].

)

A natural extension of this problem is to strengthen the “non-standard

deformation” in (iii) of Fact P18 and ask (Q3): Is it possible to deform
it into a Zariski-dense discrete subgroup while preserving the proper
discontinuity of the action on the group manifold (G x G)/ diag G? The
answer is affirmative for g = so(n, 1), as follows.

Theorem 2.19. For any Zariski-connected real algebraic group G with
Lie algebra so(n, 1), there ezist a torsion-free, cocompact discrete sub-
group I' of G and a small deformation I of T" x {e} such that T’
is Zariski-dense in the direct product group G X G, while preserving

the proper discontinuity of the action on the group manifold (G X
G)/diag G.

Theorem PZT9 is more or less well-known to experts, at least for
G = 50(n, 1) or its quotient groups. Nevertheless, we provide a proof
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for G = Spin(n, 1) in Section 63, as an immediate application of The-
orem b9

Remark 2.20. In the case where G is a linear Lie group locally iso-
morphic to SU(n, 1) with n > 3, the authors are unsure whether the
implication (i) = (iii) in Fact ZI8 can be strengthened, as in Theo-
rem 219 for g = so(n, 1). ?ﬁ) oyer, the answer is affirmative when

ozan’_
n = 2, as noted in Tholozan [b6, Sect. 2.3. zj

Theorem 2.21. Let (G, H, L) be a triple of reductive groups in Ta-
ble [Z_3.

(1) The following three conditions on the triple (G, H, L) are equiv-
alent:

(i) ((Q1) in QuestionZA for G/H ). Up to switching H and L
if necessary, there exists a torsion-free, cocompact discrete
subgroup I' of L such that I' is deformable as a discontin-
uous group for G/H.

(17) ((Q1) in Question 23 for (G x G)/diagG). There ezist
torsion-free, cocompact discrete subgroups 'y and 'y, of H
and L, respectively, such that the discrete subgroup 'y X
'y, is deformable as a discontinuous group for the group
manifold (G x G)/ diag G

(13i) (Classification) Up to switching H and L, and up to com-
pact factors, the triple (G, H, L) does not belong to one of
the following lists:

o (Case 5, n>2) (SO(4n,4),S0(4n,3), Sp(n,1));
e (Case 6) (SO(8,8),S0(8,7),Spin(8,1)),
e (Case 8) (SO(8,C),SO(7,C), Spin(7,1));
e (Case 9) (SO(8,C),SO(7,1), Spin(7,C)).
(2) The following three conditions on the triple (G, H L)
alent:

(1) ((Q2) in QuestionZA for G/H ). Up to switching H and L
if necessary, there exists a torsion-free, cocompact discrete
subgroup I' of L such that T' can be deformed into a non-
standard, cocompact, disconitnuous group for G/H.

(17) ((Q2) in Question 2 for (G x G)/diagG). There ex-
1st torsion-free, cocompact discrete subgroups I'y and 'y,
of H and L, respectively, such that the discrete subgroup
'y xT'p can be deformed into a non-standard, cocompact,
discontinuous group for (G x G)/diag G.

(13i) (Classification). Up to switching H and L and up to com-
pact factors, the triple (G, H, L) belongs to one of the fol-
lowing lists:

e (Cases1and2,n=1)(SU(2,2),5p(1,1),SU(2,1)),
e (Cases 3 and 4) (SO(2n,2),SO(2n, ) SU(n,1));
o (Case 5, n=1) (SO(4,4),50(4,3), Spin(4,1));

are equiv-
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e (Case 7) (SO(4,4),S
e (Case 10) (SO*(8),S
e (Case 11) (SO*(8),S

o (Case 12) (SO(4,3), SO( ),Gg )

(3) ((Q3) in Question ZA for (G )/diag G). Assume G is
simple. Then there does not exist a cocompact, direct product
discrete subgroup 'y x I'p, in H x L, which can be deformed
into a Zariski-dense subgroup of G x G while keeping the proper
discontinuity of the action on (G x G)/diagG for any triple
(G,H, L) in Table 2Z3.

As stated in Remark IO for Theorem P29, Theorem P21 also in-
cludes the claim that the choice of H and L, where H,;, C H C H,,,,
and Ly, C L C L., respectively, does not affect the answer to any
of (Q1), (Q2), or (Q3) in Question PH, and that the answer remains
unchanged if we replace (G, H, L) with locally isomorphic triples (Def-
inition 2712).

Theorem 22211 will be proved in Section b4.

In the last statement of Theorem 221, we assumed that G is
simple. An analogous statement fails when G is not simple, as observed
in the following proposition, where G = SO(2,2) in Cases 3 and 4 with
n=1.

= O

Proposition 2.22. The siz-dimensional group manifold G = SO(2,2)
has an exotic compact quotient of the form T';\G /Ty, where both Ty
and 'y are torsion-free, Zariski-dense discrete subgroups of G.

This proposition will be proven also in Section b.

3. DEFORMATION OF DISCRETE SUBGROUPS

Let I' be a discrete subgroup of G. In this section, in order to study
the deformation of I' as a discontinuous group for a G-manifold X, we
will momentarily set aside the space X and focus on the deformation
of I within GG. To put it succinctly, the focus will be solely on the pair
(I, G) rather than the triplet (I', G, X), which simplifies the argument.

In Section BT, we recall results related to the local rigidity of repre-
sentations of discrete grou 1 Such as Raghunathan’s vanishing theorem
and a theorem of Klinglerﬂ%&i .

Owing to these local rigidity theorems, to examine the extent to
which the standard quotient can be deformed (Problems [ and [3),
it suffices to focus on the case where I is a cocompact discrete subgroup
of Spin(n,1). This will be the topic of the latter part of this section.

In Section B2, we will consider a general setup where G is a Zariski-
connected real algebraic group and ¢: Spin(n,1) — G is a homomor-
phism, and introduce a real algebraic subgroup G¥ (Definition B77).
We prove in Theorem B 3], for any cocompact discrete subgroup I'
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of Spin(n,1) and any small deformation ¢’ of ¢|r in G, that ¢/(I) is
contained in G¥ up to G-conjugacy. This upper bound is optimal: we
shall prove in Theorem 39 that there exist I' and ¢’ such that the
Zariski-closure of ¢'(I') coincides with G¥.

In Section B33, we will discuss in more detail the special cases where
n = 2 or ¢ is a spin representation. In the case where n = 2, we ex-
plain how Theorem B connects the Zariski-closure of deformations of
specific surface group representations to the combinatorics of nilpotent
orbits in complex reductive Lie algebras. In the case where ¢ is a spin
representation, we compute G¥ in terms of the Clifford algebra associ-
ated with the indefinite quadratic form of signature (p, ¢) and provide
sufficient conditions on the triple (p, ¢, n) for the classical group G(p, q)
to admit a Zariski-dense subgroup as a deformation of a cocompact dis-
crete subgroup of Spin(n, 1) (see Theorem BIR). For notation related
to G(p, q) and Clifford algebras, see Appendix B.

\mma.) —locally—rigid‘

3.1. Local rigidity theorems after Weil, Matsushima—Murakami,
Raghunathan, Goldman—Millson, and Klingler. A finitely-generated
discrete subgroup I' of G is locally rigid if it is infinitesimally rigid, that
is, the first cohomology H'(T', g) vanishes (Weil [Z] i B

We begin with the classical vanishing theor.eliﬁastfsoursﬁhe ﬁﬁ%‘% glgalllnqr_rg%l—

ogy, notably those by Matsushima—Murakami [bi] anc%mt?égnunatnan:

fact:raghunathan‘ Fact 3.1 (Raghunathan %ﬁﬁ%@]ﬁge a non-compact, simple Lie group,
7 be an irreducible finite-dimensional representation of L on a real vec-
tor space V', and I' be a cocompact discrete subgroup without torsion.
If HY(T, V) # 0, then one of the following holds:
(1) The Lie algebra | is isomorphic to so(n,1) withn > 3, and V
contains a non-zero so(n — 1, 1)-invariant vector.
(2) The Lie algebra | is isomorphic to su(n,1) with n > 1, and
(m, V) is isomorphic to the symmetric tensor of the standard
representation or its dual.

3pherical_harmonics‘ Remark 3.2. (1) For an irreducible representation 7 of so(n, 1)
on a finite-dimensional real vector space V', the following two
conditions are equivalent:

(i) V contains a non-zero so(n — 1, 1)-invariant vector;

(ii) V contains a non-zero so(n)-invariant vector.
For n > 2, the complexification of such a representation 7 can
be realized in the space of spherical harmonics of degree k,

defined by
{feC™(S") | Agnf=—k(k+n—1)f},

where Agn is the Laplacian of the unit sphere S™. We refer to
7 as the spherical harmonics representation of degree k.

(2) There is an isomorphism s0(2, 1) ~ su(1, 1) of Lie algebras. For
this Lie algebra, we refer to the second statement for su(1,1).
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Thanks to Fact B, a cocompact discrete subgroup of L can po-
tentially be deformed within a larger Lie group G only if it is locally
isomorphic to SO(n, 1) or SU(n,1).
Infinitesimal rigidity is a necessary condition for local rigidity, onfdman-millsonSS
not sufficient. For complex hyperbolic lattices, Goldman—Millson [I7]
discovered a striking example where local rigidity holds and infinites-
imal rigidity fails. Tﬁgﬁn@f@ﬁlgﬂe has been further generalized by a
theorem of Klingler ( ISSTng 1.3.7]), whose special cases we recall
here:

lingleril
fact :klingler‘ Fact 3.3 (Klingler fﬁ,n Thm, 1.3.8]). LetT" be a cocompact discrete sub-

group of SU(n,1), and ¢: SU(n,1) — SU(p,q) (p > n,q > 1) be the
standard embedding, Then any morphism ¢’ suffiently close to o|r is
conjugate to a representation of the form @-x, where x: I' — SU(p, q) is

a deformation of the trivial representation in the centralizer of SU(n, 1)
in SU(p, q).

remark:klingler‘ Remark 3.4. The above results hold for locally isomorphic groups.
That is, let ¢: L — G be a Lie group homomorphism, and I' be a
cocompact discrete subgroup of L. Suppose the differentials of ¢ and
¢ (from the theorem above) agree. In this case, any homomorphism
sufficiently close to ¢|r maps into ¢(L) - Zg(L) up to conjugation by
G, where Z;(L) denotes the centralizer of ¢(L) in G.

In fact, the proof of Fact B33 is based on the obstruction of the
integrability of inﬁ%lgiglsnia%l_anllﬁl?g%%?tion, which can be traced back to
Goldman-Millson [[I7]: the conclusion of Fact holds if

luct_of_first_cohom| (3.1)  for any c € HY (T, g) ~ H'(T',3,(1), [c,c] # 0 in H*(T,g),

and this statement holds under the same assumption at the Lie algebra
level.

We will use Fact B3 along with Remark B4 in the proof (Step 4) of
Theorem 29 in Section b=2.

In the sequel, we discuss cocompact discrete subgroup in a group
which is locally isomorphic to SO(n,1).

‘Gamma) -deform-spin

3.2. Deformation of cocompact discrete subgroups of Spin(n, 1).
Let G be a Zariski-connected real algebraic group, G the Lie group of
real points G(R), and ¢: Spin(n,1) — G a homomorphism (n > 2) in
the sense of Lemma [A7. For basic notions of algebraic groups, we refer
to Appendix @Al In this section, we discuss to what extent the cocom-
pact discrete subgroup I' of Spin(n, 1) can be deformed in G through

@.

zfinitionzlie—g—phi‘ Definition 3.5 (Lie algebra g#). We regard the Lie algebra g of G as
a spin(n,1)-module via ¢. Let g? denote the Lie subalgebra of g,
generated by dp(spin(n, 1)) and all the spin(n, 1)-submodules that are
isomorphic to irreducible spherical harmonics modules of spin(n, 1) (see
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Remark B2). In other words, g is the smallest Lie subalgebra of g that
contains

(32) de(spin(n, 1)) + 34(dep(spin(n — 1,1))),

where 34(dp(spin(n — 1,1))) denotes the centralizer of dp(spin(n—1,1))
in g.

We define a Zariski-connected real algebraic group G¥ corresponding
to the Lie algebra g¥ (we refer to Definition A in Appendix [Al for the
definition of Zariski-connectedness of real algebraic groups). For this
purpose, we use the following lemma, the proof of which will be given
in Section A

ma:g-phi-algebraic ‘ Lemma 3.6. Let G¢ be the complex Lie group of complez points G(C),
and G{ the analytic subgroup of G¢ corresponding to g ®@r C. Then
G?¢ is a Zariski-closed subset defined over R.

Since G¢ is connected in the usual topology, it is also connected in
the Zariski-topology.

Definition 3.7 (Real algebraic group G¥). Let G¥ be the Zariski-connected
real algebraic group whose set of C-points is the Zariski-closed subset

G? given in Lemma B®. Furthermore, define G¥ := G¥(R).
Remark 3.8. If (7 is reductive, then G¥ is also reductive.

Here is the main result of this section.

theorem:bending‘ Theorem 3.9. Let G be a Zariski-connected real algebraic group, and
: Spin(n,1) — G a homomorphism, where n > 2.

anding-realize-Gphi‘ (1) There exist a torsion-free cocompact discrete subgroup I' of
Spin(n,1) and a small deformation ¢" of ¢|r in Hom(I', G)
such that the Zariski-closure of @' (I') coincides with G¥, where
G¥ is the real algebraic group, as given in Definition B1.

screte-and-faithful | (2) If G is reductive and if ¢: Spin(n,1) — G is non-trivial, then
we can choose ¢' € Hom(T', G) as in[(T) such that ¢ is discrete
and faithful.

1al-zariski-closure | (3) Assume n > 3. For any torsion-free cocompact discrete sub-

group T' of Spin(n, 1), there exists a neighborhood U of |- in
Hom([', G) such that ¢'(I') C G¥ up to G-conjugacy for any
Y el.

Remark 3.10. Analogous results to Theorem B hold as well if we
replace Spin(n, 1) with SO(n,1). The results are likewise new even in
that context, and can be directly deduced from Theorem B9 via the
double covering map Spin(n,1) — SOy(n,1).

In general, we have

dip(spin(n, 1)) + 5q(dip(spin(n, 1)) C g7 C g.
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As special cases of Theorem B, corresponding to the minimal case
g% = dy (spin(n, 1) + 34(de(spin(n, 1)))) and the maximal case g¥ = g,
we obtain Corollary BT and Corollary B3, respectively.

We begin with the particular case where g¥ is minimal.

Corollary 3.11. Let G be a Zariski-connected real algebraic group and
let n > 3. Suppose that @: Spin(n,1) — G is a non-trivial homomor-
phism. Then the following two conditions are equivalent:

(1) 3g(dip(spin(n, 1))) = 3¢(de(spin(n — 1,1))).

(i1) For any cocompact discrete subgroup I' of Spin(n,1), any mor-
phism ¢': T' — G sufficiently close to ¢|r is conjugate to a
representation of the form p-x, where x: I' = G is a deforma-
tion of the trivial representation with tmage in the centralizer

of p(Spin(n,1)) in G.

Remark 3.12. Suppose that p: L = G is 3 homomorphism. In the
case where L = SU(n, 1), Klingler %{%_gfh_l 3.7] established a suffi-
cient condition under Wthh every torsion-free cocompact discrete sub-
group I' C L admits no nontrivial deformations beyond the centralizer
of L. In contrast, Corollary B-TT considers the analogous problem for
L = Spin(n,1), and provides a necessary and sufficient condition for-
mulated in terms of finite-dimensional representations of Lie algebras.

Proof of Corollary @11. By Theorem B (3), it suffices to show that
the condition (i) is equivalent to g¥ = dy(spin(n, 1))+5g(dg0(5pm(n 1)),
but this is clear from the alternative definition of g¥, as stated in Re-
mark BA. U

By contrast, the following is an immediate consequence of Theo-
rem 39 in the particular case where g¥ is maximal.

Corollary 3.13. Let G be a Zariski-connected real algebraic group. If
there exists a non-trivial homomorphism ¢: Spin(n,1) — G such that
g¥ = g, then G contains a Zariski-dense discrete subgroup which is
isomorphic to a cocompact discrete subgroup of Spin(n,1).

We end this section with the proof of Theorem B [2] and [3]. The
proof of [1) is differed to Section H.

Proof of Theorem BA[(2). If v: Spin(n,1) — G is non-trivial, then
©|r is discrete. Since I' is torsion-free, ¢|r is faithful. Therefore, the
claim that a small deformation of @|r preserves faithfulness and dis-
creteness is a special case of the stability of discontinuous groups, as

will be explained in Section BEl. (We can apply Fact b6 by Kassel to
X =G/{e}.) O

Remark 3.14. The proof of the stability of the discontinuous group
for homogeneous spaces X = G/H of reducti TQS%P%G using a
quantitative estimate, may be traced back to 4% 6] by the
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second author, In the above proof of [2] with H = {e}, one can apply

Guichard [20; Thm. 2| if G is semisimple.

Proof of Theorem B [(3). We apply a general result concerning an up-
per bound for the local deformation of discrete subgroups, which will
be presented in Proposition EZ2 in Appendix [H.

Let n > 3, and we consider the spin(n,1)-module g/g¥. By the
definition of g¥, this module does not contain any spherical harmonics
representation as an irreducible component. Furthermore, since n > 3,
the Lie group Spin(n, 1) is not locally isomorphic to SU(m, 1) for any
m € N,. Then, it follows from Raghunathan’s vanishing theorem
(Fact B) that H'(T', g/g¥) = 0. By applying Proposition E2 to L =
G¥, we obtain the desired conclusion. Il

Remark 3.15. The assumption n > 3 in Theorem B9 1S neces-
sary and cannot be dropped for this upper bound result. In fact, an
analogous statement fails when n = 2. For instance, let G = SL(3,R),
and let L = SL(2,R) be the standard subgroup. Since Spin(2,1) is
isomorphic to SL(2,R), we may consider the embedding

w: Spin(2,1) ~ SL(2,R) — SL(3,R).

. . IMPAN15 . . .
Applying Kim—Pansu %(34, [hm. 1] to this setting, one sees that a dis-

crete surface subgroup of SL(2,R) of genus > 128 can be deformed
into a Zariski-dense subgroup of SL(3,R). On the other hand, G¥ is
given by

G¥ = S(GL(2,R) x GL(1,R)),

which is a proper subgroup of G.

3.3. Examples of Theorem B. In this section, we illustrate Theo-
rem B9 with some simple examples.

Theorem B, applied to the deformation of discontinuous groups for
X = G/H, will be discussed in Theorem B9, which is used in the
proof of the main theorems in Section B for the compact standard quo-
tients X1 as well as in the deformation theory of non-compact standard
quotients Xt in Section BA.

We begin with the case n = 2. Th?orﬁéglm%aéﬁlu Jelﬁeo]%ﬂz 2 case
and Corollary BT4 were recently proved in [24], where it 1S noted that
Spin(2,1) is isomorphic to SL(2,R).

Let G be a Zariski-connected real reductive algebraic group and
¢: SL(2,R) — G a homomorphism. We define

0¥ = ¢<( 01 _01>) = eXp(ﬂ\/—_ldgo(<(1) _01))) €eG.
. KannakaOkudaTojo24 . . .
Then it follows from |24, Lem. 3.3] that g¥ is the centralizer of 0¥ in g
and that G¥ is the identity component of the centralizer of ¢¥ in GG in
the Zariski-topology.
The following equivalence makes the condition G = G¥ transparent:
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inition-lemma:even| Definition-Lemma 3.16. Let G be a Zariski-connected real reductive
algebraic group and ¢: SL(2,R) — G a homomorphism. The following
four conditions on a homomorphism ¢: SL(2,R) — G are equivalent:

item:grp-g-phi (i) G¥ = G,
item:alg-g-phi (i) g* = g;
1potent-orbit-even (iii) The complex nilpotent orbit in g¢ := g ®g C given by

tu(oc) - a¢(() )

is even in the sense that the weights in the weighted Dy o3
diagram associated to this nilpotent orbit are even, see [IU,
Chap. 3.8|, for example;

item:s12-even]| (iv) We regard g as an SL(2,R)-module via Adop. Then, every
irreducible component of g has an odd dimension, or equiva-
lently, its highest weight is even.

We say that the homomorphism ¢ is even if it satisfies one of these
equivalent conditions.

Proof. [1)<fii): The implication [T1) = [ii) is clear. Conversely, assume
g¥ = g. The complex algebraic group G¢ is Zariski-connected and,
by Lemma AT also connected in the usual topology. Now, recall
from Definition B74 that the analytic subgroup of G¢ corresponding to
g¥ ®r C is G¢. Thus, we conclude that Gc = GE. By taking real points
of these two algebraic groups, it follows that G = G¥.

[if}<fiv): For any irreducible representation (7, V') of SL(2,R), the

element
-1 0
T(( 0 —1)>

acts trivially on V' if and only if V has odd dimension. The equivalence
& follows immediately from this fact.

@@m: This is an elementary representation theory of s[(2,R),
see [T, Lem. 3.8.7|, for instance. O

As a corollary to Theorem B9 applied to the n = 2 case, we

obtain the following:

annakaOkudaTojo24 o
Corollary 3.17 (&(24, Cor. 1.7]). Let G be a Zariski-connected real re-

ductive algebraic group and ¢: SL(2,R) — G an even homomorphism.
Then there exists a discrete surface subgroup I' of SL(2,R) such that
o(I") can be deformed into a Zariski-dense subgroup of G.

Next, we consider the case where ¢ is the spin representation of
Spin(n, 1) for general n. As an example of Theorem B9 [T}, we present
classical groups that contain a Zariski-dense discrete subgroup isomor-
phic to a cocompact discrete subgroup of Spin(n, 1).

To be more precise, let C(p,q) be the Clifford algebra associated
with a real quadratic form of signature (p, ¢), and let G be the group
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lobayashiYoshino0Q5
G(p, q), introduced in [bU, Det. 4.3.1].” We refer to Appendix B for the

notation of G(p,q), and to Proposition B2 for the identifications of
G(p, q) with classical groups that exhibit certain periodicities of p + ¢
and p — q.

When p > n and ¢ > 1, there exists a natural injective homomor-
phism ¢: Spin(n,1) — G(p, q).

thm:Clifford-z.d| Theorem 3.18. Letp >n>2 and g > 1. We set m = p+q. Assume
that one of the following conditions holds:

_ifford—z.d—general‘ (1) Whenm =i mod 4 (wherei =1,2,3,4), it holds that m—n >
1+ 2.
)rd—z.d—exceptional‘ (2) m < 10 and n < 6.

Then, there exist a torsion-free, cocompact discrete subgroup I' of Spin(n, 1)
and a small deformation ¢’ € R(I',G(p,q)) of the map p|r: ' —
G(p, q) such that the Zariski-closure of ¢'(I') coincides with the identity
component of the group G(p,q) in the Zariski-topology.

Owing to Theorem B [T}, the proof of Theorem BTS reduces to the
following proposition on the finite-dimensional representation theory of
Lie algebras.

prop:Clifford—z.d‘ Proposition 3.19. In the setting of Theorem BI8, we have g¥ = g.

Before entering the proof, let us provide some examples of Theo-
rem B8 in the special case n = 2.

cample:Clifford-z.d| Example 3.20. Let us consider the following inclusion maps:

1ifford-z.d:0(4,4) (1) Spin(4,1) — G(4,3) ~ (4 4);
fford-z.d:0~{*}(8) (2) Spin(6,1) — G(6,1) ~ O*(8);
(3) Spin(6.1) = G(7,1) = O(8,C);
(4) Spin(6,1) — G(7,2) ~ O*(16),
(5) Spin(6,1) — G(7,3) ~ GL(8, H);
(6) Spin(6,1) — G(8,1) =~ O(8,8);
(7) Spin(6,1) — G(8,2) =~ U(8,8);
(8) Spin(6,1) — G(8,3) ~ Sp(8,8);
(9) Spin(6,1) — G(9,1) ~ GL(16,R);
(10) Spin(6,1) — G(10,1) =~ Sp(16,R):
(11) Spin(6,1) — G(11,1) ~ Sp(16,C).

Then, we have g¥ = g. In particular, there exists a cocompact discrete
subgroup T' of Spin(6, 1) that can be deformed into a Zariski-dense sub-
group of the identity component of these classical groups in the Zariski-

topology.
Proof of Example @Z0. The fact that each G(p, q) is isomorphic to the
classical groups described above follows from Proposition B=2. O

To prove Proposition B9, let us introduce some notation and lem-
mas. Let C(p,q) denote the Clifford algebra associated with the stan-
dard quadratic form 23 +- - +22 —27, | — x2, . Let {er, ... epq}
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n:g(p,q)-structure |

1a:g(p,q)-generator ‘
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be the standard basis of RPT?. We define the basis of C(p,q) by {es},
where

er=¢e; e, €C(p,q),
for I = {iy,...,ix} with 1 < iy < -+ < ip < p+¢. In the following
lemma, we regard C'(p, q) as a Lie algebra over R with the Lie bracket
defined by [z,y] = zy — yz.

Lemma 3.21. Given two subsets I,J C {1,...,p+q}, where #I and
#J are even, we have ler,e;] # 0 if and only if #(I N J) is odd.

Furthermore, ler,e;] is a scalar multiple of erny, where INT = (I ~
J)U (J N\ I) denotes the symmetric difference.

Proof. For each j € J,
-1 (jel
ejer = eje; X {1 (j )’

Hence, we have

ejey — (—1)#(Imj) ereyg.
Thus, the assertions follow immediately. Il
For each k = 0,...,m = p+q, we write AF for the R-vector subspace

of C(p, q) spanned by the elements e; for all subsets I C {1,...,p+¢q}
with #1 = k.

With this notation, the module structure of the Lie algebras g(p, q)
and spin(p, q) is given as follows

(3.3) op.g) = €P A" and spin(p,q) = 1%,

0<k<m
k=2 mod 4

see Lemma BT in Appendix B. Furthermore, each k, the subspace AF is
an spin(p, ¢)-submodule of g(p, ¢) and is isomorphic to the k-th exterior
tensor representation AFV, where V is the standard representation of
spin(p, q).

Lemma 3.22. Let ¢ be an even number. If min(¢,m — ) > 3, then
the Lie algebra g(p, q) is generated by spin(p,q) and N°.

Proof. The key step in the proof is to show the following claim: AS C
[AY, AY if min(¢, m — £) > 3. To prove this claim, let I’ be an arbitrary
subset of {1,...,m} with 6 elements. Since min(¢{,m — ¢) > 3 by
assumption, we can find subsets I,J C {1,...,m}, each containing ¢
elements such that IAJ = I'. Since ¢ is even, #(I N J) is odd, and
consequently, by Lemma BT, we have ey € [Af, Af]. This completes
the proof of the claim.
A similar argument shows that for an even number k, we have

AP C NS A if k<m—4,
AP C A8 AR if k> 4.
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By (B33), our assertion follows inductively. O

Let V = RP? and W = R™! be the standard representations of
spin(p,q) and spin(n, 1), respectively. Then we have the following
branching law of the spin(p, ¢)-module V' when restricted to spin(n, 1)
via @:

VoW 169(m—(n+1))7
where 1 denotes the trivial representation and m = p + q.

spherical_harmonics| Lemma 3.23. Suppose m >n+ 12> 3.

‘lcontained-in-spin (1) If m—n > € or if { > n, then A contains a non-zero spherical
harmonics representation of spin(n,1).
;(p,q)-contain-spin‘ (2) g% D spin(p,q).

Proof. [I}: The assertion is clear if £ = 0 or m. Suppose that 1 < ¢ <
m — 1. We have the following decomposition as spin(n, 1)-modules:

l
all_V_decomposition| (3.4) Af ~ @/\kW ® AR(Cm (D),
k=0

where spin(n, 1) acts on AFW as the k-th exterior power of the stan-
dard representation W, and trivially on /\e_k(Cm_(”“)). Therefore, A
contains a non-zero spherical harmonics if W @ AL(Cm=(+1)) £ 0,
which occurs if m —n > /4.

Furthermore, we have AKV ~ A™=kV for all 0 < k < m as spin(p, q)-
modules when m > 3. Hence, the same conclusion holds if m —n >
m — £, i.e., if £ > n. Thus, the first statement is proved.

[2): The ¢ = 2 case in (BH4) gives an isomorphism of spin(n, 1)-modules:

3_2_V_decomposition| (3.5) AV ~ A2 @ Welm=(n+1) o 1@(7%(2”“)).

As we have seen in (B33), the Lie algebra g = g(p, ¢) contains A2 = A2V
as a Lie subalgebra, isomorphic to spin(p,q). Furthermore, the first
component A?W in (B3) corresponds to the Lie subalgebra dp(spin(n, 1)),
while all other irreducible components are spherical harmonics repre-
sentations of spin(n,1). Thus, by Definition B, we conclude that

g% D spin(p, q). O

Before proving Proposition B19 and [2], we state a general prin-
ciple used in the proof. Since g¥ is a Lie algebra, it is also a spin(p, q)-
submodule of g = g(p,q) by Lemma B=3. Thus, to show that an
irreducible spin(p, ¢)-submodule U of g is contained in g¥, it suffices to
verify that g? N U # 0.

We are ready to show Proposition BT9.

Proof of Proposition @19. [1): First, we consider the case where m >
10 and m # 12. In this case, the spin(p, ¢)-module A™~ 27" is irreducible
because m —2 —i > m/2 and i € {1,2,3,4}. Moreover, since m = i
mod 4, it follows from (B33) that A™~27" C g = g(p, q). Since m—2—i >
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n by the assumption of [T], g# N A™ 2% # 0 by Lemma B3 [T). By
the principle above, it follows that g¥ D A™ 27%. Furthermore, since
m > 10, we have min(m — 2 —i,i+2) > 3, it follows from Lemma B=22
that g¥ = g(p, q).

Next, we consider the case m = 12. In this case, the assumption
implies that m = 12, i = 4, and n < 6. Then we have

a(p,q) = A2+ A+ AT

By Lemma B23, it suffices to show that A® is contained in g¥.

In contrast to the above cases, we need to be careful because the
module A% is not irreducible as a spin(p, ¢)-module and splits into the
direct sum of two distinct irreducible submodules, which we denote by
Vi and V5. Since n 4+ 1 < m, the modules V; and V5 are isomorphic to
each other as spin(n, 1)-modules. Moreover, since n < 6, the module
NS ~ ASV contains at least two irreducible components, each of which
is isomorphic to the standard representation W ~ A"W as a spin(n, 1)-
module. Hence, both V; and V5 contain W as an irreducible component
when regarded as spin(n, 1)-modules. Thus, for each i = 1,2, we obtain
g” N'V; # 0, which, by the principle above, implies V; C g¥. Conse-
quently, we conclude that A® C g®, which completes the proof in this
case.

[2): When m < 5, we have g(p,q) = A? = spin(p,q), and thus it
follows that g¥ = g(p, q). Hence, the assertion is obvious.

Next, when 6 < m < 10, we have g(p,q) = A* + AS. Since n > 6
by the assumption of [2), g# N A® # 0 by Lemma B3 [T]. Since A°
is an irreducible spin(p, ¢)-module, based on the above principle, we
conclude that g¥ = g. Thus, the proof of is complete. O

As mentioned, the proof of Theorem BIR is derived from Proposi-
tion B9 by Theorem B9 [T]. The proof of Theorem B9 is the main
task of the next section.

4. DEFORMATIONS OF THE REPRESENTATIONS OF SPIN
HYPERBOLIC LATTICES THAT MAXIMIZE THE ZARISKI-CLOSURE

Let G be a Zariski-connected real algebraic group, G = G(R),
Gec = G(C), and let ¢: Spin(n,1) — G be a homomorphism (we
refer to Lemma [A77 in Appendix @A for equivalent definitions in differ-
ent categories). Suppose that I' is a torsion-free, cocompact discrete
subgroup of Spin(n,1).

In this section, as in the previous one, we set aside the space X =
G/ H and focus on the deformation of p|r € Hom(I", G). We construct a
pair (I', ¢'), where I is a torsion-free, cocompact discrete subgroup and
¢ is a small deformation of ¢|r, such that the pair achieves the maximal
Zariski-closure of ¢/(I") up to G-conjugacy, when n > 3. The argument
in this section completes the proofs of the statements postponed in
Section B2, including Lemma B@ and Theorem B [T].
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Lemma B8 was necessary for the definition of the maximal Zariski-
closure G¥ in Definition B7 and is proven in Section Bl

The proof of Theorem B [1]| consists of three steps. In Section B2,
we explain the role of each step. The details of each step are provided
in Sections B3, B4, and A3, where we also complete the proof of the
theorem.

4.1. Proof of Lemma B6. In this section, we prove Lemma B8.

Let G = S-U be a Levi decomposition, where S = S(R) is a maximal
real reductive algebraic subgroup containing ¢(Spin(n,1)) and U is
the unipotent radical of G. Then the real Lie algebra s is defined
in a manner similar to g¥ in Definition B3, using ¢: Spin(n,1) — S.
Lemma B0 asserts that the analytic subgroup G§ of G¢ corresponding
to g¥ ®gr C is Zariski-closed in G¢ and is defined over R.

First, let us show that the analytic subgroup S& of S¢ = S(C) cor-
responding to s¥ ®r C is Zariski-closed. Take a Cartan involution 6
of S(R) which preserves ¢(Spin(n,1)). By definition, # also preserves
s¥, and thus we see that the Lie algebra s is reductive. Let (S¢)ss be
the analytic subgroup of S(C) corresponding to the semisimple part of
s¥ @g C. Then, by Lemma A= [T) in Appendix @, we see that (S&)ss
is Zariski-closed. Furthermore, let us consider the identity component
Z of the following real algebraic group in the Zariski-topology:

{g € S| g centralizes dyp(spin(n,1)) and all the submodules

of s isomorphic to some spherical harmonics of spin(n,1)}.

By the definition of s¥, we see that the Lie algebra of Z(C) coincides
with the center of §¥ @g C. Since Z(C) is also connected in the usual
topology by Lemma AT, Z(C) is the analytic subgroup corresponding
to the center of 5¥ @g C. Hence, S{ = (S&)ss - Z(C), and thus S¢ is
Zariski-closed.

Next, let us show our assertion. Denote by u the nilpotent radical of
g. Since u is stable under the adjoint action of dp(spin(n, 1)), we get
a decomposition

g¥ =5 +u”,

where u? is a Lie subalgebra of u. Let UZ be the analytic subgroup
of U(C) corresponding to u¥ ®g C. Here we note that the exponential
map exp: u®g C — U(C) gives an isomorphism of algebraic varieties.
Hence, U = exp(u? ®g C) is Zariski-closed, and thus G¢ = S& - UZ
is also Zariski-closed. Since G¢ is connected in the usual topology
and its Lie algebra is defined over R, G¥ is stable under the complex
conjugation of G¢. Thus the Zariski-closed subset G¢ is defined over
R. Thus Lemma B is proved.

4.2. Outline of the proof of Theorem B9 [1). This section pro-
vides an outline of Theorem B9 [1)]. We recall the setting: G is a
Zariski-connected real algebraic group, L = Spin(n,1), ¢: L — G is
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a homomorphism, and G¥ is the algebraic group introduced in Defini-
tion BZ1. What we need to do is to find a torsion-free cocompact discrete
subgroup I" and a small deformation of ¢|r such that the Zariski-closure
of ¢/(I') coincides with G¥.

The proof of Theorem B9 consists of the following three steps:
Step 1: Construction of a cocompact discrete subgroup I of Spin(n, 1);
Step 2: An overview of Johnson—Millson’s bending deformation;
Step 3: Finding the Zariski-closure of a specific deformation of ¢|r.

First, we will outline the summary of each step, and then proceed with
the proofs of each step in the following sections.

Step 1 (Construction of I'). Let L = Spin(n,1) (n > 2), L' =
Spin(n — 1,1) a subgroup of L, Lx = Spin(n) a maximal compact
subgroup of L, and L = L' N Lg ~ Spin(n—1). Then X' = L'/L); is
a totally geodesic hypersurface of the n-dimensional hyperbolic space
X = L/Lk. For a torsion-free cocompact discrete subgroup I' of L,
the quotient space I'\ X is an orientable connected compact hyperbolic
n-manifold.
We consider the following condition for I:

Condition 4.1. Let k£ be a positive integer. There exist k£ orientable
connected totally geodesic closed hypersurfaces Ny,..., N, of M =
'\ X such that

e N;NN; ={ for any i # j.

o M~ (NyU---U Ny) is connected.

Step 1 is to prove the following:

Theorem 4.2. For any positive integer k, there exists a torsion-free
cocompact arithmetic subgroup I' = Ty of L = Spin(n,1) satisfying
Condition 1.

Example 4.3. When n = 2, Theorem [.3 clearly holds. In fact, let
M = ¥ be an orientable compact hyperbolic Riemann surface of genus
k > 2, and we express w1 (X)) in terms of generators and relations as
follows:

7T1<Ek) = <a1,b1, Ce ,ak,bk | [al,bl] R [ak,bk] = 1>

Let N; be a simple closed geodesic representing the free homotopy class
of a; for eachi =1,... k. Since the holonomy representation m (X)) —
PSL(2,R) can be lifted to SL(2,R) ~ Spin(2,1), Theorem [-3 holds
when n = 2.

We shall prove Theorem B2 in Section 3. When n > 3, we will
actually construct such a group (see Example

Theorem B=2 was originally proved by Mlllsoﬂjﬁ&]l_hﬁe he treated
the case where L = SO(n, 1).
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Remark 4.4. (1) Theorem B2 in the case L = Spin(n, 1) implies

an analogous result in the case where L = SO(n, 1).
(2) As seen in Remark I3 [3], the converse implication holds for
n = 2,3, but fails for n > 4.

We shall need a torsion-free cocompact discrete subgroup I' in L =
Spin(n, 1) rather than in L = SO(n, 1), as stated in Theorem E2. As
we will see in Section b3, for a certain class of homogeneous spaces X =
G /H, any non-abelian and standard discontinuous groups are virtually
contained in Spin(n,1) but not in SO(n,1) for some n. For exam-
ple, deformations of compact standard quotients of SO(4,4)/50(3,4)
are obtained via Spin(4, 1) (see Section 62), and those of non-compact
standard quotients of SO(8,8)/SO(7, 8) via Spin(6, 1) (see Section bH).

Step 2 (An overview of bending construction). In Step 2, b %@
on the geometric idea of bending construction by Johnson—Millson ?‘7 i

we reformulate a general principle of the construction of small defor-
mation, that we shall use (Lemma B71).

From now on, fix £ € N. By Theorem B2, we take a torsion-free
cocompact discrete subgroup I' = T’y of Spin(n,1) satisfying Condi-
tion B0 for £ € N. Let X = Spin(n,1)/Spin(n), M = I'\X and
Ny, ..., N as in Condition 1.

For each ¢+ = 1,...,k, by the tubular neighborhood theorem, we
choose an open neighborhood N¢(4) of N; in M and a diffeomorphism

fit Ni x (=4,4) ~ N
such that f;(N; x {0}) coincides with N;. We define

N; = fi(N x (=2,2)),
fix y; € N;, and put

Yir = fi(yi, 1) and y; - := fiyi, —1).
Since Ny, ..., N, are disjoint and since
S:=M~ (NyU---UNy)

is path-connected, we may and do assume

e Ni,..., N, are disjoint;
o M~ (N1(4) U---u N,§4)) is path-connected.

Definition 4.5. Fix a base point o € M ~ (NY U-.. U N™). For
each i = 1,...,k, we define the oriented loop v; in M, starting at xzg,
as the composition of the following paths:

e a path from z to f;(y;,3) inside M ~\ f;(N; x (—3,3));

e the path from f;(y;,3) to f;(y;, —3), given by fz({yz} [—3,3]);
e a path from f;(y;, —3) to o inside M ~ f;(N; x (=3,3)).
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FIGURE 4.1. The loops v; and v5 in the case k = 2.

Furthermore, we can take the loop v; to be a closed submanifold of M.
Let v; + denote the segment of the loop v from z( to y; +, and let v; _
denote the segment of v from y,; _ back to .

Figure B summarizes some of the notation introduced so far.
Let i = 1,...,k. For an oriented loop ¢ starting at y; in NV;, f;(¢,1)
and f;(¢, —1) form oriented loops in M starting at y; + and y; _, respec-

tively. With the above paths v; , and v; _, we define j; 1, j; —: 7 (N;, v;) —

m1(S, zg) as two group homomorphisms
(4.1) Jir([0) = [vip o fill, 1) o i),
Ji—([0]) = [vi— o fi(l,=1) o 1],

Here, b=! denotes the path obtained by reversing the orientation of
the path b, and [¢| denotes the homotopy class defined by the loop c.

For the deformation of a representation of I', we require the following
two lemmas. As discussed later, via deck transformations, the discon-
tinuous group I' for the hyperbolic space X can be identified with the
fundamental group m (M) of M = I'\)X. Lemma B states that the
group structure of 7 (M) is obtained as an iterated HNN extension of
m1(S). Lemma B4 utilizes this group structure to explicitly construct
a small deformation of a representation of I' ~ 7 (M, zy) into a Lie
group. For the proofs, see Section E4.

Lemma 4.6. Let F}, be the free group generated by the words aq, . . ., ag.
We define a homomorphism U from the free product m (S, zq) * F}, to
7T1(M, .To),

(42) \Illﬂl(s,l‘o)*Fk—)’iTl(M,[Eo),

as the homomorphism induced by the natural map m (S, xo) — m (M, x¢)
and by V(a;) = [v;] for each i =1,... k. Then V is surjective and its
kernel is the normal subgroup N generated by

aiji (a7 G ()" for [0) € m(Ny,y;) andi=1,... k.
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To state the second lemma, we introduce some notation. Let L' :=
Spin(n — 1,1) be regarded as a subgroup of L := Spin(n, 1), and let
X' := Spin(n—1,1)/Spin(n—1) be viewed as a totally geodesic hyper-
surface of the hyperbolic space X = Spin(n,1)/Spin(n). Recall that
Ny, ..., Ny are orientable, connected, totally geodesic hypersurfaces of
the hyperbolic manifold M = I"\ X. Hence, for each i = 1,...  k, there
exist an element o; € L and a diffeomorphism N; ~ (o; L'c;; 'NT)\ci; X'
such that the following diagram commutes:

(43) NZ'( inclusion M

= o lz

(L't AT\ X! 22\ X

Now we recall how the discontinuous group I" for X is identified with
the fundamental group m (M, z) of M = I'\X. Since the hyperbolic
space X is simply-connected, the quotient map 7p: X — I'\X = M
is a universal covering. We fix a point Zy € X in the discrete fiber
X, = mp ' (zg) of 7 € M. Then, we get a group isomorphism
DX (M, x9) — T, by the following relation of the deck transfor-
mation:

(4.4) (0] - &0 = DY([0) - 50 for [(] € my (M, xo).

Z

Lemma 4.7. Let G be a Lie group, ¢: I' — G a group homomorphism,
L' = Spin(n — 1,1), and oy, ...,a € L = Spin(n,1) as above. For
each i =1,... k, we take a possibly zero element v; of g such that

(4.5) v; is (o L'a;t N T)-invariant.

Retain the notation as in Lemma [.§. Fort € R, we put

(a) oy =@ on DY o W(mi(S,x0));

(b) (D3 ([vi])) = @(Dzy([vi])) exp(tvy) for eachi=1,... k.
Then ¢, induces a group homomorphism @;: I' — G.

Step 3 (Zariski-closure of specific deformation). Let G be a
Zariski-connected real algebraic group, L := Spin(n,1) and ¢: L — G
a homomorphism. In Step 3, we construct a small deformation ¢’ of
¢|r such that the Zariski-closure of ¢'(I') coincides with G¥ (Proposi-
tion B9), where I is a certain cocompact discrete subgroup of L. This
is achieved by finding appropriate vectors v; € g (1 < i < k) in the set-
ting of Lemma B70, considering the full generality of G and ¢: L — G.
We shall also optimize the number &, which corresponds to the num-
ber of totally geodesic hypersurfaces in Condition B0 that we use for
bending constructions.

Remark 4.8. When g¥ = g, the conclusion of Proposition B9 be-
low implies that I" can be deformed into a Zariski-dense subgroup in
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Millso maps into G = SO(n+ 1,1) or PSL(n + 1,R)), and
Kassel ¢ maps into SO(n, 2)), are (1mphcltly) based on the follow-
ing structure in their proofs: the [-module g/l is an irreducible spherical
harmonics module. Along the same lines of argument, this assumption
can be relaxed to the existence of an increasing sequence of reductive
Lie algebras

G. The vjpus results for the case L = SO(n, 1), such as Johnson-
|i§

(=Pcllc---cl™m=g
such that [**1/I* is an irreducible [*-module and that it contains a non-
Z€ro spherical harmonics representation of [. For example, this applies
to the c er Kasse££3 (p > n, ¢ > 1), as discussed in a recent
preprint (& ppen ix A| by Beyrer and Kassel.

However in our general setting of ¢ and G, we cannot rely on
such a restrictive structure for [ and g. For instance, in the context
of Theorem BIR, this is not the case for the natural homomorphism
@: Spin(n,1) — G(p,q) when p and ¢ take arbitrary values.

To construct a desired small deformation, we first introduce some
notation.

Let V; denote the irreducible spherical harmonics representation of
L := Spin(n,1) of degree ¢ (see Remark B2). Given a homomorphism
¢: L — G, we denote by Zg(¢(L)) the identity component (in the
Zariski topology) of the centralizer of (L) in G. For i € N, let g(V;)
denote the isotypic component of V; in g. Then g(Vp) = 34(dep(1)), the
Lie algebra of Zg(p(L)).

We consider a decomposition of g as an L-module via ¢ o Ad:

(4.6) g=dp(l) B 34(de(l) & EB 9(V;) @ (other representations).

By Definition B34, g¥ is the Lie algebra generated by

dip(1) @ 54(dp(1)) @ @g

Needless to say, the summation is ﬁnlte because dimg < oo. The
multiplicity of the irreducible L-module V; in g is denoted by

[g : Vi] := dimg Hom(V}, g).
Then, we may decompose

[9:V3]

@v

where each Vi(j ) is isomorphic to V;.
We set m := max;en, [g : Vi]. We define k, for example, by

(4.7) k= max(n(Za(p(L))), m) € N,
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with the notation as defined in Definition of Appendix E. We note
that n(Zg(L)) < 2 if G is reductive by Theorem E.

We take I' satisfying Condition B for k& by Theorem B=A. Let
ai, ..., be elements of L = Spin(n,1) as in (E33).

We recall L' = Spin(n—1,1). For each i € N, we take v; 1) . ,vfk)
as follows: U(J ) is a non-zero ¢(a;L'a; )-invariant element in V U) for
1<j<][g:V] andvgj) =0 for [g: Vj] +1 < j < k. We note that
v =0 for i > 0.

We take uq, ..., u, € 34(I) as follows: With the notation as defined
in Definition ETT, G(t{u1, ..., uyzao))}) = Za(L) and u; = 0 if
n(Za(L)) <j < k.

We now define v; € g, for 1 < j <k, by a finite sum:

(4.8) vj = + sz(j).
i=1

Proposition 4.9. Let G be a Zariski-connected, real algebraic group,
and let ¢: Spin(n,1) — G a homomorphism. Let p,: I' — G be the
homomorphism associated with vy,...,v,, as defined in Lemma F.7.
Then, the Zariski-closure of o (I') coincides with G¥ for any sufficiently
small real number t # 0.

This proposition will be proved in Section B4, and thus the proof of
Theorem B [T] is complete.

4.3. Proof of Theorem @2 (Step 1), In this section, we prove a
Spin(n, 1) analogue%; ilson’s theorem .%ﬁ or SO(n, 1) by reformu-
lating his argument Wﬁ%ﬁ of Clifford algebras (Theorem a2).
The part of the proof 1n at relies on the strong approximation
theorem becomes slightly simpler when working with Spin(n, 1) in-
stead of SO(n, 1) since the algebraic group Spin,, ; is simply-connected
(Proposition BT3).

To prove Theorem B2, we introduce some notation. Let F be a
totally real number field of degree r > 1, {0y, ..., 0,} the set of embed-
dings of the field F into R, O the ring of integers of F, V an (n + 1)-
dimensional F-vector space equipped with a quadratic form @ = Q(v)
on V', and Ceyen (V') the even Clifford algebra associated to (V, Q). We
refer to Appendix B for the notation related to Clifford algebras and
spin groups.

Take an orthogonal F-basis {e, ..., e,} of V with respect to @, such
that Q(e;) € O for any @ = 0,...,n. Let A be the O-submodule of
V' generated by ey, ..., e,, and let Ceen(A) be the O-subalgebra of
Ceven(V') generated by e;, - --e;, for any even number ¢ and any 0 <
i < - <ip <n. We set

(4.9) LA := Coyen(A) N Spin(V).
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For an ideal I of O, we also consider its congruence subgroup

(4.10) FA(I) = {”)/ ey ’ v = 1le ]Ceven(A)}.

This is a finite-index subgroup of I'y. We will prove that I' () satisfies
Condition BT under certain assumptions (Proposition B18).
First, we verify that I'y satisfies the following properties:

e (Lemma B10) I'y can be rega qﬁd gs an Q-arithmetic group of
the F-group Spin,, (see e.g., ;FWQ L p-227]);

e (Proposition B1T) Under certain conditions, I'y can be re-
garded as a cocompact discrete subgroup of Spin(n,1).

See (B3) in Appendix B for the definition of the F-group Spin,,.
Using the F-basis of Ceyen(V)
(4.11) {e;---e;, | Liseven and 0 < iy < ... < iy < n},

we identify the F-vector space Ceyen(V) with F2". For any extension
field E of F, we identify the E-algebra Ceye, (V) ®p E naturally with the
Clifford algebra Ceyen(V ®@p E). For each 2 € Coyen(V) @ E, consider
the left multiplication map by x. This yields an injective E-algebra
homomorphism

1 Coven(V) @5 E — Endg(Coven(V) @5 E) ~ M (2", E).

Using this embedding, we regard Spiny, as an F-algebraic group and
define the group of O-points by

Spiny, (O) := Spiny (E) Nz (GL(2", 0)).
This definition does not depend on the choice of the extension field E.

Lemma 4.10. The group 'y coincides with Spiny, (O). In particular,
'a is an O-arithmetic subgroup of Spin,,.

Proof. Note that (211) forms an O-basis of Ceyen(A). We have
Spin, (0) = Spin, (F) N 1 (GL(2", 0))
= Spin(V) Nz ({x € GL(2",F) | z0*" = O*"})
={z € Spin(V) | 2Ceen(A) = Ceven(N)}
= Spin(V) N Coyen(A)
=T4.
Hence, the assertion is proved. U

Proposition 4.11. For eachi=1,...,r, letF,, denote the field R re-
garded as an extension field of F via the embedding o;: F — R. Assume
the following:

e 01(Q(e;)) >0 foranyi=0,...,n—1 and 01(Q(e,)) < 0;

e 0;(Q(e;)) >0 foranyi=0,...,nand j =2,...,7;



€q:congruence
| |

lemma:torsion-free \

40 KAZUKI KANNAKA AND TOSHIYUKI KOBAYASHI

Then we have

Spin(n, 1) (i=1),
Spin(n+1) (i >1).

Spiny, (F,,) ~ {

Furthermore, the inclusion map
Spin,, (0O) =I'yx — Spiny, (F,,) ~ Spin(n, 1)
15 discrete and cocompact.

Proof. The first statement follows immediately from the assumption on
the quadratic form (). Thus we focus on proving the second statement.
Since r > 1, there exists an inclusion

Spiny, (F) = Spin(V) — Spiny, (F,,) ~ Spin(n + 1),

which implies that Spin(V') has no non-trivial unipotent elements.

, Spin,, is anisotropic over F. By a well-known criterion (e.g.,
q_Thrn 4.17 (3)]), the diagonal embedding

Spin, (0) =T\ — H Spiny, (F,,) ~ Spin(n,1) x Spin(n+ 1)

=1

is discrete and cocompact. Since Spin(n+1)""! is compact, the second
statement follows. 4

Next, let I be an ideal of O. We examine properties of I'y(7). By an
argument similar to the proof of Lemma E-11, we obtain the identity

(4.12) DA(l) =Tanp'({g € GL(2",0) | g=1 mod I}).
Using Lemma C in Appendix, we have:

Lemma 4.12. Let P,Q be prime ideals of O such that PNZ # QNZ.
Then I'y(PQ) is torsion-free.

To prove Theorem A2, we analyze the finite group I'y /T"'s (1) for some
ideal I (Proposition BT3). To state the proposition, we first review
some basic concepts of algebraic groups over numbe A ]gclls needed in
our discussion. For further details, see, for example, [bY &:

For a maximal ideal P of the ring of integers O, the completion of
the global field F with respect to the P-adic topology defines a non-
Archimedean local field Fp. Let Op denote the ring of integers of Fp.

In the same manner as the definition of Spin (O), we define the
Op-points Spiny, (Op) as

Spiny, (Op) := Spiny (Fp) Nz} (GL(2", Op)),

via the left regular representation g, : Ceyen(V ®@p Fp) — M(2",Fp)
using the F-basis from (ET).
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Furthermore, assume that the maximal ideal P does not contain
2Q(ep) - - - Q(ey). In this case, the residue field kp := O/P has charac-
teristic greater than 2. We define a kp-vector space by

Kp = A/PA,

and denote by Qp the quadratic form on Ap induced by @. Thus the
Clifford algebra Ceyen(Ap) and the spin group Spin(Ap) are defined. By
definition, it follows immediately; ’E]Rag 45‘pm (Ap) provid 8, gglductwn of
Spin,, modulo P in the sense of fw p. 142]. Hence, by [bY, Prop. 3.20],
we obtain the following:

Lemma 4.13. There exists a finite set of maximal ideals Ey of O,
depending only on (V,Q,\) such that every maximal ideal P & Ey
does not contain 2Q(eg) - - - Q(ey) and that the reduction map

Spinv((’)p) — Spm(Kp)
18 surjective.

Remark 4.14. For the orthogonal group SOy, the reduction map
SOV(OP) — SO(KP)

is surjective for every maxmlal ideal P t do ghot contain 2 or
the discriminant Q(ep)--- Q(e,). Millson 56 use this fact for the

orthogonal group SOy. However, the authors do not know whether
a similar statement holds for the spin group Spiny,, as it is unclear
whether it is possible to take Ey to be the set of all maximal ideals P
that do not contain 2Q(eg) - - - Q(e,) in Lemma BT3. This statement
would strengthen Example B-T7 below by removing the assumption of
“sufficiently large” from it.

We are now ready to state the proposition on I'y /T'A(1):

Proposition 4.15. Suppose that dimpV > 3 (recall that dimpV =
n+ 1) and that all the assumptions in Proposition f-11 hold. Let Ey
be the finite set of maximal ideals in Lemma [ 13, and let Py, ..., Py,
be maximal ideals of O that do not belong to Ey. Then, the reduction
map induces an isomorphism

LA/TA(Py--- B) = [ [ Spin(Ap).
i=1
Proof. Since dimp V' > 3, the F-group Spiny, is simply-connected. Un-
der the assumptions in Proposition BT, Spiny (F,,) ~ Spin(n,1),
which is a non-compact simple Lie gro fgg everyplo 2~ 2. Thus, the
strong approximation theorem KneseruytP 36], see W_Thm 7. 12]) ap-
plies to Spiny,. Although the following proof relies on the standard
argument using the strong approximation theorem, we provide a proof
for readers who may be unfamiliar with it.
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Let us recall the statement of the strong approximation theorem in
the form required for our setting. We define the finite adelization of
Spiny, as

Spiny (Af) == | (H Spiny (Fp) x [ SpinV(Op)> ,

S \Pes PgS

where S ranges over all finite sets of maximal ideals of O. Furthermore,
we endow SpinV(A]’Fc) with the inductive limit topology arising from the
direct system of locally compact totally disconnected groups

[ Spiny (Fr) x ] Spin, (Op).

Pes P¢s

With this topology, SpinV(A]JFc) becomes a locally compact Hausdorff
topological group. Moreover, the diagonal morphism Spiny (F) —
Spiny, (Af) is well-defined, and thus we can regard Spiny, (F) as a sub-
group of Spiny (A}). The strong approximation theorem asserts that
Spiny, (F) = Spin(V) is dense in Spin,, (Af).

We now prove our assertion. Since the kernel of the reduction map

'y — H Spin(Ap,)
i=1
is clearly I'y(P; - -+ P,,), it suffices to prove that the reduction map is
surjective. _
For each i = 1,...,m, take an element g; € Spin(Ap,), and consider
the open subset of SpinV(AEJf) given by

U= H{g € Spin, (Op,) | g mod P; = g;} X H Spin, (Op).
i=1 P+£P;

By Lemma B3, we see that U is non-empty. Since Spin(V') is dense
in Spiny, (Af), we obtain U N Spin(V) # 0.
Here note

Spiny (0) = [ [ Spin, (Op) N Spiny (F) in Spiny (Af).
P

Thus it follows that any element in U N Spin(V') must belong to I'y =
Spiny, (O). Hence, we conclude that U N Ty # (), which implies that
the reduction map is surjective. This completes the proof. Il

Finally, we prove that for a suitable ideal I, the O-arithmetic sub-
group I'z(/) satisfies Condition B0 (Proposition B-16). To state the
proposition, we introduce some notation.

Recall that ey, . .., e, form an F-basis of V. Let V'’ be the F-subspace
of V' generated by ey, ..., e,, and define A’ := V' N A. As a result, the
following are defined: the Clifford algebra Ceyen(V') = Coven(V', Q|v),
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its O-subalgebra Coyen(A’), the spin group Spiny,, the O-arithmetic
subgroup I'y/, and its congruence subgroup I'y/(7) for an ideal I.

The following proposition is the main goal of this sec 1OF: < Th,% proof
is achieved by reformulating the argument in Millson %_2715] re-
garding the construction of a family of compact hyperbolic manifolds
with arbitrarily large first Betti numbers in terms of Clifford algebras.

Proposition 4.16. Assume that dimp V' > 4 (recall that dimpV =
n+1). Take Ey and Ey. be finite sets of maximal ideals of O as given
by applying Lemma G-13 to (V,Q,\) and (V', Qv+, \'), respectively.
For k € N, choose an integer m > 2 such that 2™ — 1 > k. Suppose

that there exist m + 2 distinct prime ideals P_1, Py, ..., P, satisfying
the following conditions:

e PNZ# P;NZ for any v # j;

e Fach P; belongs to neither Ey nor Ey..

Moreover, in addition to the assumptions in Proposition [.11, suppose
that Q(eg) € O*. Then, the torsion-free cocompact discrete subgroup
Ca(P_y -+ Py) of Spin(n, 1) satisfies Condition 1 for k.

Example 4.17. Letn > 3 and F = Q(v/2). We consider the following
quadratic form with coefficients in O = Z[\/2):

Qz) =z + - +al_| — V2l

We regard this as a quadratic form on V = F""! with standard basis
€y .- en, and let A = O™ The triple (V,Q,\) satisfies all the
assumptions in Proposition f-11 and Q(eq) = 1 is invertible in O.

Primes of the form 8a 4+ 3 exist infinitely and remain primes in O.
For k € N, take a natural number m > 2 such that 2™ — 1 > k,
and choose m + 2 such sufficiently large primes p_1,pg, ..., Pm- By
Proposition G180, U'a(p_1 - pm Q) is a torsion-free cocompact discrete
subgroup of Spin(n, 1) satisfying Condition 1 for k € N.

Thus, once Proposition B18 is established, the proof of Theorem E=2
for n > 3 is complete (see Example B=3 for the proof in the case n = 2).

The rest of this section is devoted to the proof of Propositio 0. For
this purpose, we use two geometric lemmas from Millson% em-

mas AI8 and A719).

Qhe pgoof of the following lemma is essentlakhf he same as that of
+F 6, Lem. 2.1| (referred to as Jaffe’s lemma). In [b6], The statement was
proved under the assumptions that X is a hyperbolic manifold and T
is a group of order 2. Since the results hold in a more general setting,
we provide a proof in this broader context for future reference.

Lemma 4.18. Let X := G/H be a homogeneous space, I' a discontin-
uous group for X, and T C Aut(G) a finite subgroup such that H and
I' are both stable under T
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Put G :={g€G|tlg)=gforanyte T}, H =G nNH, T =
G'NT, and X' := G'/H'. Then the map 7: I'\X' — T'\X defined
by I'gH' — T'g'H is a diffeomorphism into a reqular submanifold of
I\ X

Proof. Define the action of t € T'on gH € X by t(gH) = t(g)H. Under
this action, T fixes every element of X’.

Take any point z € X’. Then we choose a neighborhood U of x in
X such that, if v € T satisfies YU NU # (), then v = 1. By replacing U
with (), t(U), we may assume that U is stable under the T-action.

We claim that if v € T satisfies yU N X’ # (), then v € I”. Indeed,
suppose there exists y € U such that yy € X’. Then, for any t € T', we
have t(v)t(y) = vy. Since t(y) € U, it follows that t(y) = . Hence,
~ € I'". This proves the claim. In particular, we also see that the map
m: I"\X’ — I'\ X is injective.

Let np: X — I'\X and np: X' — T'\X’ be the quotient maps.
Then the image of 7 is 7mp(X’). It follows from the previous claim
that WF(U) N 7TF<X/> = 7T1“(U N X/) Noting that WF‘UZ U — WF(U) is
a diffeomorphism by the choice of U, we see that np(X’) is a regular
submanifold of T\ X. Since 7|y, = 7 o m/, the map = is locally dif-
feomorphic to the regular submanifold 7r(X’). From the above, our

assertion is proved. O

. . . . [illson76
The following lemma is proved in Millson %6, Sect. 4, p.245|, where

M>F, Y1, ..., %, and o therein correspond to our M D N, aq, ..., ag,
and T, respectively.

Lemma 4.19. Let M be an orientable connected Riemannian mani-
fold, T an involutive isometry on M, and N an orientable connected
hypersurface of M such that T is the identity on N. Suppose that we are
given isometries aq, . .., ax on M satisfying the following conditions:
(@) i(N)NN =0 and c;(N)Naj(N) =0 for any i # j;
(b) T(;(N)) = a;(N) for any i;
(c) T preserves the orientation of c;(N) for any i.
Then M~ (a1 (N)U---Uag(N)) is connected.

We are ready to show Proposition E18.

Proof of Proposition [{.10. Recall Proposition ET1. We shall write F,,
simply as R and let us define

L = Spiny (R) ~ Spin(n, 1).
Now we fix the embeddings of the subgroups
L' = Spin(n—1,1), Lk = Spin(n), Ly =L NLg=Spin(n—1)

into L. Recall that V' is the F-subspace of V' generated by ey, ..., e,,
where {eg,...,e,} forms an F-basis of V. Hence, the Clifford algebra
Coven (V') = Coyen(V’, Qly+) is naturally embedded in Ceyen (V). This
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allows us to regard Ceyen(A’) as an O-subalgebra of Coyen(A) and Spiny,,
as an F-subgroup of Spin,,. We then define
L' := Spiny, (R) ~ Spin(n — 1,1).

Similarly, we define L and L’ as the Lie groups of R-points of the spin
groups associated with the F-subspaces of V' generated by {eg, ..., €,_1}
and {ey,...,e, 1}, respectively. Then we have Lyx ~ Spin(n) and
Ly ~ Spin(n —1).

We consider the ideal of O:

[:Pflpo"'Pm.
By Proposition 211 and Lemma BT, the quotient spaces
XA(I) :=TA(D\X and X}, (1) :=Tp (1)\X'
are both orientable connected compact hyperbolic manifolds, where
X =L/Lkg and X' =L"/L).

To show that X}, (1) is a hypersurface of X (I), we apply Lemma TS
to (G, H,T") = (L, Lk,T's(I)). For this purpose, now we verify that the
assumptions of Lemma ET8 are satisfied.

Recall that elements of V' are regarded as elements of the Clifford

algebra C(V) = C(V, Q). Let 7: Coyen(V) = Coyen(V') be the involutive
F-automorphism defined by

7(z) = egrey .
It is straightforward to verify that
C(even(‘//) - {*I S Ceven(v) | T(I) = l‘}

In particular, we have

eq:L’—centralizer| (4.13) L'={zeL|7(zx)=ux}.

Since Q(eg) € O, the map 7 preserves Ceyen(A). Hence, we also obtain
CeVGII(A/> = {SL’ € Ceven(A) | T(J?) = 'T}v and thllS

Gamma’-centralizer| (4.14) Ca(I)=Tx(I)N L.

Similarly, we have L = {x € L | e,ze,;' =2} and L, = Lgy N L.

The map 7: Coyen(V) — Coven(V) defines an involutive automor-
phism of L, which we also denote by 7 € Aut(L). It is clear that 7
preserves both I'y (1) and L. Thus, by (A13) and (E14), Lemma ATX
implies that X},(I) can be naturally identified with a totally geodesic
hypersurface of X, (7).

Next, to complete the proof of our assertion, we apply Lemma ET9
to (M,N) = (Xa(I),X),(I)). For this purpose, we find isometries
aq, ..., ap of X (1) that satisfy conditions in Lemma B-T9.

Before proceeding, we make the following observations. By Lemma BT2,
the group I'y(P-1F,) is torsion-free. Moreover, by an argument simi-
lar, we have I'y/(P_1 Py) = I'A(P-1Py) N L' (see (B214)) and Lemma A3
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can also be applied to (G, H,T") = (L, Lg,Ux(P-1F,)). Thus, by the
injectivity result of Lemma BIR, for each o € I'y\(P_1 F), we see that

(4.15) a(X')N X' # 0 if and only if a € Tp/(P_1 Py).

We define finite groups ® and ' as
b .= FA(P,lpo)/FA(I> and (D/ = FA/<P,1PO>/FA/(I).

The natural left actions of the finite group ® and the involution 7 €
Aut(L) on the Riemannian manifold X, (/) are isometric. Moreover,
the action of ® preserves the orientation of X ([), while the involution
T € Aut(L) reverses it.

In what follows, we seek isometries aq, ..., a; satisfying conditions
in Lemma BT9 among the elements of ®. By (EI3), we observe
that for each a € T'z\(P_1 ),

(4.16) (X (D) N X\ (I) # 0 if and only if a € Dar(P_1 Py).

On condition [a): Let o, € I'rA(P-1F). By (B18), we see that
a(X\ ()N B(X\ (1)) #0 if and only if « = mod Ty (P_15).
On condition [0): Let o € T'z(P-1F). For ' € X},(I), we have

(4.17) 7 (a-2") =7(a)- (7-2") = (egaeyt) - .
By (B18), we see that 7(a (X}, (1)) = a(X},(I)) if and only if egae; ' =
a mod I'y/(P_1 ).

On condition [c]; Let o« € T'y(P-1P). In our setting, condition
holds automatically under condition [0]. That is, we show that if
a(X),(I)) is T-stable, then 7 preserves the orientation of a(Xj},(1)).
By (ET1), the action of 7 on a(X},(I)) coincides with the action of
eocey '™t € Ty (P_1Py). This preserves the orientation of a(X},(I)).

Therefore, in order to apply Lemma ET9, it suffices to find aq, ..., ay €
[A(P-1P,) satisfying the following conditions:

(i) [ou] #1 mod @ and [oy] # ;] mod @' for any ¢ # j;
(ii) [egaieg’] =[] mod @,
where [a] means the element of ® = I'y(P_1Fy)/T's(I) represented by
o€ PA<P_1P0>.
To this end, we analyze the finite set ®/®’. Since dimp V' > 3,
Proposition T3 can be applied to both Spin;, and Spiny,. Hence, we
have

P ~ HSpin(Kpi) and ¢’ ~ H Spin(A'p,),
i=1 =1

and thus obtain

O/ ~ H Spin(Ap,)/Spin(A'p,)).
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Let us consider the natural action of each Spin(Ap,) on the vector

space Ap, over the finite field kp,, which is given by

v€Ap +— gog € Ap,
for g € Spin(Ap,). Recall that elements of Ap, are regarded as elements
of the Clifford algebra Ceyen(Ap,). This action factors through the
adjoint representation Ad: Spin(Ap,) — SO(Ap,).

Here, note that the image of Ad is the subgroup %h%fn 1‘1911 Ql p,) con-
sisting of elements with spin : ROLTD (see, e.g., [b4, Sect. 24, the
identity (24.7a)|). By Millson ?Th_L_ 3.1], the O’-orbit of e, mod P,
equivalently the Spm(Kpi)—orblt, coincides with the sphere through
eo mod P; in Ap,. Moreover, the isotropy group of ey mod P; is Spin(A’p,).
Thus, we obtain the bijection

;rong—approximation| (4.18) Q)P ~ H{QJ € Ap, | Q(z) = Q(ep) mod P},

where Z means the element of Ap, represented by € A. This map
assigns to each [g] € ® (where g € I'\(P_1F)) the element on the
right-hand side whose i-th component is given by gegg~! mod P;.

In the right-hand side of (EI8), choose k distinct elements from the

set
[, )} ~ (@, .. @)}
which consists of 2" — 1 elements (recall 2™ — 1 > k). Let ay,..., a4
be elements of ® that represent the corresponding elements of ®/®’.
It is immediate that these satisfy conditions [i) and [i1).
Now we define k orientable connected totally geodesic closed hyper-
surfaces Ny, ..., Ny of M = X,(I) by

N; = a;(X\ () (i=1,...,k).

Applying Lemma B T9 to (M, N) = (Xa(), X}/(I)) and ay, . .., oy, we
conclude that N; N N; = 0 for all i # j and that M ~ (N, U---UNy) is
connected. Thus, I'y(I) satisfies Condition BT for k, which completes
the proof. O

section:step2

4.4. Proof of Step 2 (An overview of bending construction).
In Step 2, we provide a proof of general properties (Lemmas B8, A7,
and B20) concerning iterated HNN extensions and bending construc-
tion. In Step 3, we will apply these results to construct the desired
small deformation.

Fix k € N,. Let I' be a torsion-free cocompact discrete subgroup
of L = Spin(n,1) satisfying Condition B, Lemma B8 asserts that
the fundamental group I" of the hyperbolic manifold M = I'\ X can be
expressed as an iterated HNN extension of length k. Lemma BZ7 pro-
vides a method for constructing a small deformation of a representation
of T' through £ iterations of the bending construction. Furthermore,
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Lemma provides a lower bound of the Zariski-closure of such a
small deformation.

Proof of Lemma [.8. The proof follows by repeatedly applying Propo-
sition D22

We proceed by induction on k. For k = 1, the claim follows imme-
diately by applying Proposition D2 to our setting.

Suppose k > 2, and assume that the assertion holds for & — 1.
We set S" := M ~ (NaU---UNy). For each i = 2,...,k, the two
homomorphisms j; 1, ji —: m (N, y;) — m(S,x¢) can be factored as
m(Ni,yi) = m(S",29) — m(S,209). We also denote the first maps
m1(Ni, i) = m(S’, xp) by the same symbols j; ; and j; _.

Let Fj,_; be the free group generated by as,...,ax, and let N7 be
the normal subgroup of 7 (S’, z¢) * Fj_1 generated by

aifi+ ([Da; G- (D)7 (0 € m(Niyi), i=2,....k).
By the induction hypothesis, there is a natural isomorphism
w1 (M, xq) =~ (7T1(5/,900) * Fk—l)/N/-

Next, let S := S’ ~ Ny, and let N; be the normal subgroup of
71(S, ) * a? generated by

arjr 4 ([)ay ()Y ([ € m(Ny, 1))

Applying Proposition D2 to the orientable connected manifold S’; we
obtain the isomorphism

(S’ o) ~ (m1(S, x0) * a¥) /NI
Combining these isomorphisms, we have
m(M, xo) = (((m1 (S, 20) * af) JNT) # Fio1) N = (m1(S, o) * Fi) IN.

The second isomorphism is derived from the universal property of the
free product. It is clear that the above isomorphism is induced by
the surjective homomorphism ¥ given by (A=), which completes the
proof. O

Before proving Lemma B7, we fix some notation. We recall that
mr: X — M = I'\X is the covering map, and we fix o € X such
that nr(Zy) = o, as in the paragraph preceding Lemma BZ4. For
every i = 1,..., k, recall that the loop v; (see Definition B73) intersects
Nj; at exactly one point, namely, at y;. Let v;, denote the segment
of the loop v; from zy to y;. Via the covering map np, we lift the
path v;, to a path in X that starts at 7o € X, and we denote its
endpoint by 3; € X. Then, 7r(7;) = y; € N;. It follows from the
commutative diagram (E=3) that ¢; lies in o; X’. Thus, just as the
isomorphism D2!: (M, xz0) ~ T (see (B4)) is defined, we also define
the isomorphism D} (N, y;) ~ a;L'a; ' NT.

We are ready to prove Lemma B4
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Proof of Lemma 1. First, we show that for each i = 1,...,k and any
(4.19) D%(\Il(szr([E]))) € a;Ll'a;'NT  for any [(] € m1(N;, ;).
To verify (B719), we consider the following diagram.

(m1(S, zo) * Fi) JN —= 11 (M, z0)

DM

_ zg

(v 4] 1(—)[V£,+]T
natural U (M, yz) Y, r
Yi
PUShT Jinclusion
N.
Ji+ Dy’

m (57 'I"O) 7T1(N7 yz) i> aiL/a;I nr

The commutativity of this diagram follows from the unique lifting prop-
erty of covering maps with respect to paths. For the definition of j; 4,
see (E). Recall that v;, is the path from zy to y; along the ori-
ented loop v;. From the commutativity of this diagram, (B19) follows
immediately.

Now we prove our assertion. Put ¢ := D% o V. By Lemma A8, it
suffices to show that for each i = 1,...,k and for any [¢] € 7 (N;, i),

(@) (Wit ([0) e (0(a:) " (WG ([4])) 7" = 1.
Since j; +([€]), ji—([€]) € m1(S,x0), we have

(LHS) = @((a:)e™ (¥ (i ([0)))) (e (¥ (a:))e™) " o (G- ([4))
= o((aii+([Da; i) 7)) =1

where the second equality follows from (ET9) and assumption (E3).
Thus our assertion is proved. O

For the proof of Step 3, we give the following lemma concerning the
Zariski-closure of small deformations of I' obtained ia Lemma A70.
The following proof is in the same line with f 7, Sect. 6] for
v: SO(n,1) — SO(n,2) using Johnson— MillsoKF/I_L_em 5.9].

assell2
Lemma 4.20 (cf. the argument in &( Lem. 6.4]). Let G be a Zariski-

connected real algebraic group. Under the assumptions and notation of
Lemma BT, assume that the group homomorphism p: 1" — G arises
from a homomorphism ¢: Spin(n,1) — G. Then, for any t € R, the
Zariski-closure of (') contains o(Spin(n, 1)) and e fori=1,... k.

Proof. Let L; denote the Zariski-closure of ¢;(I') in G.
Let w: Spin(n,1) — SOy(n,1) be the double cover, and consider
the group isomorphism
¥ =DM oW: (S, z) * F, — T (C Spin(n,1)).

'oMi84 . C . .
By f‘z I Lem. 5.9]|, w (¢ (m (S, x0))) is Zariski-dense in SO(n, 1). Hence,
(m(S, o)) is also Zariski-dense in Spin(n,1).
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We recall that ¢: Spin(n,1) — G is a homomorphism in the sense
of Lemma BT, Since ¢ is continuous in the Zariski-topology, and
since (Y(m1(S,x0))) = @((m1(S,20))) by the construction of ¢,
(see in Lemma B77), the Zariski-closure of ¢ (¢ (m1(S,z9))) con-
tains p(Spin(n,1)). Thus, L; contains ¢(Spin(n,1)). Then it follows
that ' € L;. Indeed, the inclusive relation ¢(Spin(n,1)) C L, implies
that ¢(D2(v;)) € Ly for every i = 1,... k. Thus, it follows that

e = ¢(Dzy (1)) "pu(Dzy (1)) € Lu.
Thus, the proof is completed. U

4.5. Proof of Step 3 (Zariski-closure of specific deformation).
We recall from Theorem B9 that when n > 3, the algebraic sub-
group G¥ (see Definition B7) achieves the upper bound of the Zariski-
closure of any small deformation of ¢|r, up to G-conjugacy. In this sec-
tion, we provide a proof of Proposition B9, which states that repeating
the bending construction & times results in a small deformation ¢;(I")
of ¢|r, whose Zariski-closure in G, to be denoted by L;, attains the
upper bound G¥. The proof requires a careful discussion to handle the

general situation in which we cannot expect vz(] ) e [;, nor the existence
of towers of symmetric pairs [ = [ C ' C -+ C [F = g, as mentioned
in Remark A°R.

Before proceeding with the proof of Proposition B9, we first establish

a couple of auxiliary lemmas.

Lemma 4.21. Let F be a field, and A be an associated F-algebra, and
let V' be an A-module which is finite-dimensional over F. For n > 1,
let VP denote the set of n-tuples vy, ...,v, € V such that

gen
Avi+ -+ Av, = V.

Then VO is Zariski-open in VO,

gen

Example 4.22. In the case n = 1, an element in Vyen(:= V,21) is

called a cyclic vector. We note that Vg, = V N {0} if and only in V
15 irreducible.

Proof of Lemma [-21. Suppose V is m-dimensional. Then V" is the

gen
union of the Zariski-open set
{(v1,...,v,)| dimg(spang{ajvy, ..., a,v,}) = m}
where (ai,...,a,) runs over A X --- x A. O

For a Lie algebra [, we denote by U(l), the augmentation ideal of
the universal enveloping algebra of [.

We extend the adjoint action of the Lie algebra g to an action on its
universal enveloping algebra U(g), which we continue to denote by ad.

We also use the following notation, which will be studied in Appen-
dix [H. For a finite subset X C g and a subgroup L C G, we denote by
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G(L; X) the identity component of the Zariski closure of the subgroup
of G generated by L and the elements e for X € X (Definition E).
Its Lie algebra is denoted by g(L; X'). Furthermore, for each t € R, we
define tX := {tX|X € X}.

Lemma 4.23. Let L C G be two Zariski-connected real algebraic groups.
For any X € | and for any u € U(l),, there exists an analytic map

a=ax,: R—g
such that a(t) € g(L;t{X}) for allt € R\ {0} and a(0) = ad(u)X.

Proof. We fix X € [. The set of u € U([) for which there exists such

an analytic map a: R — g with a(0) = ad(u)X forms a vector space.

Thus, it suffices to show the claim in the case u = Y; ---Y,, for some

Yi,...,Y, € U(l) with n > 1. We prove this by the induction on n.
First, consider the case n = 1. When u =Y € [, we set

alt) = %(Ad(e‘tX)Y _y),

Clearly, a: R — g is an analytic map with a(0) = —[X,Y] = ad(Y)X.
Moreover, since Y € [ and e € G(L;t{X}), we conclude that a(t) €
g(L;t{X}) for any ¢ # 0.

Next, suppose that v = Y5---Y,, € U([), and that there exists an
analytic map b: R — g such that b(t) € g(L;t{X}) for any ¢t # 0 and
b(0) = ad(v)X. Let u := Yiv where Y; € [. We set

a(t) = %(Ad(etyl)b(t) —b(t)).

Then a: R — g is an analytic map and we have a(0) = [Y7,b(0)] =
ad(Y)(ad(v)X) = ad(Y1v)X. Since eV € L and b(t) € g(L;t{X}), we
have a(t) € g(L;t{X}) for any ¢ # 0.

By induction, the lemma is proved. O

Proof of Proposition [-9. Let L = Spin(n, 1), and L; denote the Zariski-
closure of ¢ (I") in G.

First, we claim that L; C G¥ for every t € R. It follows from the
definition (ER) of v; that v; € g¥, where we recall Definition B3 for
g”. Moreover, (L) C G¥ by the definition of G¥ in Definition B72.
Therefore, the construction of ¢; in Lemma B4 implies that ¢;(I") C
G%, which concludes that L, C G¥.

Second, we claim that [; D g¥ if t is sufficiently small, where we write
[; for the (real) Lie algebra of L;. This claim will imply that L; = G¥
because G¥ is Zariski-connected.

We recall from Lemma the following two properties:

120 (1)<
(4.21) exp(tv;) € Ly forany 1 <j <k.
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We might expect from (B=ZT) that v; € [, for a sufficiently small ¢.
However, such a statement is not true in our general setting. Therefore,
in what follows, we will proceed with a more careful discussion.

The properties (2220) and (E=21) imply that G(@(L); t{vy,...,v}) C
L; with the notation as in Definition [EZT of Appendix [H, and hence, we
have g(@(L), t{vy,...,vm}) C L.

Recall that g(V;) (~ Hompg(V;, g)®V;) denote the isotypic component
of V; in g. We note that g(V;) = g?(V;) by Definition B3 of g¥ for any
1 € N. Let

ri: g — g(Vi)
denote the projection to g(V) see (A8). Then, pr; is an L-homomorphism.
Moreover, for 1 < i, by the definition (I8) of v;, we have pr;(v;) = vy )
for any 1 < j < [g: V]].

We note that there are only finitely many non-zero U]) because
dimg < oo. Since V; is not the tr1v1al representatlon for any i > 1,
there exists Y € [ such that ad(Y) v;” # {0} whenever v )£ 0. In

turn, we have U([)(ad(Y)v, @) )= V(] by the irreducibility of V(J) ~ Vi,

and consequently

Pfi(z UMY, v]) = Z Uy, = Z )

For each ¢« > 1, let a;: R — g be an analytic map, as given in
Lemma B2Z3 in Appendix H, satisfying a;(0) = [Y,v;] and such that
a;(t) € g(e(L);t{v;}) for any t # 0. Then, for any sufficiently small
t # 0, we have

pri(z U(l)a, ZU pr;(a;(t)) = g(Vi).

j=1
by Lemma E=Z1. Since the L—module > 2 U(Da;(t) is contained in
g(p(L);t{v1,...,vm}) C I, we have shown, for any i € N,

(4.22) Lo eV,

Now we prove (B=22) for ¢ = 0, that is, [; D 34(dp(l)).

Let L' denote the Zariski closure of the group generated by (L) and
exp(g(V;)) for all © € N,. It follows from (A=22) that L, D L’. More-
over, the identity component Zg(p(L)) of the centralizer normalizes
L'. Therefore, it follows from the Baker—Campbell-Hausdorff formula
that

exp(—tu;) exp(tv;) = exp(—tu;) exp(t(u; + vaj))) e L' (CL).
because u; € 34(dp(l)) and ), vgj) € . Thus exp(tu;) € L; be-
cause exp(tv;) € L;. By the choice of uy, ... uyzg 1)), Lt contains
Za(e(L)) = G(t{ur, ..., up(za(or))) }) for sufficiently small ¢ > 0.
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This proves (E222) in the case i = 0.
Therefore, we obtain [, D g¥, which we wanted to prove. U

- 5. PROOF OF MAIN RESULTS
?matlon-cpt-non—cpt‘

In this section, we study deformations of discontinuous groups for
X = G/H, and in particular, we complete the proofs of the main
theorems of this article, Theorems P29 and P21,

This section is organized as follows:

In Section B, we review preliminaries on deformations of discontin-
uous groups for X = G/H with non-compact H, as well as results on
local rigidity and the stability of proper discontinuity and cocompact-
ness. In Section b=, we complete the proof of Theorem 29, which an-
swers Question 273 (Q1)—(Q3). In Section B3, we prove Theorem Z19.
In Section b4, we complete the proof of Theorem PZZI, which answers
Question 33 (Q1)—(Q3) for the exotic quotient I'/\G/T'y. In Sec-
tion B4, we construct discontinuous groups for certain homogeneous
spaces X = G/H which are Zariski-dense subgroups of G and have
cohomological dimension between 2 and the non-compact dimension
d(X), in connection with problem 2.

1iscontinuous—group‘

5.1. Preliminaries on deformations of quotients I'\X. Let X =
G/H be a homogeneous space of a Lie group G with H non-compact. In
this section, we summarize some results of the local rigidity of discontin-
uous groups, and also discuss when local rigidity fails, along with how
small deformations of discrete subgroups can preserve (or sometimes
not preserve) the properties of the action, such as proper discontinuity
and cocompactness.

Since proper discontinuity may change under small deformations in
the general setting, the following concept introduced by the second
author and Nasrin will be useful in clarifying the subsequent discussion.

obayashiNasrinO6, Kobavash12006 kokyuroku
rmation_space_for_x‘ Definition 5.1 (Stability of proper discontinuity, [A% 49]). Let ¢ € R(I, G; X),

as defined in Section 271. The I'-action on X via ¢ is called stable as a
discontinuous group for X (under any small deformation) if R(I', G; X)
is a neighborhood of ¢ in Hom(I', G), that is, if any small deformation
¢" of ¢ in Hom(I', G) is faithful and discrete, and if the -action on X
through ¢’ is properly discontinuous.

Let us make a simple observation on the relationship between lo-
cal rigidity for R(I',G; X) (see Definition P=3) and local rigidity for
R, G) =R(I',G; G/{e}) (see Section B):

_emma:locally—rigid‘ Lemma 5.2. Let I' be a discontinuous group for G/H, and let v: T' —
G denote the inclusion map. The following claims hold:

ally-rigid-discont ‘ (1) Ifuis locally rigid, then it is also locally rigid as a discontinuous
group for X.
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Lmverse—implication‘ (2) If v is stable as a discontinuous group, then the converse of [I]
holds.

Proof. is straightforward, and follows directly from the defini-
tion of stability. O

Example 5.3. In the group case where X = G /{e}, we have R(I', G; X) =
R(I',G). Fory € R(I',G; X) to be stable in the sense of Definition a1,

it 1s equivalent to the condition that any small deformation of ¢ in
Hom(T', G) is faithful and discrete.

.. Weil_discrete_subgroups . . .
Remark 5.4 (Weil [[Z0]). Let G be a (not necessarily reductive) Lie

group, and I' a cocompact discrete subgroup of G. Then, the I'-action
on G/{e} is stable as a discontinuous group for G/{e}.

We now consider the case where H is non-compact.

cocompeztsuabidbly| Example 5.5. (1) (cocompact but unstable). Let G := Aff(R) be
the affine transformation group of X := R. For e # 1, we
define a homomorphism p.: Z — G by mapping the generator
1 € Z to the affine transformation x — (1 — €)x + 1. Clearly,
wo(Z) is a cocompact discontinuous group for X = R, and
. € Hom(I', G) is faithful and discrete. However, the properly
discontinuous action of I' = Z on X = R is not stable at ¢,
even though o.(Z) is discrete in G. Indeed, p-(Z) has the fized
point et € X for any e # 0,1, and consequently, the action
of p-(Z) on X cannot be properly discontinuous.

(2) (cocompact and stable). In the setting where X = G/H is
of reductive type with non-compact H, the first example of a
stable cocompact discontinuous group I, in grhutrarily high di-
mensions, was proven by thjféiﬁﬁ%%‘s’f a%%&molution
to a conjecture by Goldman [IL4].

(3) (stability varies with a homomorphism ). For some triples
(I',G, X), it is possible that R(I',G; X) contains both %%l{[lgshmasrin%
and unstable elements. (For an explicit description, see [AR] by
the second author and Nasrin, particularly when G is a nilpo-
tent Lie group.)

In contrast to the failure of stability for cocompact properly discon-
tinuous actions, as presented in Example B3 [T in the non-reductive
case, we expect that proper discontinuity is an open condition in a rea-
sonable setting where X Eogdég As of reductive typ bbéf%%ﬁbg solution
to Goldman’s conjecture [Ta] by the second author [43]1n s, several
suﬂiqlenthconccllltlops ha,ve.been devfeloped to 1ensure’ t‘he stability lp@lolgfi tandKassel201 Tmaximal]
erty in the reductive sotting (se, for example, GuéritandeKassel iy 10017anosov
GuerltaudGulch?a%g%sqo;glenhard [¥], the first author [23], and

Kassel-Tholozan [33 precﬁ)rm , for recent work). In this article, we
need:




ity-for-properness
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ell2
Fact 5.6 (Kassel &(/ . 1. 3]). Let G be a real reductive algebraic

group, X = G/H a homogeneous space of reductive type, L a real
simple algebraic group of real rank 1, and ¢p: L — G a Lie group ho-
momorphism such that the L-action on X = G/H via ¢ is proper. If
I' is a torsion-free cocompact discrete subgroup of L, then the I'-action
on X wvia @ is stable as a discontinuous group for X.

In the case where I' is a discontinuous group for a group manifold
(G x G)/diag G of the form I' = I'y x I'y, I' is not an irreducible
lattice, and thus the assumption of Fact b is not satisfied. However,
an argument in the same spirit can still be applied, and the stability

of discontinuous groups holds in the following form:

asgelKobayashil6
Fact 5.7 (Kassel and the second author%{ q]). Let G be a real reduc-

tive algebraic group, H and L two closed reductive subgroups of G such
that the action of H x L on G ~ (G x G)/diag G is proper, and let
I'y and 'y be torsion-free irreducible cocompact discrete subgroups of
H and L, respectively. Then the action of 'y x I't, on G is stable as a

discontinuous group for (G x G)/diagG.
KasselKobayashil6
Fact b is derived from [ \[,e , Lem. 4.23], which provides a quantitative

estimate of the sharpness constant in this setting.

Finally, with respect Q thesﬁoggmpactness of the action, as shown
by the second author in i , cocompactness is always preserved as long
as the stability of the dlscontlnuous group holds.

ob hi89
Fact 5.8 &( ,a Eor. 5. 5]). Let I' be a cocompact discontinuous group for
X = G/H. Then for any ¢ € R(I',G; X), the quotient X,y is also
compact.

We end this section by providing a key framework for proving the
answer to Question 273 (3), which follows from the main result of Sec-
tion B along with the aforementioned stability theorem.

Theorem 5.9. Let G be a Zariski-connected real reductive algebraic
group, and X = G/H a homogeneous space of reductive type. Let
: Spin(n,1) — G be a homomorphism such that the action of Spin(n, 1)
on X, via @, is proper.

(1) There exists a pair (', ¢") such that the Zariski-closure of ¢'(T")
equals G¥ (Definition B71), where I is a torsion-free cocompact
discrete subgroup of Spin(n,1) and ¢’ € R(I',G; X) is a small
deformation of ¢|r in Hom(T', G).

(2) If g¥ = g (see Definition B1), then ¢'(I') is Zariski-dense in
G, where (I',¢') is the pair in (1).

Proof. We have shown in Theorem B (1) that there exists a pair (I', ¢')
where I' is a cocompact discrete subgroup I' of L without torsion and

¢’ is a small deformation of ¢|r such that ¢'(I") is Zariski-dense in G¥.
Then the theorem follows from Fact B8 applied to L = Spin(n,1). O
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5.2. Proof of Theorem 9. In this section, we complete the proof
of Theorem 2. In the first half of this section, we discuss the case
where the discontinuous group is locally rigid, and in the second half,
we deal with the, case where it is deformable,, .

As shown in }(E?%%tﬁ'%em] using Weile;%!?l,_ml]l_ﬁhrgi\%nishing of the
first cohomology of I" serves as an effective first sufficient condition to
the local rigidity of a cocompact discontinuous group I' acting on a
homogeneous space G/H. This condition can be addressed without
considering the subgroup H, see Steps 1 and 3 below. We shall prove
in Steps 4 and 5 that this approach covers all the local rigidity cases
in Theorem 9. That is, in the setting where (G, H, L) is one of the
triples in Table P23, there exists a cocompact discrete subgroup I' of
L for which H'(T',g) # 0 if and only if there exists such a T' that is
deformable as a discontinuous group for X = G/H.

We recall that L, is the semisimple factor of L. The proof of Theo-
rem 29 is organized in the following five steps.

Step 1: Proof of local rigidity in the cases where [ is isomorphic to
neither so(n, 1) nor su(n,1).

Step 2: Irreducible decomposition of the [,-module g/l in the cases
where [, is isomorphic to either so(n, 1) or su(n, 1).

Step 3: Proof of local rigidity in the cases where [, is isomorphic to
either so(n, 1) or su(n,1) and H*(T', g) = 0 for any cocompact
discrete subgroup I" of L.

Step 4: We discuss I" which is deformable but cannot be deformed
into a non-standard discontinuous group for X. This happens
when [, is isomorphic to su(n, 1).

Step 5: We discuss I which can be deformed into a Zariski-dense sub-
group. This happens when [ is isomorphic to so(n, 1).

The proof of the theorem is mainly carried out for L = Lg,. For each
Jj =1,2,3, if (Qj) is affirmative for L, then (Qj) is also affirmative
for all L such that L,, C L C L4z, as in Notation 2Z8. For the reverse
direction, we use the following lemma.

Lemma 5.10. Let L. denote the compact factor of a real reductive
group L without split center. Then we have

L = LgL,.

Let T be a torsion-free discrete subgroup of L. Then, the quotient map
L — L/L. ~ Ls/(Lss N L) is injective when restricted to T', and
therefore, we may regard 1" as a discrete subgroup of the semisimple
Lie group Lgs/(Lss N Le).

Proof. Since T' is torsion-free, the finite subgroup I' N L. must be the
singleton {e}. Hence, the assertion is clear. O
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Step 1. We prove the cases whe ot! lsnat isomorphic to so(n, 1) or
su(n, 1). The proof is parallel to 43%@‘5._3.12]. Let I" be a torsion-
free cocompact discrete subgroup of L. It follows from Lemma b1
that we can deduce that I' is a torsion-free cocompact discrete sub-
group of the semisimple Lie group Lgs/(Lss N L.). Since [y is not
isomorphic to so(n,1) or su(n, 1), we apply Raghunathan’s vanishing
theorem (Fact B), which implies that we have H'(T', g) = 0. This im-
plies P?]g g%gagr}{clusion map ¢: I' — G is locally rigid by a theorem of
Weil [I[Z1] Tn Section Bl Therefore, by Lemma B2 [T], ¢ is locally rigid
as a discontinuous group for G/H. This gives a proof of Theorem 9
in Cases 1’-1, 2-1, 5-1, 5’, 6’, 7, 8,9, 11’, and 12 in Table PZ3.

The remaining cases are written out in Table b for the next steps.

Step 2. Suppose that [y is isomorphic to so(n, 1) or su(n,1). As
preparation for the following steps, we will provide the irreducible de-
composition of g/l as an [;-module in the following lemma, for the
cases listed in Table B

Lemma 5.11. In the cases listed in Table B, the irreducible decom-
position of the real vector space g/lss as an lgs-module is given. Here,
R™! denotes the standard representation of s, = s0(n, 1) or spin(n, 1),
and C™! represents the standard representation of Iy, = su(n,1). The
symbol 1 denotes the trivial representation.

Step 3. We prove Cases 6, 8, and 9’ in Table bl.

In these cases, Iy is isomorphic to so(n,1). In light of the irre-
ducible decomposition of g/l in Table b, as stated in Lemma BT,
we again apply Raghunathan’s vanishing theorem (Fact Bl), and we
have H'(T', g) = 0 for any torsion-free cocompact discrete subgroup T
of L. In these cases, as in Step 1, the inclusion map I' — G is locally
rigid as a discontinuous group for G/H.

Step 4. We consider Cases 1, 4-1, and 10°’. In these cases, the
following two conditions hold:

e [ is isomorphic to su(n, 1) (n > 2);
e there exists a torsion-free cocompact discrete subgroup I" of L
such that H'(T, g) # 0.

Proposition 5.12. Suppose that (G, H, L) is one of Cases 1, 4-1, and
10°.
(1) ((Q1) in Question 23 is yes.) There exists a torsion-free co-
compact discrete subgroup 1" of L such that I is deformable as
a discontinuous group for G/H .
(2) ((Q2) in Question 2 is no.) No torsion-free cocompact dis-
crete subgroup I' can be deformed into a non-standard discon-
tinuous group for G/H.
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g Lss 9/ks

Case 1 su(2n, 2) su(2n, 1) c*l 41

Case 1’-2 ) i1
Case 9.9 su(2,2) spin(4,1) R*

Case 3 50(2n,2) s50(2n, 1) R21
Case 4-1-a | 50(2n,2) (n >3) | su(n,1) | A*C™'+1
Case 4-1-b s0(4,2) su(2,1) C*'+1

Case 4-2 50(2,2) 50(2,1) 193

Case 4’ s0(2n, 2) s0(2n,1) R2n:1

Case 5-2 50(4,4) spin(4,1) | (R®1)®3 4193

Case 6 50(8,8) spin(8, 1) A’ RS

Case 7’ 50(4,4) s0(4,1) | (RH1)®3 4193

Case 8 50(8,C) spin(7, 1) A’ R™

Case 9’ 50(8,C) 50(7,1) A’ R7!

Case 10 50*(8) spin(6,1) RS

Case 10’ 50%(8) su(3,1) | A°C* +1

Case 11 50%(8) spin(6,1) RS!

Case 12’ s0(4,3) s0(4,1) R 4 192

TABLE 5.1. Irreducible decomposition of g/l as an [g;-module.

Proof of Proposition EZ13. Before entering the proof, we observe that

Case 4-1-b is locally isomorphic to Case 1 with n = 1, that is,
(G,H, L) =~ (SU(2,2),Sp(1,1),SU(2,1)),

whereas Case 10’ is locally isomorphic to Case 4-1-a with n = 3, that

is,

(G,H, Ly,) ~ (50(6,2),S0(6,1),SU(3,1)).

[1). This statement was proved in K(ﬂi?,é%ﬁlrln;.g%].

[2). Using the notation introduced in Notation I8, in all cases under
consideration, Ly, is isomorphic to U(n, 1) up to finite covering. Ac-
cordingly, I' is cocompact in L,,,., and for the purpose of our proof, we
may assume without loss of generality that [ is isomorphic to u(n,1).

We begin with the Cases 4-1-a and 107, in which the first cohomology
group H'(T', g/l) = 0 vanishes.

In Case 4-1-a, g/l is isomorphic to A’C™' as a u(n,1)-module.
TherefoIF%az e have I YT, g/1) = 0 by the Vani.s}}ing the(?rem of Raghu—
nathan [60]; see Fact BZl. We apply Proposition E2 in Appendix E
to [ = u(n,1) and conclude that any homomorphism I"' — G which
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is sufficiently close to the initial inclusion I' — U(n, 1) remains inside
U(n, 1), up to conjugation by elements of G.

In Case 10, g/l is isomorphic to A C*' as a u(3, 1)-module. Hence,
the proof is similar to Case 4-1-a.

We next consider Cases 1 and 4-1-b. In these case, the first cohomol-
ogy group does not necessarily vanish, so the analysis is more involved.
In these cases, the pair (L, G) is isomorphic finite covering of the pair

(U(n,1),SU(n,2)).

We p %\i%a}%lqmcilﬂg}m% the spirit of the original work of Goldman—
Millson [I6], which treated the pair (SU(n, 1), SU(n+1,1)). Applying
their argument to the c-dual symmetric pair of (U(n, 1), SU(n+1,1)),
namely (L,G) = (U(n,1),SU(n,2)), we confirm that the argument
extends to pairs that are only locally isomorphic. This is carried out
in the following two steps.

The first step consists of proving Proposition E9. For future refer-
ence, we give a proof in Appendix [E under more general assumptions,
where we not only drop the requirement that L C G form a reductive
symmetric pair, but also eliminate the assumption that L and G are
reductive altogether.

The second step is to show that the three assumptions of Proposi-
tion [ET are satisfied for the specific pair (L,G) = (U(n, 1), SU(n,2)).
In the cases (L,G) = (U(n,1),SU(n + 1,1)) and (U(n,1),SU(n,2)),
the only non-trivial assumption in Proposition EZ is condition [3)
therein. Condition [3}, while formulated in terms of the cohomology

of a I'mod 1% can be rei ergr%‘%ed— using the result of Matsushima—
. Matsushima-Mura - . . .
Murakami Pﬁwb]—as a statement about harmonic forms with values in

a local system over the compact complex hyperbolic manifold I"\HE,
which facilitates its verification. Moreover, the same argument remains
valid in each step, provided the groups are locally isomorphic.

Since U(n, 1) acts properly on G/H, this deformation remains stan-
dard.

Thus the proposition is shown. O

Remark 5.13. Alternatively, the second statement of Proposition b-12
may be verified in Cases 1 and 4-1-b when L is locally isomorphic to
SU(n, 1), by applying Klingler’s local rigidity (Fact B33) together with
Remark B, which asserts in this setting that any homomorphism I' —
G sufficiently close to the initial inclusion [' < L is, up to conjugation,
contained in L - Zg(L) = U(n,1).

Step 5. The remaining cases are Cases 1’-2, 2-2, 3, 4-2, 4’ 5-2, 7’,
10, 11, and 12’. In these cases, the following two conditions hold:
e [ is isomorphic to so(n,1) (n > 2);
e there exists a torsion-free cocompact discrete subgroup I' of L
such that H'(T,g) # 0.



lem:1=s0-Zd

nl-group-manifoldl

oof-group-manifold ‘

60 KAZUKI KANNAKA AND TOSHIYUKI KOBAYASHI

We take a closer look at the Lie algebra g” in Definition B&, or the
corresponding algebraic group G¥ in Definition BZ2:

Proposition 5.14. Let (G, H, L) be one of Cases 1-2, 2-2, 8, 4-2, 4,
5-2, 7,10, 11, or 12°. We denote by ¢ the natural morphism Ly, — G.
Then we have g¥ = g.

Note that Case 5-2 of Proposition b4 has already been proven in
Example (1) using G(p, q), and Cases 10 and 11 have been shown
in Example (2) using G(p, q).

Proof. We recall from Definition B that g” is the Lie algebra contain-
ing [, and all the subrepresentations in the complementary subspace
that contain non-zero [ ,-spherical harmonics. It then follows immedi-
ately from Lemma BT that g¥ coincides with g in each of the above
cases. U

Thus, from Theorem B9, we conclude that the answer to (Q3) is
“yes” in these cases.

5.3. Proof of Theorem ZZT9. In this section, we provide a proof of
Theorem PZZT9.

For any Zariski-connected real algebraic group G that is locally iso-
morphic to SO(n, 1), there is a covering homomorphism Spin(n,1) —
G. Hence, it suffices to prove the case where G = Spin(n,1). We apply
Theorem B9 to the setting where (G x {e}, G x G, diag G) plays the
role of (L,G, H).

Via the natural embedding ¢: G x {e} — G x G, the Lie algebra
g @ g is decomposed into irreducible representations g + 194me a5 3
g @ {0}-module.

Then it follows from Definition BH that (g g)¥ coincides with g g.
Thus, from Theorem B9, we conclude that there exist a torsion-free,
cocompact discrete subgroup I" of G and a small deformation IV of
' x {e} such that I" is Zariski-dense in the direct product group G x G,
while preserving the proper discontinuity of the action on the group

manifold (G x G)/diagG.

5.4. Proof of Theorem ZZI. The majority of the proof of Theo-
rem 221 in the I',\G/T'y case reduces to the proof of Theorem P9 in
the I'\G/H case, given in Section b32. In addition, let us prepare the
necessary lemmas and propositions in advance.

In the sequel, we assume that G is a Zariski-connected real reductive
algebraic group, H and L are real reductive algebraic subgroups of G,
'y and 'y, are torsion-free cocompact discrete subgroups of H and L,
respectively, and that tg: I'y — G, ¢r: I', — G denote the natural
embeddings.

The proof of the following lemma is straightforward and we omit it.
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nifold-deformation| Lemma 5.15. Suppose that ¢ € Hom(I'y x 'y, G x G) is sufficiently
close to the original embedding 1y X tp,: 'y x 'y = G x G. Then, for
each group J = H or L, there exist group homomorphisms

e j;: 'y — G, sufficiently close to the original vy,
e p;: 'y — G, sufficiently close to the trivial homomorphism,

such that
mifold-deformation| (5.1) (v, ve) = (Gu(va)pr(ve), Jo(ve)pr (vu))

for all yg € Ty and v, € I'p.
Moreover, we have

p(Tz) C Za(H'),
pry O(p(FH X FL) C H' - Zg(H/),

where pry: G X G — G denotes the first projection, H' is the Zariski-
closure of ju(U'y), and Zg(H') denotes the centralizer of H' in G.

exotic—non—standard‘ Proposition 5.16. Suppose that the direct product group H X L acts
properly on the group manifold (G x G)/ diag(G) (~ G). Furthermore,
we assume the following three conditions:

:em:H—locally—rigid‘ (a) Both the inclusion map tg: U'y < G and the trivial represen-
tation 1g: U'y — G are locally rigid;

Tigid—up—to—compact‘ (b) The image of any small deformation of v: T'y, — G remains
inside L, up to conjugation by elements of G;

:entralizer—compact‘ (c¢) The centralizer Zg(H) of H in G is a compact group.

Under these assumptions, I'y X I', cannot be deformed into a non-
standard discontinuous group for the group manifold (GxG)/ diag(G) ~
G.

Proof. Suppose that ¢ € R(I'y x ', G x G; G) is a small deformation
of vy x vp. It follows from Lemma BTA that ¢ is of the form (B) for
some group homomorphisms jy, py: 'y = G, jr,pr: ' — G.
By the assumptions and [[b}, if necessary, we can replace ¢ by an
appropriate conjugation in G' X G, and assume that jg = 1y, pg = @c fhunathan-discrete
and j.(I'y) € L. Furthermore, by Borel’s density theorem (e.g., [GI]
Cor. 5.16 (ii)]), I'y is Zariski-dense in H. Applying again Lemma 513,
we obtain

QO(FH X FL) C (H . Zg(H)> x L.
Since Zg(H) is compact by the assumption [}, the group (H-Zg(H)) X
L acts properly on the group manifold G. Hence, p(I'y x T'z) is a
standard discontinuous group for G. U

:otic—locally—rigid‘ Proposition 5.17. Retain the setting and the assumption i Propo-
sition BI@. Furthermore, suppose that the assumptions [(b} and [(c) are
strengthened by the following stronger assumptions:

Ip-to-compact-prime (b)) vr: T — G is locally rigid;
izer-compact-prime (¢’) The centralizer Zg(H) of H in G is a finite group.
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Then, vty X vy, 1s not deformable as a discontinuous group for the
group manifold (G x G)/diag(G) (~ G)

Proof. As we already know from the proof of Proposition b8, pr,(I'z)
is contained in Zg(H), which is a finite group in our setting. Hence,
the small deformation p; must be the trivial representation. Thus, the
local rigidity follows. Il

Proposition 5.18. Assume the following:

(a) G is simple and Zariski-connected;
(b) The inclusion map vg: 'y — G cannot be deformed into a
Zariski-dense discrete subgroup of G.

Under these assumptions, the direct product group I'y x I'p, cannot be
deformed into a Zariski-dense discrete subgroup of G X G.

Proof. Take any ¢ € R(I'y x ', G x G) that is suffiently close to the
original embedding ¢ty X ¢y. Then, by Lemma BTA, there exist group
homomorphisms jy, py: 'y — G and jp, pr: 'y — G satistfying (B71).
Let H' be the Zariski-closure of jy(I'y) in G. Since jy(I'y) ~ 'y is
an infinite group, H' has positive dimension. On the other hand, by
the assumption [b), H' is a proper algebraic subgroup of G. Therefore,
by the assumption [a), we can conclude that H' - Zg(H') is a proper
algebraic subgroup of the simple algebraic group G. On the other hand,
from Lemma BTH, we have

pryop(l'y xT'y) C H' - Zg (H').
Therefore, the image of ¢ cannot be Zariski-dense. O
We are ready to prove Theorem 2211

Proof of Theorem ZZ1. [I}. The equivalence of [2] and [z:z): It follows
from Theorem 213 that collecting the triples (G, H, L) for which the
answer to (Q1) is “yes” for at least one of Case i or Case i’ in Table EZ3
yields the classification in [727).

The implication from [7) to is straightforward. In fact, if T’y
is deformable as a discontinuous group for G/H, then it is also de-
formable for G/I'y. Consequently, the direct product group I'y, x 'y
is deformable as a discontinuous group for the group manifold G x
G/ diag(G).

Let us prove the implication from to by contraposition.
Suppose that the triple (G, H, L) belongs to one of the following cases,
up to switching H and L, and up to compact factors:

e Case 5. (SO(4n,4),S0(4n,3),Sp(n,1)) (n > 2);
e Case 6. (SO(8,8),50(8,7), Spin(8,1));
e Case 8. (S0(8,C),SO(7,0C), Spm( ,1));
e Case 9. (SO(8,C), Spin(7,C),SO(7,1)).
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Let 'y and I'y, be torsion-free cocompact discrete subgroups of H
and L, respectively. Then the triples (G, H, L) satisfy all the assump-
tions of Propositions b8 and BT4. In fact, the assumptions in
Proposition b8 and in Proposition b1 follow from the vanishing
of the first cohomologies, H'(T'y, g) = H'(I'1, g) = 0, which is verified
using Lemma BT and Raghunathan’s vanishing theorem (Fact B).
Furthermore, it is clear that Zg(H) is a finite group in each case.
Hence, by Proposition b4, I'y x I'f is locally rigid as a discontinuous
group for the group manifold G.

[2). The equivalence of [7) and has been proven in Theorem PT3.
Let us verify the implications [Z}=[77) and [[7z)={z7z}.

[0)=1{): Suppose that [7] holds. Then, by Theorem PI3 [1}={11),
one can find a small deformation j;, € R(I',G;G/H) of the original
embedding ¢7,: I'y — G such that j(I') is Zariski-dense in G, while
preserving the proper discontinuity of the action on G/H. We take
any cocompact discrete subgroup I'y of H, and denote by ty: 'y —
G the natural embedding map. Then, ¢y X j; gives an element of
Ry xT', G xG;G), since the Zariski-closure of I'y x jr(I'y) is equal
to H x (G, which cannot act properly on the group manifold because
H is non-compact.

Thus, 'y x j (I'y) is a non-standard discontinuous group for the
group manifold G ~ (G x G)/diag G.

(i0)={(zi2):

We prove the implication from to by contraposition. The
only triples that are not in the list of [#:7), yet satisfy the condition of
being deformable (i.e., fulfilling the classification in Theorem PZ21 [[T]),
are the following:

Cases 1 and 2: (SU(2n,2),Sp(n,1),U(2n,1)) (n > 2).

This triple (G, H, L) satisfies all the assumptions of Proposition bI8.
In fact, the assumption follows from Raghunathan’s vanishing theo-
rem (Fact B), and the assumption [c] can be easily verified. Moreover,
the assumption is verified using Klingler’s local rigidity theorem,
which holds for I' as a torsion-free cocompact discrete subgroup of
SU(n, 1), and also holds for U(n, 1). Thus, we conclude from Proposi-
tion 518 that is not true. Therefore, the implication [z )={777) is
established.

[3]. We observe that the answer to (Q3) is “no” for at least one of
Case i or Case i’ in Table 23, except for Case 4.2, where G = SO(2,2)
is not simple. Hence, since G is a simple Lie group, the direct product
group 'y x I';, cannot be deformed into a Zariski-dense subgroup of
G x G, as stated in Proposition BIS.

Thus, the proof of Theorem P21 is complete. O

We have excluded the case G = SO(2,2) in Theorem P21 [ 3], which
is not a simple Lie group, and the conclusion differs as stated in Propo-
sition Z2Z24. We now provide a proof of Proposition 222). Specifically,
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this occurs in Cases 3 and 4 (n = 1), i.e., in the following case where
(G,H, L) = (SO(2,2), S0(2,1), SU(1, 1))

up to the switching of H and L, and up to compact factors of H and
L.

Proof of Proposition Z223. Let ty: H — G and tp: L — G denote
the natural embeddings. The Lie algebra g = s0(2,2) is decomposed
into the sum of irreducible representations of H = SO(2,1) and L =
SU(1,1) via the adjoint actions as follows:

g~h+R¥, g [+1%

Then, we have g'# = g'~ = g. Applying Theorem B9 to H = SO(2,1)
and L = SU(1,1) ~ Spin(2,1), there exist torsion-free cocompact
discrete subgroups I'y and I';, of H and L, respectively, that can be
deformed into Zariski-dense subgroups of G. Therefore, the direct prod-
uct group I'y x I', also has a small deformation ¢: 'y x 'y, = G x G
that is Zariski-dense in G x G. By the stability of proper discontinuity
(Fact B72), the action of ¢(I'y x I'y) on G is properly discontinuous.
Hence, 'y xI', can be deformed into a Zariski-dense subgroup of G x G,

preserving the proper discontinuity of the action on the group manifold
G = (G x G)/ diag(G). O

5.5. Some results for Problem 2. In this section, we present sev-
eral results regarding Problem 2, namely, the existence problem of
Zariski-dense discontinuous groups I' for X = G/H, when the cohomo-
logical dimension cdg(I") is between 2 and d(X).

First, we consider the case where I' is isomorphic to the surface group
m1(X,), for which cdg(I') = 2. In this case, by combining Theorem 659
(for n = 2) with Okuda’s results, as discussed in R}igﬁ%ral&%d?ﬁ}?&n

we obtain the following theorem. For the proof, see [24].

KannakaOkudaTojo24 . ..
Corollary 5.19 (|24, Thm. b.4 (v)=(iii)]). Let X = G/H be a sym-

metric space, where G is a Zariski-connected real reductive algebraic
group. Assume that there exists a discontinuous group for X which is
isomophic to a surface group m(X,). Then, among such discontinuous
groups, there exists a subgroup that is Zariski-dense in G.

Remark 5.20. Several equivalent statements are know kfl(l)fs,t e
sumption in Corollary b9, which we recall from Okuda [, B&[. For
a semisimple symmetric space X = G/H, the following six conditions
are equivalent:

(i) X admits a proper action of SL(2,R) via a homomorphism
SL(2,R) — G;
(ii) X admits a proper action of SL(2,R) via an even homomor-
phism SL(2,R) — G (Definition-Lemma BT8);
(iii) X admits a properly discontinuous action of the free group F,
of rank k for some k > 2 via a group homomorphism Fy — G;
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(iv) X admits a properly discontinuous action of the free group Fj
of rank k for any k > 2 via a group homomorphism Fy — G;

(v) X admits a properly discontinuous action of the surface group
m(2,) of genus g for some g > 2 via a group homomorphism
7T1(Eg) — G,

(vi) X admits a properly discontinuous action of the surface group
m(X,) of genus ¢ for any g > 2 via a group homomorphism
m(X,) — G;

The above equivalence between (m) and (k) suggests the following
question:

Question 5.21. Let m(X,) be as in the assumption of Corollary BTA.
Does there exist a Zariski-dense subgroup in G isomorphic to m(2,)?

We also do not know the answer to the following question:

Question 5.22. Can the assumption that G/H is symmetric be re-
moved in Corollary G137

The following result provides yet another perspective on deforma-
tions with discontinuous groups of lower cohomological dimension for
reductive symmetric spaces.

Corollary 5.23. Let X = G/H be a symmetric space, where G is
a Zarski-connected real semisimple algebraic group. If X admits a
finitely-generated discontinuous group which is Zariski-dense in G, then
there exists a discrete subgroup I of G with the following three prop-
erties: the comological dimension of I' is greater than 1, I' is Zariski-
dense in G, and I acts properly discontinuously on X.

Lemma 5.24. Let G be a Zariski-connected real algebraic group, I' a
Zariski-dense subgroup of G, and I a finite-index normal subgroup of
I'. Then I is also Zariski-dense in G.

Proof. Let G be the Zariski-closure of I in the set G¢ of complex
points of G. Then Gf. is a Zariski-closed normal subgroup of Gc.
Hence, G¢/Gf is a complex algebraic group. The image of the finite
group I'/T" into G¢ /Gy is Zariski-dense. Since a finite subgroup of an
algebraic group is Zariski-closed, we see that Gi¢c/G¢ is a finite group.
Hence, we have dim G = dim G¢. Since G¢ is Zariski-connected, G
coincides with G¢, which means that IV is Zariski-dense in G. This
proves our lemma. Il

Proof of Corollary B223. Suppose that A is a finitely-generated, Zariski-
dense discrete g{)&rroqgeof aG such that it acts properly on X. By Sel-
berg’s lemma (Ffi?, em. S[), there exists a torsion-free normal subgroup
A" of A such that A’ is of finite index in A. Since A’ is also Zariski-dense
in G by Lemma 24, and since the cohomological dimension cdg(A’)
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¢ ... |1/16|1/8 1/4|1/2]1]2|4|8]16]...
pO) ] =7 [—6[—4] 0 [L[2]4]8]9 ]
ab: value-HR-number | TABLE 5.2. Table of p(t)

is the same with cdg(A), we may replace A with A’ and assume that A
is torsion-free.

Since A is Zariski-dense in G, the cohomological dimension cdg(A)
of A must be positive. If cdg(A) > 2, we can take [' = A. Suppose
CdR(A) 1. tallings-free-group

By the Stallings theorem [65], A must be a free group Fj. If k =1,
then A is an abelian group, which cannot be Zariski-dense in the non-
abelian group G. If £ > 2, then the proper discontinuity of the
action of A on X implies that there exists an even homomorphism
¢: SL(2,R) — G (Definition-Lemma BTA) such that SL(2,R) acts
properly on X via ¢, by Remark b20. Then, there exist a discrete
subgroup in ¢(SL(2,R)) that is isomorphic to a surface group, and a
small deformation of it into a Zariski-dense subgroup of GG, as shown
in Corollary B-T4. This small deformation preserves the proper discon-
tinuity of the action on X = G/H, as stated by the stability theorem
(Fact B8). See also Theorem 59 in the case n = 2. O

Next, we consider the case where the cohomological dimension of
the discontinuous group I' for X = G/H is greater than 2. As men-
tioned in Remark [ [T}, there exist natural families of homogeneous
spaces on which SO(n, 1) does not act properly, while Spin(n,1) does
act properly. These families yield a somewhat surprising connection
between the existence of proper actions of Spin(n, 1) and th Hurwitz= o
Radon number, as will be detailed in the forthcoming paper 7F TEH%%—
first author and Tojo, for which we now provide a brief overview and
applications of Theorem b.

Let ordy: Q* — Z denote the 2-adic valuation, that is, for ¢t =
2™(odd)/(odd) with m € Z, we define ordy(¢t) := m. Furthermore,
when ord, t = 4a+b with a € Z and 0 < b < 3, we define p(t) = 8a+2°,
which is called the Hurwitz—Radon number of t € Q*. Since p(t)
depends only on ords ¢, we summarize its values for powers of 2 in
Tabl

akaTojo25
TF?F or a palr (g,¢) of a reductive Lie algebra g and its completely
redumble representation ¢: g — gl(N, C), a certain integer p(g,¢) is in-
troduced. It is shown that for a classical Lie algebra g and its natural
representation ¢, the value of p(g,¢) can be computed using either the
Hurwitz—Radon number p(NN) or the 2-adic valuation ordy (V). In par-
ticular, for the standard representation ¢: so(N, N) — gl(2N, C),

p(so(N,N), 1) = p(N).
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G H p(g,t)
SL(2N,R) SO(N+1,N —1) p(N)+1
SL(2N,R) | SL(2p + 1,R) x SL2N — (2p +1),R) | p(N) + 1
SL(2N,C) SUN +1,N —1) 2 ordy(N) + 3
SL(2N,C) | SL(2p+1,C) x SL(2N — (2p+1),C) | 20rd2(N) + 3
SL(2N,H) Sp(N+1,N —1) p(N/2)+5
SL2N,H) | SL(2p + 1,H) x SL2N — (2p + 1), H) | p(N/2) +5
SO(4N,C) | SO@2p+1,C) x SOMUN —2p—1,C) | p(N/4)+7
SO(4N, C) SO(2N +1,2N — 1) p(N/4) +7
SU(N,N) | S(U(p,p+1)xUN —p,N —p—1)) | 20rda(N) + 2
SO(N,N) | SO(p,p+1) x SON —q,N —q—1) p(N)
SO*(4N) |  SO*(4p+2) x SO*(AN —4p—2) | p(N/4)+6
SO*(4N) UN+1,N 1) p(N/4) + 6
Sp(N,N) | Sp(p,p+1) x Sp(N —p,N —p—1) | p(N/2)+4
Sp(N,R) Sp(N — 1,R) p(N/2) + 2
Sp(N,C) Sp(N —1,C) p(N/2)+3

TABLE 5.3. The parameters p and ¢ range over all inte-
gers satisfying 0 < p < N/2 and 0 < ¢ < N, respectively.

Furthermore, for certain families of homogeneous spaces G/H, the
semisimple Lie groups that can act properly on G/H can be classi-
fied using p(g,¢) as follows:

Theorem 5.25 (%%%W%H be one of the classical homogeneous
spaces in Table B3, 1 the standard representation of the classical Lie
algebra g, and L a connected semisimple Lie group with no compact
factors. Then G/H admits a proper L-action via a homomorphism
from L to G if and only if L is isomorphic to Spin(n,1) for some
2<n<p(gr).

For example, the space form SO(N,N)/SO(N — 1,N) admits a
proper action of a connected semisimple Lie group L with no com-
pact factors if and only if L is isomorphic to Spin(n,1) for some
2<n<p(N).

Furthermore, the following lemma provides a criterion to determine
which actions of Spin(n, 1) are proper on the homogeneous spaces G/H
listed in o%lgl% b3 This lemma is proved based on the properness
criterion %ﬁhmﬁll] established by the second author:

Lemma 5.26 &%ﬁ%l%%}] be one of the classical homogeneous
spaces in Table B3, and ¢ the standard representation of the classical
group G. Then, for any non-trivial homomorphism ¢: Spin(n,1) — G
(n > 2), the Spin(n,1)-action on G/H via ¢ is proper if and only if
t(p(—1)) = —I, where 1 is the identity element in the Clifford algebra
Ceven(n, 1) and I is the identity matriz. In particular, any subgroup of
G isomorphic to SOy(n, 1) cannot acts properly on G/H.
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G H D d(X)
SL(16,R) SO(7,9) 72
SL(16,R) | SL(2p + 1,R) x SL(15— 2p,R) | 0 < p < 3 | —4p®+ 28p + 16
SL(8,H) | SL(2p+ 1,H) x SL(7—2p,H) | p=0,1 | —16p* + 48p + 29
Sp(16,R) Sp(p,R) x Sp(15 — p, R) 0<p<T7]|2(p+1)(16 —p)
Sp(16,C) Sp(p,C) x Sp(15 — p,C) 0<p<7| —4p? +60p + 63
SO(8,8) | SO(p,p+1)x SOB8—p,7—p) |0<p<3| —2p*+14p+38
SU(8,8) | S(U(p,p+1)xUB—p,7—p))|0<p<3| —4p>+28p + 16

Sp(8,8) | Sp(p,p+1)x Sp(8 —p,7—p) |[0<p<3| —8p*+ 56p + 32
SO*(8) SO*(6) x SO*(2) 6
SO*(8) U(3,1) 6
SO*(16) | SO*(dp+2) x SO*(14—4p) | p=0,1 | 2(2p + 1)(7 — 2p)
SO*(16) U(3,5) 26
SO(8,C) | SO2p+1,C) x SO(T—2p,C) | p=0,1 | (2p+1)(8—2p)

TABLE 5.4. Some homogeneous spaces admitting
Zariski-dense discontinuous groups of cohomological di-
ren—symmetric—coh—6‘ mension 6.

We now return to one of our main themes, Problem 2, and provide
examples of discontinuous groups I' for certain family homogeneous
spaces X = G/H that are Zariski-dense subgroups of G with coho-
mological dimension 6. To be more precise, we shall take G to be
the identity component in the Zariski-topology, G(p, q)o, of the group
G(p, q) (see Appendix B for the definition). We take I' to be the discrete
subgroups of G(p, q)o constructed by combining Theorem B9 with
Example B20, which are of cohomological dimension 6 and Zariski-

dense.
As a corollary of Lemma 28, the following result follows immedi-
ately:

tion:proper-g(p,q) ‘ Proposition 5.27. Among the classical homogeneous spaces G/ H listed
in Table 23, we consider those for which there exist some p,q € N,
such that G is isomorphic to G(p,q)o. For any natural number n < p,
the action of Spin(n,1) on G/H, induced via the inclusion Spin(n,1) —
G(p,q)o =~ G, is proper.

By combining Proposition b24, Example B20, and Theorem b9, we
obtain the following:

;ki-dense-noncpt-CK‘ Theorem 5.28. Fvery homogeneous space X = G/H in Table
admits a discontinuous group for X which is a Zariski-dense subgroup
of G with cohomological dimension 6.

obayashi89
As seen in the proof of [B7, Cor. 5.5, the quantity d(X) — cdr(T")
represents the degree of deviation from compactness of Xr.
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We extract examples of homogeneous spaces X = G/H for which
d(X) < 16 from Table b4.

((SO*(8)/(507(6) x SO*(2))  (d(X) = 6),
50*(8)/U(3,1) (d(X) =6),
50(8,C)/S0(7,C) (d(X)=17),

X ={ 50(8,8)/50(7.8) (d(X) = 8),
SO*(16)/(SO*(14) x SO*(2)) (d(X) = 14),
SL(16,R)/SL(15,R) (d(X) = 16),

\ SU(8,8)/U(7,8) (d(X) = 16).

In the first two cases where d(X) = 6, the quotient space Xr is com-
pact, and these cases have already been discussed in Theorem PZT3. In
contrast, X is non-compact in the other cases where d(X) > 6.

To analyze the results obtained here, we introduce two numerical
invariants related to discontinuous groups for homogeneous spaces and
their deformations.

Definition 5.29. Let X = GG/H be a homogeneous space of reductive
type.

(1) Let 6(X) denote the maximum cohomological dimension cdg(I")
among all finitely-generated discontinuous groups I" for X.

(2) Let 07(X) denote the maximum cohomological dimension cdg(T")
among all finitely-generated discontinuous groups I' for X such
that I" is Zariski-dense in G. We set 07(X) := 0 if there is no
such discontinuous group I'.

b hi89
By definition and from &(307? %afosr.15.5], we have the following inequal-

ities:
0z(X) < (X)) < d(X),

where we recall from (IT2) that d(X) is the “non-compact dimension” of
X, which can be explicitly computed. If the answer to Question (Q3)
in Question 23 is affirmative, then we have the following equality:

5,(X) = 6(X) = d(X).

We summarize some established results and new findings in terms of

these numerical invariants:
b hi89
(1) (%7, Cor. 44]) 6(X) = 0 if and only if rankg(G) = rankg(H)

(the criterion for the Calabi-Markus phenomenon).
(2) If areductive subgroup L of G acts properly on X, then d(L) <

0MX). ..

(3) (%é%%]) d(X) = d(X) if and only if X admits a cocom-
pact discontj ulous, group.

(4) (cf. Benoist [ Thm. 1.1]) A criterion for d7(X) = 0 is explic-
itly given in terms of the action of the Weyl group.



70 KAZUKI KANNAKA AND TOSHIYUKI KOBAYASHI

(5) (Theorem PI3) dz(X) = 6(X) = d(X) holds when the homo-
geneous spaces G/H are among those listed in (iii) of Theo-
rem PZT3.

(6) (Theorem ZT9) When X = (G x G)/ diag G with g = so(n, 1),
then 02(X) = d(G) =

(7) (Corollary b23) For any semisimple symmetric space X =
G/H, 0,(X) # 1.

(8) (Theorem BZR) 6 < §(X) for all X = G/H in Table 64

We do not know the explicit values of dz(X) and (X)) in the general
setting. It may be of interest to provide effective lower or upper bounds
for these numerical invariants.

6. SPECTRAL ANALYSIS OF X UNDER SMALL DEFORMATION OF
DISCONTINUOUS GROUPS I

1:spectral-analysis ‘

In this section, we discuss analytic perspectives of the quotient space
Xr. Spectral analysm on locally symmetric spaces, beyond tge Cl@fﬁl%ayashl 16, KasselKobayashi
Riemannian setting, is a rapidly developing area of research [29, B0, 31,
32, 45|, with many open problems remaining to be addressed. We focus
on the aspects of this analysis from the viewpoint of deformations of
the discontinuous group I', which we have discussed in Sections P-B.
At the end of this section, we will present a set of questions for further
exploration.

6.1. Discrete spectra on compact quotients. We begin by outlin-
ing some basic set@lap arllﬁlogé)taasthogmg(%ra Inore details, we refer to the
forthcoming book [37], as wel a5 theagicle mtro ucmg open problems
and providing a brief survey [47].

Let X = G/H be a homogeneous space of reductive type. The
manifold X carries a pseudo-Riemannian structure with a transitive
isometry group; namely, the reductive group G acts transitively and
isometrically on X. Such a pseudo-Riemannian structure can be de-
fined using the Killing form B if G is semisimple.

Let Dg(X) denote the algebra of G-invariant differential operators
on X. Suppose that I' is a discontinuous group for X. Then, any D €
D¢ (X) induces a differential operator Dr on the quotient Xp = '\ X
via the covering map w: X — Xr. We consider the set

D(Xr) :={Dr | D is a G-invariant differential operator on X}

as the algebra of intrinsic differential operators on the (G, X)-manifold
Xr. Clearly, the correspondence D +— Dr defines an isomorphism
between the algebras D¢ (X) and D(Xr). For example, Xr inherits a
pseudo-Riemannian structure from X via w, and the Laplacian Ay,
on Xr is locally the same operator Ax on X via the diffeomorphism
w; hence, Ax,. belongs to D(Xr). For global analysis on Xr, it is
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important to note that the Laplacian is no longer an elliptic differential
operator in our setting, where the metric is not positive-definite.

From now on, we assume that X = G/H is a symmetric space,
where (G is a real reductive algebraic group. Let q be the orthogonal
complementary subspace of h in g with respect to an Ad(H )-invariant
non-degenerate symmetric bilinear form (e.g., the Killing form if g is
semisimple) of the Lie algebra g. We fix a maximal semisimple abelian
subspace j of v/—1q and denote by W the Weyl group of the restricted
root system of (gc,jc). The Harish-Chandra isomorphism D¢ (X) ~
S(jic)V gives the bijection

HOHl(c_alg<DG'(X), C) ~ ](\é/W (X)\ < )\)

In this section, we explore the following object related to locally
symmetric spaces Xr = I'\G/H, which goes beyond the classical Rie-
mannian case:

LA(Xp, M) == {f € L*(X¢r) | Drf = xa(D) [ for any D € Da(X)},
Specy(Xr) := {X € j¢/W | L*(Xp, My) # 0},

where y,: Dg(X) — C is the algebra homomorphism associated to
A € j¢/W. The differential equation

Drf=xx(D)f
is interpreted in the weak sense, or in the sense of distributions. We
refer to an element in Spec,(Xr) as a discrete spectrum of Xr.

Example 6.1. If G/H is a symmetric space of rank one, such as
SO(p,q +1)/SO(p,q), then the C-algebra Dg(X) is generated by the
Laplacian of the pseudo-Riemannian manifold X . In this case, Spec,(Xr)

15 identified with the set of discrete spectrum of the Laplacian.
. . . KasselKobayashil6
6.2. Constructing stable spectra by Poincaré series [29]. We
discuss the discrete spectrum, which is stable under small deforma%ons .
. . . . asselKobayashil6
of Xr, following its construction in Kassel and the second author [2Y].
A general construction of the dlscrete spectrum for redu 1¥8 3 ensent980Discrote
metric spaces X = G/ H was established by Flensted-Jensen [

J| under
the rank condition

(6.1) rank(G/H) = rank(K/(H N K)).

This is a generalization of the celebrated rank condition due tofﬂﬁlris
|-

) . . Jshimal _atsuk11982description
Chandra, and the necessity was proved by Matsuki-Oshima [b4]. In

our notation, Flensted-Jensen’s theorem says that there exist countably
many elements in Spec,(X) in the case I' = {e}.

Let us now consider a setting where I' is a discontinuous group for
a reductive symmetric space X = G/H. A general construction of the
discrete spectrum for the locally symmetric space Xt, when X satisfies

the rank condition (El) and I' is a “sharp” discontjnuous, eroup for
. . asselKebayashil6
X, was provided in Kassel and the second author Figgj through the
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introduction of a generalized Poincaré series. It is noted that infinitely
many discrete spectra remain stable under any small deformation of a

discontinuous group I', as formulated in the following definition:

o KasselKobayaghil6
Definition 6.2 (\[,,, Det. T.6]). Let I' be a discontinuous group for

G/H via the inclusion map ¢: I' — G. We say \ is a stable (discrete)
spectrum if there exists a neighborhood U of « € R(I", G; X) such that

A€ () Specg(Xom)-

pelU

We recall from Definition P23 that X, r) is locally rigid if the G-
orbit through ¢ is open in R(I',G; X). Since Spec,(X,r)) remains
unchanged when ¢ is replaced with its G-conjugate, all the discrete
spectra are stable in the sense of Definition B2 if X, is locally rigid.
Thus, we are interested in the case where X, ) is deformable. This
is how affirmative answers to (Q1)—(Q3) in Question P regarding de-
formability relate to the theme of this section.

The following theorem for the existence of stable spectra is formu-

lated for a subgroup L when it is of real-rank one, such as Spin(n,1).

sselKobavash116 . .
Fact 6.3 (|29, Thm. I.7]). Let X = G/H be a reductive symmetric

space satzsfymg the rank condition (63). Let L be a real rank one
semisimple Lie subgroup of G, which acts properly on X, and I be a
torsion-free, cocompact discrete subgroup of L. Then there exist infinite
stable discrete spectra for Xr.

asselKobayashil6
The idea of the proof in &( 29| 1s to construct periodic joint eigenfunc-

tions of intrinsic differential operators by averaging eigenfunctions that
decay rapidly at infinity over the I'-orbits. To demonstrate the conver-
gence of this infinite sum (the generalized Poincaré series) and, further-
more, to prove that the total sum is non-zero, we require both analytic
estimates for the eigenfunctions and geometric estimates related to the
action of the discontinuous group I'. The geometric estimates include
counting ['-orbits I' - x in pseudo-balls, which is in a diFS o setting
compared to the counting estimate by Eskin-McMullen i%s well as
a Kazhdan—Margulis type estimate for discontinuous groups. The ex-
istence of the stable discrete spectrum follows from the fact that these
estimates can be provided uniformly with respect to the variables that
appear in each of the estimates.

Combining Fact 623 with Theorem b9, we obtain the following:

Theorem 6.4. Let G be a Zariski-connected real reductive algebraic
group, X = G/H be a symmetric space satisfying the rank condition
(63), and ¢: Spin(n,1) — G is a homomorphism such that the action
of Spin(n,1) on X is proper via . Let G¥ denote the algebraic sub-
group of G, as introduced in Definition BZA. Then there exists a pair
(T, ") with the following properties:
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[ is a torsion-free cocompact arithmetic subgroup of Spin(n, 1),
¢ is a small deformation of ¢|r,
the Zariski-closure of ¢'(I') is G¥,

ﬁ(specd(ch(F)> N Specd(X@/(F))) = 00.

As an illustration, the geometric results in Theorems I3 and
yield the following examples, respectively:

Example 6.5. There exists a 7-dimensional compact manifold M , with
a pseudo-Riemannian metric of signature (4,3) and constant sectional
curvature —1, satisfying the following properties:

o (M) is isomorphic to a torsion-free arithmetic cocompact dis-
crete subgroup of Spin(4,1);

e the holonomy representation m (M) — SO(4,4) has a Zariski-
dense 1mage;

e for a sufficiently large integer N, m(6 — m) is a discrete spec-
trum of the pseudo-Riemannian Laplacian Ay for any integer
m > N.

Example 6.6. There exists a 15-dimensional non-compact manifold
M, with a pseudo-Riemannian metric of signature (8,7) and constant
sectional curvature —1, satisfying the following properties:

e (M) is isomorphic to a torsion-free arithmetic cocompact dis-
crete subgroup of Spin(6,1);

e the holonomy representation m (M) — SO(8,8) has a Zariski-
dense 1mage;

e for a sufficiently large integer N, m(14 —m) is a discrete spec-
trum of the pseudo-Riemannian Laplacian Ay for any integer
m > N.

6.3. Multiplicity of the discrete spectrum on compact quo-
tients Xr. In our setting, which goes beyond Riemannian geometry,
the Laplacian is no longer an elliptic differential operator. As a re-
sult, the multiplicity of the discrete spectrum of the Laplacian can be
infinite, even when the manifold Xt is compact. Thus, there is no
guarantee that the multiplicity of the spectrum, dim L*(Xp, M), is
finite.

This section briefly reviews the latest findings regarding the multi-
plicity of the discrete spectrum A, specifically, dim¢ L*(Xt, M) given
by Kassel and the second author.

KasselKobayashi_ infty-mult, KasselKobayashi2019standard
Fact 6.7 ([2%, 32[). Let X = G/H be a reductive symmetric space with

H non-compact. Assume that there exists a reductive subgroup L of G
such that L acts properly on G/H, and that L¢ acts spherically on the
complezification X¢c = G¢/Hc.

Then, for any torsion-free discrete subgroup I' of L, we have

diHl(C LQ(XF, ./\/l)\) =0
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for every A € Spec,(X) sufficiently away from the walls.

A key step in the %%%%f, Is,a geometric variant of the discrete decom-
posability theorem ([40]), which states that any H-distinguished irre-
ducible unitary representation of G decomposes into irreducible unitary
representations of L without continuous spectrum, under the assump-
tions of Fact BZ0. This is combined with the method of generalized
Poincaré series introduced in the proof of Fact 63.

The triples (G, H, L), where G is simple and G/H is allowed to be
HO{*{asgfmgg%cdshh% 1sgfaét,ci§% atlbde assumptions in Fact 620 were classified
in [32, Table I.I[.. We extract the following cases from that table:
G/H satisfies the rank condition (60) and L is maximal. These are
summarized in Table B below. The homogeneous spaces G/H in
Cases 77 and 12’ are not symmetric spaces; however, the C-algebra
D¢ (G/H) is generated by the Laplacian, and Fact B2 extends to these
cases as well.

Case G/H L

1 SU(2n,2)/Sp(n, 1) U(2n,1)
2 SU(2n,2)/U(n,1) Sp(n,1)
Beven | S0(2n,2)/U(n,1) |SO(2n,1) (n is even)
4 150(2n,2)/SO(2n,1) U(n,1)
5 | SO(4n,4)/S0(4n,3) Sp(1) - Sp(n,1)

6 | SO(8.8)/50(8,7) Spin(8, 1)
7 | SO(4,4)/Spin(4,3) | Spin(4,1) x SO(3)
5| 50(4,3)/Cam | SO D) x 50(2)

TABLE 6.1. The triples (L, G, H) that apply to Fact GZa.

6.4. Multiplicity of stable discrete spectra on compact quo-
tients. Let I be a discontinuous group for X = G/H via the inclusion
map ¢: I' — G.

By Definition B2, A is said to belong to the stable discrete spectrum
if there exists a neighborhood U of ¢ in R(I", G, X) such that

min dime L*(Xyr), M) > 1.

pelU

As the neighborhood U becomes smaller, the left-hand side of this
inequality tends to increase. Thus, we consider the following definition:

Definition 6.8. Let Uy denote the set of all neighborhoods of ¢ in
R, G, X). For A € Spec,(Xr), we define the multiplicity of the stable
discrete spectrum by

Nx,(\) := sup mindimg L*( Xy, M.
Uctp PEU
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When the inclusion map ¢: I' = G is locally rigid, the multiplicity
of the stable discrete spectrum, Nx.()), reduces to the dimension of
L*(Xt, M,). In contrast, when ¢ is not locally rigid as a discontinuous
group for G/H, we have Ny (A) # 0 if and only if A belongs to the
stable discrete spectrum.

In the special case where X is the 3-dimensional anti-de Sitter space
S0(2,2)/S0(1,2), the C-algebra D¢(X) is generated by the Laplacian.
Therefore, it is sufficient to consider eigenvalues of the Laplacian, and
we can regard Specy(Xr) as a subset of C. We note that Xr has
abundant non-standard deformations. In this case, the first author
found a lower bound for the multiplicity of the stable discrete spectrum,

Nx. (N, as follows. We define A, := 4m(m — 1) for m € N.
ka_sigma21

Fact 6.9 (%(2‘2 f fert be a cocompact discontinuous group for the 3-
dimensional anti-de Sitter space X = SO(2,2)/SO(1,2). Then there

exists a positive constant cr such that
/\N/'XF(/\m) > logym — cr
holds for all m € N.

We recall from Theorem P9 a list of triples (G, H, L) such that
X = G/H admits a compact standard quotient that is deformable.
Combining Table 223 with Table B, we obtain the following proposi-
tion.

Proposition 6.10. Let (G, H, L) be one of Cases 1, 2 (n = 1), Seven,
4,5 (n=1), 7, and 12’ in Table E32. Then, Facts B=3 and BT apply
to any such triple (G, H, L).

Remark 6.11. (1) We have excluded Cases 2 (n > 2), 5 (n > 2),
and 6 because any compact standard quotient X is locally
rigid in these cases.

(2) By Theorem PTT3, there exists a cocompact standard quotient
Xr that admits a Zariski-dense deformation in Cases 2 (n = 1),
3even, D (n=1), 7’, and 12"

Regarding the stable discrete spectrum, including its multiplicity
and distribution, we are particularly interested in the setting where a
compact standard quotient X of X = G/H admits a non-standard
deformation. We address the following questions.

Question 6.12. Is the set of stable discrete spectra {\ € Specy(Xr) |
Nx.(N) # 0} discrete in j& /W ¢

Question 6.13. Does there exist a small deformation ¢ € R(I',G; X)
such that dime L?( Xy, My) < 0o holds for any X € j¢?

An affirmative answer to Question B3 would imply that Ny, (\) <
00. Moreover, if Question BT2 has an affirmative answer, the following
question might become meaningful.
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Question 6.14. Does there exist any geometric information about the
global structure of the (G, X)-manifold Xv that we can extract from the
asymptotic behavior of the multiplicity of the stable discrete spectrum,

Nx.(\)?
We examine Question 612 in the classical Riemannian case:

Remark 6.15. Let X1 = '\ X be a compact quotient of an irreducible
Riemannian symmetric space X = G/K of non-compact type. Then
Xp‘is not locally rigid if z'm.d‘only it X is #églt_\g%g}geer_lgl%ré%lou}%pe?-
bolic space by the local rigidity theorem ([Z0f). Moreover, since K is
compact, the G-action on X is proper, and thus there does not exist a
non-standard deformation of Xt.

(1) (dim X =2). When X is a two-dimensional hyperbolic space,
one cannot obtain any information about Xr because ./\Ner (A =
0 for A > 1/4 (Wolpert [[2; Thm. 5.14]).

(2) (dim X > 3). In this case, Xt is locally rigid, and therefore,
Nx.(A\) = dime L*(Xr, M), which is finite because the Lapla-
cian in the Riemannian case is an elliptic differential operator.
Weyl’s law in spectral theory tells us that one can extract geo-
metric quantities, such as the dimension and volume, of X

from the asymptotic behavior of Ny, (\) as [|A|| = oo.

APPENDIX A. TOPOLOGIES OF REAL ALGEBRAIC GROUPS

In this section, we provide a brief review of basic concepts for com-
plex algebraic groups as well as real algebraic groups that are used
throughout this article. In particular, we highlight the relationship
between the two topologies on complex (or real) algebraic groups: the
usual topology and the Zariski-topology, which is weaker than the usual

topology.
We begin with the connectedness of complex algebraic groups.

Lemma A.1. Let G¢ be a Zariski-connected complex algebraic group.
Then it is also connected in the usual topology.

l-alg-
Proof. By %,re(fﬁzp. %la]?é“Pé%i&i%as@&ciS irreducible in the Zariski-

topology. Hence, by [63, Chap. VIL.2[, G¢ is connected in the usual
topology. O

Every connected complex semisimple Lie group is linear. More-
over, the categories of connected complex semisimple Lie groups and
connected complex semisimple algebraic groups are equivalent, as de-
scribed below.

Lemma A.2. (1) Let G¢ be a complex algebraic group, and lc a
complex semisimple Lie subalgebra of gc. Then, the analytic
subgroup L¢ of G corresponding to ¢ is Zariski-closed.



"

1ple—>hom—algebraic‘ (2) Let L¢ be a connected complex semisimple algebraic group, G¢
a complex algebraic group, pc: Lc — Ge a holomorphic Lie
group homomorphism. Then ¢ is a morphism of algebraic
groups.

h lley51
For the proof, we recall the following theorem from Chevalley [U Ez S

Chap. 2, Thm. 13|

fact:chevalley‘ Fact A.3. Let Gc be a closed complex Lie subgroup of GL(n,C) with
finitely many connected components, G its Zariski-closure in GL(n,C),
and gc the complex Lie algebra of G¢. Then, their derived algebras are

identical: [gc, 9c] = [, 9¢)-

Proof of Lemma [A=2. [T). It suffices to show that the Zariski-closure
L¢ of L¢ coincides with L¢. Since Le is connected in the usual topol-
ogy, L¢ is Zariski-connected. Hence, L¢ is also Zariski-connected. By
Lemma A, L¢ is connected in the usual topology.

Since [¢ is semisimple, we have [l¢, lc] = [¢, which implies that,
[Lc, Le] = Le due to the Connected[ness ]of Lc. Furthermore, by}FoMgﬂ
Chap. I, Cor. 2.3], we also obtain [L¢,Lc] = Le. Thus, applying
Fact A=3, we conclude that

le = [lc, Ie] = [le, Ic] = Ic.

Since both L¢ and L¢ are connected, it follows that Le = Le. This
proves the assertion.
[2). Consider the graph of ¢c: Le — G given by

G(ec) == {(lec() | € € Le}

The connected complex Lie group G(pc) is the analytic subgroup of
L¢ x G¢ corresponding to the graph of the differential dyc,

g(dec) == {(X, dpc(X)) | X € Ic}.

Since the Lie algebra g(dyc) is isomorphic to I, it is semisimple. Thus,
by [1], we conclude that G(¢c¢) is Zariski-closed in L¢ x Ge. It follows
that G(pc) is a Zariski-connected complex algebraic group.

Next, consider the first projection pry: G(y¢c) — L, which is a bijec-
tive mor%nsr?_ofl algebraic groups. It follows from Zariski’s main theo-
rem (see , Thm. 18.2]) that this map is an isomorphism of
algebraic groups. Smce wc: Le — G is the composition of the isomor-
phism pr;': Le — G(p¢) and the second projection pry: G(pc) — G,
we see that ¢ is also a morphism of algebraic groups. U

Next, we focus on real algebraic groups. For a real algebraic group
G, we denote by G the Lie group of real points G(R) and by G¢ the
complex Lie group of complex points G(C). Note that G¢ provides a
complexification of G, that is, the Lie algebra gc of G¢ is naturally
identified with the complexification g @ C of the Lie algebra g of G.
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Definition A.4. A real algebraic group G is said to be Zariski-connected
if G is connected in the Zariski-topology.

Remark A.5. In contrast to the case of complex algebraic groups,
even if G is Zariski-connected, GG is not necessarily connected in the
usual topology. For instance, SO(n, 1) is Zariski-connected in the sense
of Definition B but is not connected in the usual topology.

Definition A.6. Let G be a real algebraic group. The Zariski-topology
on GG means the relative topology induced by the Zariski-topology on
Gc. The Zariski-closure of a subset S of G is defined as its closure
with respect to the Zariski-topology. We say that S is Zariski-dense in
G if it is dense in G with respect to the Zariski-topology.

If G is Zariski-connected, then G is Zariski-dense in G¢. Hence, if
G is Zariski-connected, then a subset S of G is Zariski-dense in G if
and only if S is Zariski-dense in G¢.

In the case of semisimple real algebraic groups, the following lemma
can be compared with Lemma [A2:

Lemma A.7. Let L be a Zariski-connected real semisimple algebraic
group, G a real algebraic group, and p: L — G an abstract group ho-
momorphism. Assume that L¢ is simply-connected. Then the following
claims about o are equivalent:

(1) @ is continuous in the usual topology;

(i1) ¢ is of C™-class;

(111) @ is real analytic;

(iv) ¢ can be extended to a holomorphic homomorphism pc: Lc —

Gc of complex Lie groups;

(v) ¢ is obtained from an R-morphism L — G of algebraic groups.
We simply refer to f as a homomorphism. In particular, the image of
fc is Zariski-closed, and f is continuous in the Zariski-topology.

Proof. Tt is well known that [}, [iL), and are equivalent, and
= [1] is obvious. Thus, we focus on proving = = [v]

[(iif)=[iv]). Since L¢ is simply-connected, the complexification of the
differential df: | — g can be lifted to a holomorphic homomorphism
fc: Lec — G of complex Lie groups. It is clear that fc extends f.

[iv]=[v] By Lemma A= [2], fc is a morphism of algebraic groups.
Thus, it suffices to show that f¢ is defined over R.

Let 01,: Lc — L¢ and og: Ge¢ — G¢ denote the complex conjuga-
tions associated with the real algebraic groups L and G, respectively.
Identifying I = | ®g C and g¢ = g ®r C, we have dfe = df ®r idc,
dor, = idi®o, and dog = idy ®o, where o is the complex conjugate of
C. Hence, it follows that dfc o do;, = dog o dfc. Since L¢ is connected,
we see that fcoor = ogo fc. Thus, the morphism of algebraic groups
fc is defined over R. O



tion:clifford-spin ‘

79

APPENDIX B. CLIFFORD ALGEBRAS AND SPIN GROUPS

Throughout this article, we use Clifford algebras and spin groups
extensively. In this appendix, we introduce some notation related to
these concepts.

Let F be a field of characteristic # 2, and V' be an n-dimensional F-
vector space equipped with a non-degenerate symmetric bilinear form
Q:V xV — F. As usual, we put Q(v) := Q(v,v), which defines a
quadratic form on the F-vector space V. Let TV := @, V® denote
the tensor algebra. Let let 1((Q)) be the two-sided ideal generated by
v®v—Q(v) for all v € V. The quotient F-algebra

c(V)=C(V,Q):=TV/I(Q)

is called the Clifford algebra associated with the quadratic form Q.

When E is an extension field of F, we consider the E-linear extension
of the F-bilinear form ) on the E-vector space V ®y E. Then the
E-algebra C(V') ® E is naturally isomorphic to C(V ®p E).

Let ¢: TV — C(V') be the quotient homomorphism. If {e;,...,e,} is
an F-basis of V, then the elements g(e;,) -+ -q(e;,) (1 <ip < -+ < iy <
n, 0 <k <mn) form an F-basis of C'(V). In particular, dimp C (V) = 2"
and the restriction of ¢ to the subspace V' of T'V is injective. Through-
out this article, we think of V' as a subspace of C'(V) via ¢ and the
image ¢(v) of v € V is also denoted by the same symbol v.

The F-linear map V' — C(V) defined by v +— —v is uniquely ex-
tended to an involutive F-algebra automorphism (—)" of C'(V). We
define an F-subalgebra Ceven (V) of C'(V') by

Ceven(V) = Coven(V, Q) :={z € C(V,Q) | 2" =z},

which is called the even Clifford algebra of Q. If {ey,...,e,} is an
F-basis of V, then we have (e;, ---e;, ) = (=1)Fe;, -+ e;, for 1 <y <
- <ip <nand 0 <k <n. Hence, ¢;, ---€;, € Ceyen(V) if and only
if k is even. In particular, dimp Ceyen(V) = 2771, As is well-known,
Ceven(V) is a semisimple F-algebra.

The F-linear map V' — C(V') defined by v — v is uniquely extended
to an F-algebra involutive anti-automorphism (—)* of C(V'). The in-
volution * preserves Coyen(V'). For an extension field E of F, we define

(B.1) Gy (E) := {7 € Copen(V @p E)* | 22" = 1}
(B.2) Spin, (E) := {z € Gy(E) | 2(V @ E)2™' C V @z E}.

Here note Ceyen (V @5 E) is naturally isomorphic to Ceyen (V) @ E as an
E-algebra. Hence, we can regard both Gy and Spin,, as F-algebraic
groups by identifying Ceyen (V') with F2""'. We put

G(V) := Gy(F) and Spin(V) := Spin, (F).
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The group Spin(V) is called the spin group of Q). Note that the ele-
ments +1 € Coyen (V) belong to Spin(V'). Since Ceyen(V) is a semisim-
ple F-algebra, G(V) is a classical group defined over F.

For x € Spin(V) and v € V, we have zvx™' € V in C(V) by
definition. One can check that the F-linear map v — zvx™! defines
an element of the special orthogonal group SO(V') with respect to Q.
Thus we obtain an F-homomorphism

Ad: Spin,, — SOy, =z~ (v zvz ™).

The kernel of this homomorphism is {£1}. If F is algebraically closed,
then the map Ad is surjective. However, this is not true in general.
Indeed, when F = R, the image of Ad coincides with the identity com-
ponent of the orthogonal Lie group SO(V'), which has two connected
components if the quadratic form () is not positive-definite.

From now on, we assume F = R. Then G(V) and Spin(V) are Lie
groups. Let us recall that their Lie algebras g(V') and spin(V') are
realized as Lie subalgebras of Coyen (V). Since Coyen (V) is an F-algebra,
we note that Ceyen (V) is a Lie algebra over F with the bracket [z, y] =
xy — yz. Further, via the exponential map exp: Ceyen(V) = Coven (V)™
(z = >°7  x"/nl), we think of Ceven(V') as the Lie algebra of the Lie
group Ceyen(V)*. In particular, we have:

g(V) ={z € Coyer(V,Q) | z + 2" = 0}
spin(V) = {z € g(V) [ ad(z)(V) C V'},

where ad(x)(v) = [z,v]. From this, we obtain the following lemma
easily:
Lemma B.1. Letey,..., e, be an orthogonal basis of the F-vector space

V' with respect to Q. We write A (0 < k < n) for the F-vector subspace
0f Coven (V') spanned by the elements e;, ---e;, (1 <ip < -+ <ip <n).
Then we have

g(V) = @ AP and  spin(V) = A2
0<k<n
k=2 mod 4

Let RP? be the real vector space RPT? equipped with the quadratic
form 234+ —27,, —--— 7, . In this case, C(RP?), Coyen(RP9),
G(Rr1), g(RP?), Spin(RP7), and spin(RP9) are denoted by C(p,q),
Ceven(p, @), G(p,q), 8(p, q), Spin(p, q), and spin(p, q), respectively. For
the structure of t %bea\é%ghgl%fsfg{gogggebra Ceven(p, q) as an R-algebra,
see, for example, [b0, Prop. 4.4.I]. Moreover, the second author and
Yoshino provided an explicit identification of the groups G(p,q) with
classical groups, which is useful for a uniform treatment of sporadic
3885 Ay Table 2L We extract the classification table of G(p,q) from
(LB
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is 1isomorphic to one of the following classical Lie groups. Here, n =
2(p+a=)/2 gnd o € {3,4,5,6} are given according to p—¢q mod 8 as in
the table.

G(p,q) |a|p—q mod8|p+g mod8
O(n,n)? 0
GL(2n,R) | 4 0 +2
Sp(n,R)? 4
O(n,n) 5 11 +1
Sp(n,R) +3
O(2n,C) 0
Un,n) |4 +2 +2
Sp(n,C) 4
O*(4n) . 13 +1
Sp(n,n) +3
O*(4n)? 0
GL(2n,H) | 6 4 +2
Sp(n,n)? 4

Lemma BT and Proposition B2 are used in Section B33.

APPENDIX C. TORSION FREENESS OF CONGRUENCE SUBGROUPS

In this appendix, we prove the following lemma concerning torsion
of arithmetic groups, which is used in Section BZ3. It seems to be
well-known to experts, but we give a proof for the convenience of the
reader.

Lemma C.1. LetF be a number field of finite degree and O the ring of
integers of F. Suppose that prime ideals P, Q of O satisfy PNZ # QNZ.
Then the congruence subgroup

{g€ GL(n,0)|g=1 mod PQ}
18 torsion-free.
We give an elementary lemma for the proof:

Lemma C.2. LetF, O, P, and Q be as in Lemma [CA. For m € N,
if a primitive m-th root (,,, in F satisfies ¢, =1 mod PQ, thenm = 1.

Proof. Let k = Q((,) and Oy = Z[(,] the ring of integers of k. If m
%ﬁlsmgvgglgistinct prime factors, then 1 —(,, is a unit in Oy, (see, e.g., by
64, Lem. 17.2(2)]). Hence, 1 — (,, is not contained in any prime ideal
of O,. However, since P N Oy is a prime ideal of Oy and 1 — (,, € P
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by assumption, this leads to a contradiction. Hence, suppose m = ("
for some prime number ¢ and non-negative integer r.

For contradiction, suppose m > 1, equivalently r > 0. % o1 r(allo_
(m)Oy is a prime ideal of O containing ¢ (see, e.g., by [64, Thm.
17.5]). Hence, the prime number ¢ is contained in both P and @,
which contradicts the assumption that P N7Z # Q N Z. Therefore, we
have m = 1. O

We are ready to show Lemma CI.

Proof of Lemma [C. Let g be an element of GL(n, Q) such that g = 1
mod P@, and let f(t) € OJt] be the characteristic polynomial of g.

Since g =1 mod PQ, we have f(t) = (t — 1) mod PQ. Let E be
a finite extension field of F containing all the eigenvalues of ¢, and let
P’ and @)’ be prime ideals of the integers O in E containing P and @,
respectively. Then, it follows that f(t) = (t —1)" mod P'Q".

Now suppose that ¢ has finite order. In this case, g is diagonalizable
over E; and its eigenvalues are all roots of unity. To prove our assertion,
it suffices to show that these eigenvalues are equal to 1.

Let (,, be an eigenvalue of g, which is a primitive m-th root of unity.
Since f((mn) = 0, we have (¢, —1)" =0 mod P'Q’. Since both P’ and
@' are prime ideals of O, it follows that (,, — 1 =0 mod P'Q’. By
Lemma C=; we conclude that m = 1. This completes the proof. O

APPENDIX D. A LEMMA ON THE HNN EXTENSION

Let M be an orientable connected manifold and N an orientable
connected compact hypersurface such that S := M ~ N is connected.
In this appendix, we present Proposition [D2, which explains how the
fundamental group 71 (M) of M is described by m1(S) and 71 (N). We
see that 7 (M) is an HNN extension of 7 (.5). Although the argument
using the van Kampen theorem is standard to experts, we provide a
proof for the convenience of readers who may not be familiar with it.
This proposition is used in Section B4, where M and N are hyperbolic
manifolds.

Let us introduce some notations. By the tubular neighborhood the-
orem, one can and do take an open neighborhood N® of N in M and
a diffeomorphism

f:Nx(—4,4)~ NW
such that f(N x {0}) coincides with N. Fix y € N and put N® :=
f(N x (=t,t)) and y¥) := f(y,t) for —4 <t < 4. Since S = M ~ N is
connected, we may and do assume that M ~ N is path-connected.

Definition D.1. Fix a base point zp € M ~ N®. We define the
oriented loop v in M, starting at x(, as the composition of the following
paths:

e a path from z to y® inside M ~ N©®);
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e the path from y® to y(=® given by f{y} x [=3,3));

e a path from y=® to z, inside M ~ N®.
Furthermore, we can take the loop v to be a closed submanifold of M.
Additionally, let v, be the path along the loop v from z to y(!), and
let v_ be the path along v from y(=" to z.

FIGURE D.1. IGURE D.2.

Figure D summarizes some of the notation introduced so far.

For an oriented loop ¢ starting at y in N and a fixed —4 < t < 4,
f(£,t) forms an oriented loop in M starting at y). With the above
paths vy and v_, we define j,j_: m(N,y) — m(S,z0) as two group
homomorphisms

J+([0) = [t o f(6, 1) ows], j([]) = [v— o f(£,~1) o).

Here, b~! denotes the path obtained by reversing the orientation of the
path b, and [c] denotes the homotopy class defined by the loop c.

Proposition D.2. Let a” be the infinite cyclic group generated by a.
Under the above setting, we define a group homomorphism

U m (S, 20) % a” — m (M, x0)

by the natural map m (S, o) — m (M, xo), and by sending the generator
a to [v]. Then, U is surjective, and its kernel is the normal subgroup
N, generated by the elements

aj([())a™"j-([)7", for every [(] € m(N,y).

Proof. Since M is orientable, one can take a tubular neighborhood U, of
v in M and a diffeomorphism ¢g: v x U — U,,, where U is a contractible
open neighborhood U of y in N and v = g(v x {y}). By taking a
sufficiently small U,,, we may and do assume the following:

e g(y®,u) = f(u,t) holds for —2 <t <2 and u € U.

o U, f(Nx[-22]) =g((v~{yV | =2 <t <2}) x V).
In particular, U, N N® and U, ~ f(N x [~2,2]) are both contractible.

We put
V.=N®uUuU,.

fig:tubular_nbd
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Since M =V U S and V N S is path-connected, by the van Kampen
theorem, we obtain the following pushout diagram:

(Dl) Wl(VﬂS,Io)HTfl(S,Io)
Lo
7T1(‘/,£L‘0) 7T1(M,[L‘0).

Now we compute 7 (V,zo) and 7 (V N S, z9) by the van Kampen
theorem. Since N® N U, is contractible, we have

m(V,y") = m(N?,yW) s (U, y™M).
Recall that U, and N® are homotopic to v and N, respectively. Hence,
we have 7 (N®, yM) ~ 7(N,y) and 7(U,,y") ~ a”. Furthermore,

we use v4 to change the base point ) to xy. The resulting isomor-
phism

(D.2) T (V, 20) < mi (N, y) * a”,

is obtained by A([{]) = [vi' o f(¢,1) o] for [{] € m(N,y) and A(a) =

V).
We define

N® = f(N x (0,2)), NP .= f(N x (~2,0))
(see Figure @32). Then, V' N S is the union of the two open sets
A, = NPUU,~f(Nx[-2,2))) and A_ := NPUU,~f(Nx(-2,2))).

The intersection A, N A_ is given by U, ~ f(N x [-2,2]), which is
contractible. Thus, by the van Kampen theorem, we obtain

m(V NS, xg) >~ m(Ay, xo) xm (A, xp).

Furthermore, by the choice of U, both A, and A_ are homotopy equiv-
alent to N. Hence, we obtain the isomorphism

(D.3) m(V NS, xp) %Wl(N,y)*m(N,y),
which is induced by the two homomorphisms 7 (N, y) — 7 (V NS, o)
mapping [(] € w1 (N,y) to [v;' o f({,1) ovy] and [v_o f({,—1) o v_"]

in m (V' NS, z), respectively.
Here we note

[v_o f(l,—1)ov ' =[vovi'of(t,1)oviov™"] in m(V, ).
Hence, from (D) and (D33), the following diagram commutes:
7T1<N7 y) * 7Tl(]\f? y) %) 7Tl(‘/ N 57 'TO)
id *(a()a_l)l O lnatural
(N, y) * a® A T (V, o).

~
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Therefore, by (D), we obtain the following pushout diagram:

J+*J—

(D.4) (N, y) * m(N,y) —— m1 (S, zo)
id *(a(—)al)l O inatural

T (N, y) % a® 20 (M ).

On the other hand, by the definition of the normal subgroup N, we
have the following pushout diagram:

J+*J—

(D.5) (N, y) * (N, y) m1(.S, 20)

id*(a(—)al)i O \L

TN, y) * a — T (01 (S, x0) % aP) N

By comparing the two pushout diagrams (D) and (IDH), we obtain
the desired conclusion of the theorem. U

APPENDIX E. AN UPPER BOUND FOR LOCAL DEFORMATION OF
DISCRETE SUBGROUPS

The main result of this appendix is Proposition EZ2, which provides
an upper bound for the Zariski-closure of potential deformations of
discrete subgroups in the general setting. This proposition is used in
the proof of Theorem B [3]], as well as in part of the proof of Propo-
sition BT2 (2). While the results of this section are likely known to
experts, we formulate them in a form suitable for our purposes and
prove them using the curve selection lemma in the subanalytic geome-
try. See Lemma E7 [3]. We include a proof for the benefit of readers
who may not be familiar with them.

Setting E.1. Let G be a Lie group, L a closed subgroup of G, and I"
a finitely-presented group. By choosing N generators of I' satisfying a
finite set of relations, we identify Hom(T', G) with a subset of X := GV .

We do not require L or G to be reductive here. In this setting, we
provide a general local rigidity theorem. In other words, we give a
necessary condition for a representation of I' into L to be deformed in
G, beyond L, up to G-conjugacy. Recall that G acts on Hom(T', G) by
inner automorphisms, where (g - ¢)(7) := gp(y)g™ .

Proposition E.2. In Setting [E1, let p: I' — G be a group homo-
morphism such that o(I') C L. We regard the Lie algebras g and | as
[-modules via . If HY(T', g/l) = 0, then there exists a neighborhood U
of ¢ in Hom(T', G) such that for any ¢’ € U, we have ¢'(I") C L, up to
G-conjugacy.
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Our proof relies on properties of real analytic subsets. A subset A of
a real analytic manifold X is called real analytic in X if, for each point
x € X, there exist an open neighborhood U of x in X and analytic
functions fi,..., f, on U such that

UNA={ueclU]| filu)=---= fu(u) =0}.

In Setting ECD, Hom(I", G) is a real analytic subset of X = G*. Since
L is real analytic in G, it follows that Hom(I', L) is also real analytic
in X.

Step 1. As a first step, we prove Proposition EZ2, assuming that
the small deformation of ¢ is described by an analytic curve ;. The
following discussion relyingg gf%m/axﬁgnqﬁ approximation theorem is also
seen in Goldman-Millson [I6; Sect. 2[. To be precise, we show the
following lemma:

Lemma E.3. In the setting of Proposition [EZ2, for any one-parameter
family of group homomorphisms p;: I' = G, depending analytically on
t € R, with pg = @, there exists an analytic curve g, in G with gy = e
such that g - p, € Hom(T', L) for any sufficiently small t.

Proof of Lemma [EZ3. For each y € T, the real analytic curve ¢ (7)p(y)
in G, starts at e when ¢t = 0. Its Taylor expansion defines a sequence
of maps uys = ug(py): ' =g ({ =1,2,...), such that

@i(7) = exp(us (V)t + ua (V) + -+ ) (7),

where the domain of the convergence may depend on 7.

We fix k£ > 1, and prove the following claim: assume that uy,(I") C [
for & =1,... k—1. Then, there exists an analytic curve in G, to be
denoted by gﬁk), with the following two properties:

(1) uelpr) = ue(gl” - 1) for £=1,... .k —1,

(2) u(g” - p)(D) L
where g,fk) - ¢y denotes a homomorphism I' — g that is obtained by
conjugating ¢; with gt(k).

To prove the claim, we compute ;(7n) = @i(7)pi(n) using the
Baker—Campbell-Hausdorff formula:

() = exp(Y_ un(NE) () exp(D_ un(m)t)p(n)

= exp(Y (") exp(Ad(0(7)) O un(m)t™)) (1)

= explA() + B() + 5 [4(0), BO)] + - ol

-1
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ghere A(t)h = Yo un(V)" and B(t) = Ad(p(7))(3002; ua(n)t™).

Zun(wy)t” = A(t)+ B(t) + %[A(t), Bt)]+---.

By assumption, the images of uq,...,u;_1 are contained in [. Com-
paring the coefficients of t* in the above identity modulo [, we obtain

ug(yn) = ug(y) + Ad(p(y))ux(n) mod L

Thus, uj, mod [ defines a 1-cocycle. By the assumption H'(T', g/I) = 0,
there exists an element Cj € g such that,

uk(y) = Ad(e(7))Cr — Cr - mod I,
for any v € I". Now, we set g,gk) = exp(t*Cy,). Clearly, uy, ..., up_;
remain unchanged, when we take the conjugate ggk) - p¢. On the other

hand, the coefficient of t* in

log((9" - p)p(7) ™) = log(exp(t*Cy) exp(A(t)) exp(—t* Ad(¢(7))C}))

amounts to Cy + ug(y) — Ad(p(7))Cy € I. Hence, our claim is proved.
We now use the claim inductively on £ > 1. We start with ¢, and
proceed with gt(l) Oty g§2)gt(1) - 4, and so on. Correspondingly, the

family of maps from T to g,

k k
ul? = (g g o)

has the following properties:
ul® = 4l and u{P(T) € [ for all k > ¢,

Consequently, we obtain the formal power series
(2) (1)

g ="""Gt "Gt -
Then, g; provides a formal solution to the equation
(E.1) gt - ¢ € Hom(T', L).

Since Hom(T', L) is a real analytic subset of X = GY and ¢; is an
analytic curve, the cogditi(?n (ET) deﬁneg tg&@&gbﬂ&g&uaﬁon ‘for
g:- By Artin’s approximation theorem (TI, Thm. T.2]), there exists
an analytic solution g, € G satisfying go = 1. Thus, our assertion is
proved. O

Step 2. We complete the proof of Proposition EZ by reducing it to
the analytic curve case (Step 1). The fol*géﬁid%% I(li_in%ﬁ]fg(i)%g%ses the curve
selection lemma as in Goldman—-Millson [I&, Sect. 1], where they use the
fact from complex hyperbolic geometry that G - Hom(I', L) is a locally
algebraic subset of Hom(I', G) in the setting that G = SU(n + 1,1),
L =U(n,1), and I" is a cocompact discrete subgroup of U(n, 1). In the
following, we simplify this discussion using the concept of subanalytic
subsets, as stated in Lemma ES.
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Now we review briefly the definition and basic properties of subana-
lytic sgbs %@glﬁ’bl%ls E-dto Lemma [E0), as presented in Kashiwara—
Schapira

/h bect

‘def:subanalytic‘ Definition E.4. Let X be a real analytic manifold. A subset Z of
X is called subanalytic if, for each point x of X, there exists an open
neighborhood U of x in X such that

|eq:subanalytic| (E.2) ZNU = U(fll(Y;l) N fi2(Yi2)),

i=1

where, for each ¢ =1,...,pand j = 1,2, Y}; is a compact real analytic
manifold and f;;: Y;; — U is a real analytlc map.

remark:subanalytic| Remark E.5. The above definition s e%ulvahﬂ}t to the fo]}owmg def-
inition given in Bierstone-Milman %ﬁ Prop. 3. 15] “for cach pomt x of
X, there exists a neighborhood U of x in X, such that

ZNU = U(fil(Ail) N fiz(Ai2)),

where, for each i = 1,...,pand j = 1,2, Aw is a closed real analytic
subset of a real analytic manifold Y;;, fZ] . — U is a real analytic
map, and fi;]4,; is proper. The non-trivial 1mplication from the defini-
tion in Remark E3 to Definition [EZ can be verified using the following
Hironaka’s uniformization theorem:

jerstone-Milman-subanalytic
fact:hironaka| Fact E.6 (Hironaka’s uniformization theorem [&, Thm. U.1]). Let Z be

a closed subanalytic subset of a real analytic mamfold X in the sense of
Remark [EZ3. Then there exist a real analytic manifold Y and a proper
real analytic map f:Y — X such that f(Y) = Z.

We now explain immediate consequences of Definition [E4 and Re-
mark ETH. By Definition [E4, a closed ball in Euclidean space R™ is
subanalytic, as it can be expressed as the projection of the unit sphere
S™. Thus, every point in a real analytic manifold admits a compact
subanalytic neighborhood. Furthermore, by Remark [E_H, any real an-
alytic subset of a real analytic manifold X is subanalytic.

We also need the following:

1bana1ytic—property‘ Lemma E.7. Let X be a real analytic manifold.

malytic—complement‘ (1) If Z1 and Zy are subanalytic subsets in X, then Zy ~ Zy is
subanalytic in X.
11ytic—proper—image‘ (2) Let f: X — Y be an analytic map of real analytic manifolds.

If 7 is a subanalytic subset of X and f is proper on Z, then
f(Z) is a subanalytic subset of Y.

:ic—curve—selection‘ (3) (Curve Selection Lemma) Let Z be a subanalytic subset of X
and z € Z. Then there exists an analytic curve c: (—1,1) = X
such that ¢(0) = z and c(t) € Z for any t # 0.
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Under the preparation above, we provide a lemma for the proof of
Proposition EZ2:

Lemma E.8. Suppose that we are in Setting [EZD. Let W be a compact
subanalytic neighborhood of the identity element in G. Then the subset

Z = Hom(I",G) ~ (W - Hom(I', L)).
is subanalytic in X = G,

Proof. The map G x Hom(I', G) — Hom(I", G) defined by (g, ¢) — g-¢
is proper on W x Hom(I', L). Hence, the image W - Hom(I', L) is a
subanalytic subset of X by Lemma E7 [2)]. By Lemma ET [T, Z is
subanalytic in X. O

We are ready to prove Proposition E2.

Proof of Proposition [EZ3. Retain the notation from Lemma ER.

To prove Proposition EZ, it suffices to show that G - Hom(I', L) is
a neighborhood of ¢ in Hom(I', G). Suppose, for the sake of contra-
diction, that this is not the case. Then W - Hom(I', L) is also not a
neighborhood of ¢ in Hom(T', G), which implies that ¢ € Z.

By Lemma [E8, the subset Z is subanalytic in X. Applying the
curve selection lemma (Lemma [E™ [3]), we obtain an analytic curve
{¢1}-1<t<1 in X such that o9 = ¢ and ¢, € Z for all t # 0. In
particular, ¢; ¢ W - Hom(I", L) for all ¢ # 0.

On the other hand, since ¢; € Hom(I',G), Lemma E3 (Step 1)
ensures the existence of an analytic curve g; in G such that ¢, - ¢; €
Hom(I', L). Hence, ¢, € W - Hom(I', L) for sufficiently small ¢, which
is a contradiction. Thus, G - Hom(I', L) must be a neighborhood of ¢
in Hom(I", G). This completes the proof of Proposition EZ2. O

Although the following result is not used in the main body of this
article, we include it for future reference, as it can be derived using the
. .. . oldman-millson )
same idea originally due to Goldman-Millson Tfl 6. The proof outlines
only the necessary modifications to Proposition EZ.
In the following proposition, we recall that a 1-cochain c: I' — g is
a l-cocycle if it satisfies

c(yn) = c(y) + Ad(p())e(n),
for all v,n € I', and that the associated 2-cochain

[e,c]: T xT =g, [e,d(v,n) = [e(7), Ad(p(7))(c(n))]

is a 2-cocycle whenever c¢ is a 1-cocycle.

Proposition E.9. In Setting [E1, let p: I' — G be a group homo-
morphism such that (') C L. We regard the Lie algebras g and | as
['-modules via ¢. Assume the following:
(1) There exists an L-invariant complementary subspace m of [ in
9;
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(2) HY(T',1/3) = 0, where 3 denotes the center of ;
(3) For any non-zero element ¢ € H(I',m), we have

pr[([c, C]) 7é O Zn HQ(Fv [)7

where pr; denotes the first projection onto H?(T', ) with respect
to the direct sum decomposition

H*(T,g) = H*(T',1) © H*(T',m).

Then there exists a neighborhood U of ¢ in Hom(T', G) such that for
any ¢' € U, the image ¢'(T') is conjugate into L by an element of G.

Proof. By applying a similar argument using the curve selection lemma
(see Lemma ET1 (3)) as in Step 2 of the proof of Proposition E3, our
assertion reduces to the case of an analytic deformation. Namely, for
any family of group homomorphisms ¢;: I' — G, depending analyti-
cally on t € R, with pg = ¢, it suffices to show that there exists an
analytic curve g; in G with gy = e such that g; - ¢, € Hom(I', L) for all
sufficiently small ¢.

Suppose that ¢;: I' = G is a family of group homomorphisms that
depends analytically on ¢ € R, with ¢y = . For each v € I', the real
analytic curve ¢;(7)p(7)™! in G, starts at e when ¢ = 0. The Taylor
expansion of this curve defines a sequence of maps uy = up(¢¢): I' = g
(¢ =1,2,...), such that

@i(7) = exp(ur(V)t + ua (V) + -+ - ) (v),

where the domain of convergence may depend on ~.
We fix k£ > 1, and prove the following claim: assume that uy(I") C 3
fort =1,... .k —1. Then, there exists an analytic curve in G, to be

denoted by gt(k), with the following two properties:

(1) u@(@tz - uf(glgk) ’ @t) for all £ = 17 EERE) k— ]-7
2) ur(g" @) (@) C 3,

where g,gk) - ¢y denotes a homomorphism I' — g that is obtained by

conjugating ¢; with gt(k).

Once this clalmnlll%%é)s%erﬁ tpll;)%\éed we may apply Artin’s approiél)m(a;

tion theorem TI Thm. I.2[) to the formal power series g; = -+ g, ¢;
to conclude the proposition, just as in Step 1 of the proof of Proposi-

tion E.
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The remainder of the argument is devoted to proving the claim. To
this end, we compute @;(vn) = ¢i(7)pi(n) using the Baker—Campbell-
Hausdorff formula:

or(1m) = exp(Y_ un (M) p(7) exp(>_ un(n)t™) ()

= exp(Y_ un(") exp(Ad(2(1) (Y ua(m)t")) (1)
= exp(A(t) + B(t) + 5[A(t), B{t)] + - - )o(yn),

where A(t) = > 07, up ()" and B(t) = Ad(e(7)) (3,2, un(m)t").

Hence, we have

eq:BCH-formula| (E.3) Z un(yn)t" = A(t) + B(t) + %[A(t), B(t)]+---.

Let us consider the decomposition w, = v, + w, (n = 1,2,...) of
the 1-cochains corresponding to the decomposition g = [+ m as L-
modules. By assumption, the images of vy, ..., vp_1 are contained in j
and wy, ..., w,_1 vanish. Comparing the [-components of the coefficient
of t* in the identity (EZ3), we see that both v, and wy, define 1-cocycles.
Since HY(T', [/3) = 0 by assumption, there exists an element C}, € [ such
that,

ve(7) = Ad(e(7))C), — €}, mod 3,

for all v € T".
By comparing the [-component of the coefficient of #2* in the identity
(E33), we obtain

o (11) = vak(7) +Ad(9(7) e (n) 5 (the Leomponent of [k, wel(3,1))

This shows that the [-component of the 2-cocycle [wy, wg] is a 2-coboundary.
By assumption [3], wy: I' — m is a 1-coboundary. Hence, there exists
an element C} € m such that, for all v € T,

wi(y) = Ad(e(7))Cy — Cy.

Now, we set Cy := C} + C}! € g and define ggk) = exp(t*Cy) € G.
Clearly, uy, ..., u;_; remain unchanged, when we take replace ¢; with

its conjugate gfk) -, € G. On the other hand, the coefficient of t* in

log (9" - @) p(7) 1) = log(exp(t*Cy) exp(A(t)) exp(—t* Ad((7))Cy))

is equal to Cy + ug(y) — Ad(¢(7))Cy € 3. Hence, the claim is proved,
and the proposition follows. O
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APPENDIX F. CONTINUOUS FAMILY OF ZARISKI-DENSE SUBGROUPS

This section discusses a continuous family of Zariski-dense subgroups
in Zariski-connected, algebraic groups G. In Theorem E3, we deter-
mine the optimal number of generators when G is reductive.

Let G be a Zariski-connected real algebraic group, and let g be the
real Lie algebra of G.

Definition F.1. For a finite subset X = {X1,..., X,,}, we denote by
G(X) the identity component of the Zariski-closure of the subgroup of
G generated by eXt, ... e%n. It is also useful to introduce the notation
G(L; X), which denotes the identity component of the Zariski-closure
of the subgroup of G generated by L and eX!,... e*", when L is a
subgroup of G.

For each fixed t € R, we define tX := {tX | X € X}, and accordingly
define the Zariski-connected subgroups G(tX') and G(L; tX'), separately
for each t¢.

Example F.2. Let G be a unipotent real algebraic group, X € g, and
set X = {X}. Then the Lie algebra g(X') of G(X)—the Zariski-closure
of the subgroup generated by exp(X)—is RX, because the exponential
map exp: g — G is an isomorphism of algebraic groups.

In Definition [ET, it is important to note that the subgroups G(tX)
do not necessarily vary continuously with ¢, as will already be evident
in the abelian case (see Proposition EZT3 below).

Definition F.3. Let G be a Zariski-connected real algebraic group.
We define n(G),n(G), 7(G) as the minimal cardinalities of finite subset
X satisfying the following conditions, respectively:

n(G): G(tX) =G forall t > 0;
n(G): G(tX) =G for any § >t > 0 with some § > 0;
n(G): GX)=aG.

We observe that n(G) and 7(G) depend on the family of Zariski-
connected subgroups G(tX'), indexed by the continuous parameter t,
whereas 7(G) does not involve any continuous parameter. It is clear
that

n(G) < n(G) <7(G).

Although our primary focus is on n(G) for its application in Sec-
tions B2 and B3, we frequently discuss n(G) and 77(G) as well. First
of all, we show that the value of 5(G) can be arbitrarily large:

Example F.4. For G = R" regarded as a unipotent commutative al-
gebraic group, we have n(G) = n(G) = (G) = n.

In contrast to the unipotent commutative case discussed in Exam-
ple 4|, there exists an upper bound for 77(G) in the reductive algebraic
group.
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Theorem F.5. Let G be a Zariski-connected real reductive algebraic
group. Then we have

n(G) =n(G) =n(G) = 2,
except for the following cases:
o (m,n,m) = (1,1,1) when G is a split R-torus (G ~ (R*)?);
o (;,n,ﬁ) = (1,2,2) when G is an R-torus (G ~ T x (R*));
° @, n,m) = (2,2,3) when g contains su(2) as an ideal.

The upper bounds for (G), n(G), and 7j(G) when G is non-reductive
will be given in Lemma ET0.

,abourie_ . .
example, Labourie [b2] Lem. 5.3.13] for a proof in the case where G is

the split group SL(n,R). Our approach to the invariants n and 77 as
well as 1, however, offers an alternative method of proof that extends
to the family G(t{X}) as the parameter ¢t € R varies.

Remark F.6. It ii;%%own lré%jcc quG) = 2 for semisimple G; see, for

Before turning to the proof of Theorem -4, we first summarize some
basic properties of 1(G), n(G), and 7(G) in Lemmas E1 and E10
without assuming that G is reductive.

Lemma F.7. For any homomorphism of real algebraic groups p: G —
G' and any finite subset X C g, we have the identity

dp(g(X)) = ¢'(dp(X)).

Proof. Consider the extension of ¢ to a morphism of complex algebraic
groups ¢c: Ge¢ — G. Then ¢ (Ge(X)) is Zariski-closed and contains
exp(dp(X)) for each X € X. Hence ¢oc(Ge(X)) D G(de(X)). The
reverse inclusion follows from the Zariski-continuity of ¢¢. Therefore,
we obtain the equality

pe(Ge(X)) = Geldp(X)).

Taking the corresponding real Lie algebras then yields the desired iden-
tity. ]

Definition F.8. Suppose that A is an associated R-algebra, and that
V' is a finitely generated A-module. Let k(A, V) denote the minimal
number of generators of V' as an A-module. When V is a G-module
for a group G, we define

K(G,V) = &(R[G], V),
where R[G] is the group ring.

For the reader’s convenience, we provide an explicit formula for
k(S,u) in terms of the multiplicities of irreducible representations. In
the following lemma, the formula applies with A = U(s) and V' = u.
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Lemma F.9. Let A be an associative R-algebra, and V' an A-module
which is finite-dimensional over R. Assume V decomposes €, V",
where V1, Va, ... are mutually non-isomorphic irreducible A-module and
n; € N is the multiplicity of V; in V. Put D; :== Ends(V;), which is
isomorphic to either R, C, or H. We have

1

(ALY = max([ ).

Proof. By Jacobson’s density theorem, the homomorphism of R-algebras
A — ][, Endp,(V;) induced by the action of A on V; is surjective.
Therefore, we see that the A-module @, V"™ (m; € N) is cyclic if and
only if m; < dimp, V;. Our conclusion follows from this fact. Ol

Lemma F.10. Let G be a Zariski-connected real algebraic group. In
what follows, § denotes any one of n, n, or 7.

(1) (Quotient). Let p: G — G’ be a homomorphism of Zariski-
connected real algebraic groups such that dy is surjective. Then

£(G) = £(G").
Furthermore, if dy is injective, then equality holds.

(2) (Almost direct group). Let S and V' be Zariski-connected nor-
mal subgroups such that G =S -V with SNV finite, and with
the Lie algebra s being semisimple. Viewed as s-modules, we
assume that the irreducible constituents of v and s are distinct.
Then we have

§(G) = max(£(5),£(V)).

(3) (Levi decomposition) Let G = S-U be a Levi decomposition of a
Zariski-connected real algebraic group G, where S is a mazrimal
real reductive algebraic subgroup and U is the unipotent radical

of G. Then, we have
E(G) <E(S) + k(S,u).

Proof. In the proof below, since the argument remains unchanged when
the parameter ¢ is included, we treat n, n, and 77 simultaneously, without
explicitly introducing the parameter .

(1). Let X be a finite subset of the Lie algebra g such that G(X) = G.

By Lemma E71, we have

g'(de(X)) = dp(g(X)) = g'.
Since G’ is Zariski-connected, it follows that G'(de(X)) = G’. Hence,
the desired inequality follows.
Now suppose that dip is injective (and hence bijective). Let X’ be
a finite subset of the Lie algebra g’ such that G'(X’) = G’. Set X :=
(dp) 1 (X"). Again, by Lemma 7,

dip(g(X)) = g'(X') = ¢,
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This implies that g(X) = g. Since G is Zariski-connected, we obtain
G(X) = G, which proves the reverse inequality.

(2). We know that £(G) > max(£(S5),&(V)) by (1). We now prove
the reverse inequality.

Let pr;: g — s and pry: g — v be the projection maps associated
with the direct sum decomposition g = s + v. Choose a finite subset
X = {Xy,...,Xn} C s such that S(X) = S, a finite subset J =
{Y1,...,Y,} C v such that V() = V. Define

Z = {Zla SRR Zmax(m,n)} with Z; := X; + }/;7

where we take X; = 0 for i > m and Y; = 0 for ¢ > n. Let g’ denote
the Lie algebra of G(Z).

By Lemma [E77, we have pr,(g’) = s and pry(g’) = v. Since none of
the s-irreducible constituents of v appear in s, it follows from pr,(g’) =
s that g’ contains the direct sum s & 0. Therefore, from pry(g’) = v,
we conclude that g’ = g, and consequently, G(Z) = G. Hence, we have
established the reverse inequality £(G) < max(£(S),&(V)).

(3). Let X be a finite subset of s such that G(X) = S, and let
be a finite generating set of the S-module u such that ) = (S, u).
Then, the group G(X UY) contains G(X') = S, and consequently,

GXUY)=G(S;)).

As seen in Example [E22, the Lie algebra g(X'U)Y) contains Y. It follows
that

g(XuY)=s+u=gy.

Since G is Zariski-connected, we conclude that G(X U)Y) = G. This
yields the desired inequality. O

As an immediate consequence of Lemma ET0 [2), we obtain the
following result in the reductive setting.

Proposition F.11. Let G be a Zariski-connected, reductive algebraic
group, and suppose that

G=Gy GG,

be the almost direct product, where Go is commutative, and the Lie
algebras g; are of the form 5™, with each s; a simple Lie algebra not
isomorphic to s; for 1 <i# j <r. In what follows, § denotes any one
of n, m, orm. Then we have
§(G) = max £(Gi)

Remark F.12. Let { denote any one of 17, n, or 7. When g is the direct
sum of n of a simple Lie algebra s of a fixed type, the invariant £(G)
does not depend on n. We will give an explicit formula—for example,
for 7(G)— in Propositions =21 and E28.
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We now begin the proof of Theorem EH. We first consider the
elementary case in which G is commutative, addressed in Proposi-
tion EET3. We then prove Proposition E-I6 which shows the result
for n(G) and n(G) in the general case where G is reductive. Finally,
the results for 7(G), when g is the direct sum of a simple Lie algebras of
a fixed type are given in Propositions EZ=21 and EZ26. These complete
the proof of Theorem [EA.

In the commutative case, the real algebraic group G decomposes as
a direct sum of several copies of
Ty = 1} .

o {(; 2)[ -1} e )

The groups of real points of these algebraic groups are isomorphic, as
Lie groups, to T := {e | t € R} and R*, respectively. In what follows,
we regard these Lie groups as equipped with the above real algebraic
group structures, and we use the corresponding notation accordingly.

For X = (Xy,...,X,) € R" such that Xj,..., X, are linearly inde-
pendent over Q, we define a countable subset of R by

(F.1) Ax) =) U ¢

eN AeZn~ {0} 21 i

Proposition F.13. Let G = T¢ x (R*)*. Suppose that real numbers
Xi,..., Xaxp are linearly independent over Q. Then

(e\/j”Xl, . ,6mtX“, eXatt ,etX““’) e T* x (Rx)b

generates a Zariski-dense subgroup in G for anyt € RawA(Xq, ..., X,).
Furthermore, we have

2 (a>0),

5(G) =1, U(G)Zﬁ(G)Z{l )

Before proving Proposition EZT3, we present two preliminary lemmas.

Lemma F.14. Let G = T x (R*)®, and let pr; denote the projection
to the i-th factor for i = 1,2. If G’ is a real algebraic subgroup of G
such that pr,(G') = T and pry(G’') = (R*)®. Then G’ = G.

Proof. In our setting, every element g of G is semisimple, and its Jordan
decomposition is given by g = g.gn, where g. = (pr;(g),1) and g, =
(1,pry(g)) are the elliptic and hyperbolic parts, respectively. Since the
Jordan decomposition in the real algebraic subgroup G’ is compatible
with that of G, we have G’ = pr{(G’) X pry(G’). Hence, we conclude
G' =G. O

Lemma F.15. Suppose that real numbers Xy, ..., X, are linearly in-
dependent over Q.
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(1) When G = (R*)", exp(X) = (eX1,...,e%") € G generates a
Zariski-dense subgroup in G. In particular, n(G) = n(G) =
n(G) = 1.

(2) When G = T", exp(n/—1tX) € G generates a Zariski-dense
subgroup of G if t € R~ A(X), where A(X) is defined as in
(D) for X = (X1,...,X,). Furthermore, we have n(G) = 1
and n(G) =7(G) = 2.

.. . allach-real-redyctive-group
Proof. (1). This is essentially Chevalley’s lemma (e.g., Hdtiy, Lem. 2.A°T.2[).

In fact, suppose that a polynomial f(z1,...,7,) = > cyn @Gar® van-
ishes on exp(ZX), where a, € R and z* = z{*---2%". This means
that

Z aq exp({a, X)) =0 forall ¢ € Z,

aeN"

where (-, -) denotes the standard inner product on R™. Since the values
(v, X) are pairwise distinct for all &« € N™ by the assumption on X, we
deduce that a, = 0 by downward induction, starting from the largest
(ar, X)), and thus f = 0. This shows n(G) = 1. Since the assumption on
X remains unchanged if we replace X with a non-zero scalar multiple
tX, we conclude n(G) =7(G) = 1.

(2). Ift € RNA(X), then the set exp(my/—1ZtX) is dense in T" with
respect to the usual topology, and hence also Zariski-dense. Therefore,
we conclude that n(T") = 1.

Next, we show that n(T") > 2. Let X = (Xi,...,X,) € R" be
arbitrary. Then, there exists a positive number ¢ > 0 as small as
desired such that tX; € Qn. For such t, G(t{X}) is contained in the
1 x T"! because the projection of exp(v/—1ZtX) C T" to the first
component has finite image. Hence, we have shown n(T™) > 2.

Finally, we show that 77(T") < 2. We choose X = (X3,...,X,,) and
Y = (Y1,...,Y,) such that Xq,...,X,,Y:,..., Y, € R are Q-linearly
independent, and that A(X) N A(Y) = {0}. Then, for any positive
real number ¢, at least one of the two elements exp(tX) and exp(tY)
generates a Zariski-dense subgroup in G. Therefore, we conclude that
7(T™) < 2, and the proof of (2) is complete. O

Proof of Proposition [E-13. Both assertions in Proposition E13 follow
immediately from Lemmas T4 and E-T3. U

We now consider the case where G is non-commutative.

renerates_reductive| Proposition F.16. Let G be a Zariski-connected, non-commutative,
real reductive algebraic group. Then we have n(G) = n(G) = 2.

To prove Proposition [EZTG, we introduce useful concepts and provide
two lemmas.
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Suppose that jc is a Cartan subalgebra of a complex reductive Lie
algebra gc. Let A(gc,jc) denote the root system. We write

gc =Jc® @ gC.a

a€A(gc;ic)

for the root decomposition. Accordingly, for X € g¢, we decompose as
X =Xo+> X,

Under this notation, we introduce the notion of j-filled, which will
help to clarify the structure of the proof of Proposition EI8.

Definition F.17. We say that X € g¢ is jc-filled if it decomposes as
X = X() + ZXoc with Xa 7é 0 for every o < A(g(c,j(c). Let g(c(j(c)ﬁn
denote the set of jc-filled elements.

When g is a real reductive Lie algebra and j is a Cartan subalgebra,
we write gc and jc for their complexifications, respectively. We say
that an element X of g is j-filled if X € g(§)an := g N gc(ic)sn-

Here are basic properties of j-filled elements:

Lemma F.18. (1) The set g(j)an is open dense in g with respect
to the usual topology.
(2) If X € g(i)an, then the Lie algebra generated by j and X is
equal to g.
(3) If X € g()an, then X € g(Ad(9)i)an if g € G is sufficiently

close to the identity element e.

Proof. Since gc(jc)an is Zariski-open in gc, g(j)an is open dense in g.
Since every root space gc o is one-dimensional, the complex Lie algebra
generated by j and a j-filled element X is gc. Hence, the second state-
ment holds. The last statement follows from the continuity of the root
decomposition with respect to the choice of Cartan subalgebras. U

Lemma F.19. Let g be a real reductive Lie algebra. Then there exists
a pair of elements X and Y satisfying the following properties: let j;
be the centralizer of X in g, and jo be that of Y in g. Then

(1) both i, and je are Cartan subalgebras of g;
(2) X isjo-filled, and Y is j1-filled.

Let g, denote the set of semisimple, regular elements in g. Then

Oy Ccontains an open dense subset of g.

Proof of Lemma [E13 . We fix a Cartan subalgebra j, and take Y from
Oree N 8()an. By Lemma ETI8 (1), such a Y exists. The centralizer of
Y in g, denoted by jo, is a Cartan subalgebra of g because Y € gr,.
Since Y € g(j)su, by Lemma ETIR (3), there exists an open neighbor-
hood V of e in G such that Y € g(Ad(g)j)an for any g € V.
Since Ad(V')j contains a non-empty open subset of g, there exists
g € V such that Ad(g)j N g, Ng(i2)an # 0. We then choose X from

reg
this set.
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Let j; denote the centralizer of X in g, which equals the Cartan
subalgebra Ad(g)j. Then X is jo-filled, and Y is j;-filled. Thus, the
lemma is proved. Il

We are ready to prove Proposition E_T4.

Proof of Proposition [E-1d. Since G is non-commutative, it is clear that
2 < 1n(G). Therefore, it suffices to show n(G) < 2.

We take two Cartan subalgebras j; (i = 1,2), X € j;, and Y € jo,
as given in Lemma E-T9. Let J; be the Cartan subgroup of G with Lie
algebras j; (i = 1,2).

By Lemma [ET8 (1), we may replace X with a regular semisimple
element X’ € j; such that X’ is close enough to X that X’ remains
jo-filled, while G(¢t{X'}) = J; for any t € R . A’ by applying Proposi-
tion [EETI3 to the R-torus J;, where A’ is a countable set of R depending
on X', as given in (ET).

Similarly, we may replace Y with a sufficiently close Y’ € j5 such
that Y’ remains j;-filled, while G(tY') = J, for any ¢t € R . A”, where
A" is a countable set of R depending on Y’. Since both A" and A” are
countable, we can take s € R, which is sufficiently close to 1, such that
sN'N A" ={0}. We set

X ={X' sY'}
Then, for any t € R \ {0}, at least one of the following holds:
Gt{X'})=J; or Gt{sY'}) = Ja.

For instance, suppose that G(t{sY'}) = Jo. Then G(t{X', sY'}) =
G(Jo; t{X'}). We write X' = X'+ >~ X/, for root decomposition. We
take H € jo such that o(H) # 0 for any o € A(gc,j2.c). Then there
is an analytic curve a: R — g such that a(t) € g(t{X'}) for all ¢t €
R~ {0} and a(0) = [H,X'] = ), «a(H)X], as stated in Lemma B=23.
In particular, a(0) € gan. Therefore, if ¢ is sufficiently small, then a(t) €
gan. It follows from Lemma [ETT8 (2) that the Lie algebra g(t{X’, sY’})
of G(t{X’,sY'}) equals g.

Similarly in the case where G(t{X’, sY'}) = G(Jy;t{sY"}), the proof
works. Therefore, we have shown that g(¢{X’, sY’}) = g in either case.
Since G is Zariski-connected, we have G(t{X’,sY'}) = G. Thus, the
proposition is proved. Il

We now determine 7(G) for reductive groups G, starting with an
exceptional case:

Lemma F.20. If g = su(2), then 7(G) = 3.

Proof. First, we show the inequality 2 < 7j(G). Let X and Y € g. Then
there exists t € R such that exp(tY’) = 1. Consequently, G(t{X,Y}) =
G(t{X}) is abelian, which cannot coincide with G. Hence, we have
shown that 3 <7(G).
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Conversely, we can choose a basis X, X5, X3 € g such that, for any
t # 0, at least two of G(t{X;}) (i = 1,2,3) are maximal tori in G.
Therefore, G(t{ X1, Xs, X3}) = G, showing 77(G) < 3. O

Proposition F.21. If g is the direct sum of n copies of su(2), then
7(G) =3 for any n € N,.

Proof. By Lemmas ETT0 (1) and E=20, we have 77(G) < 3. Let us prove
the reverse inequality.

We write G as the almost direct product of groups G = S ... S,
which corresponds to the direct sum decomposition of the Lie algebra
g~sM @ s where each 5 is isomorphic to su(2). We choose
Xl(i), Xéi), Xéi) in s for every 1 < ¢ < n, as in Lemma E=20, and define
X;=>" X]@ for j € {1,2,3}. Then, G(t{X1, X2, X3}) = G for all
t #£0. O

The following lemma indicates that the case G = SU(2) is the only
exception.

Lemma F.22. Suppose that G is a Zariski-connected, real simple alge-
braic group such that g is not isomorphic to su(2). There exist reqular
semisimple elements X and Y € g such that G(t{X,Y}) = G for all
t #0. In particular, 7(G) = 2.

For the proof, we need some notation and lemmas.
When G acts on X¢, we denote by (X¢)? := {z € Xc|gzr = x}.

Lemma F.23. Let G¢ be a Zariski-connected, complex simple algebraic
group, Zg,. the center, Jc a Cartan subgroup, Hc a Zariski-connected
algebraic subgroup containing Jc, and X¢ := G¢/Hc.

(1) (X¢)? = Xc¢ if and only if g € Zg,..

(2) We set
(F.2) Xop= J Xy

gEJc\ZGC

Then (Xc)fis ts a Zariski-closed subset with positive codimen-
ston in Xc.

Proof. (1). The condition (X¢)? = X¢ implies that g belongs to the
proper normal subgroup () vec. CH cf~1. Since G is simple, we conclude
g € Zg.. The converse statement is clear.

(2). Since H¢ contains the Cartan subgroup Jc, the defining equation
exp(T)x = x in X¢ for T € jc depends solely on the finite set

AT = {Oé < A(gc,jc)|6a(T) = 1}

Hence, the right-hand-side of (E=2) is a Zariski-closed subset with pos-
itive codimention in Xc¢. O
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For a fixed Cartan subgroup J¢ of G, we define
(F.3) (Goix = |J mut(Ge/He)as,

JcCHe

where H¢ runs over the finite set of all Zariski-connected, maximal al-
gebraic subgroups containing the Cartan subgroup Jc, and mp.: Ge —
Gc/Hc is the natural quotient map. Then, (G¢)ayx is a Zariski-closed
subset of Gc.

Lemma F.24. Suppose Y € Ad({1)jc where { € Ge ~\ (Ge)piwr If
exp(Y) € Zg., then Ge(Je; {Y'}) = Ge.

Proof. If this were not the case, there would exist a Zariski-connected
maximal algebraic subgroup H¢ such that G(J¢;{Y}) C Hc, where
Y = Ad(¢1)X with X € j¢

Let 0 € G¢/Hc denote the origin. We observe that

(-0€ l(Ge/He)™Y) = (G /He)™PHX),

On the other hand, since Y € j¢ satisfies exp(Y) ¢ Zg., we have
exp(X) ¢ Zg,. It follows from the definition (E33) that (G¢/He)**™) C
(Ge/Hc)gx- This contradicts the assumption that £ ¢ (Gc ). O

Lemma F.25. Let G be a Zariski-connected, real simple algebraic group
such that g # su(2), and let j be a Cartan subalgebra of g. Then there
exists a countable set Z inj such that exp(tY') & Zg for anyt € R~{0}
and for any Y ¢ REZ.

Proof. Let J be the Cartan subgroup of G with Lie algebra j. We
note that the dimension of j is greater that 1. Since the kernel of the
exponential map exp: j — J is a countable set, the lemma is clear. [

We are ready to prove Lemma E=22.

Proof of Lemma [EZ23. We shall find X € j and Y € j’ in the order
i=Y =j = X as follows.

First, we take a Cartan subalgebra j of g. The set (G¢)sy is defined,
as in (E33).

Next, we choose Y € g;, that satisfies the following three condi-
tions, which are generic by Proposition EZ28, Lemma E—23, and Propo-
sition ET3, respectively:

(a) exp(tY) € Zg for any t € R~ {0};

(b) Y € Ad(¢71)j for some ¢ € G such that £ and £~! do not belong
to (G(C)ﬁx.

(¢) G(t{Y}) is a Cartan subgroup of G for any t € R . A, where
A is a countable subset.

Let J' be the Cartan subgroup corresponding to j’ := Ad(¢~!)j. Then,
for any t € R~ A, we have G(t{Y'}) = J'.
Third, we take X € j satisfying the following two conditions:
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(a)" exp(tX) & Zg for any t € R \ {0};
(c) G(t{X}) = J for any t € R~ A/, where A’ is a countable
subset.

We already know that

(b) X € Ad(¢)j’, where ¢ € G such that ¢ and £~ do not belong
to (G(C)ﬁx.

Rescaling X if necessary, we may and do assume that AN A" = {0}.
Then, for any t # 0, at least one of the following holds: G(t{X}) = J
or G(t{Y'}) = J".

In the case where G(t{X}) = J, we have G(t{X,Y}) = G(J;tY) =
G, where the last identity follows from Lemma [E24. On the other
hand, in the case where G(¢; {Y'}) = J', we have G(t{ X, Y }) = G(J';tX) =
G, again by Lemma E24. Therefore, we have shown 7(G) < 2.

Since the reverse inequality 2 < 7j(G) is clear, the last assertion is
also proved. O

5rline_eta_simple_n‘ Proposition F.26. Suppose that G is a Zariski-connected real alge-
braic group such that g is isomorphic to s", the direct sum of n copies
of a simple Lie algebra s which is not isomorphic to su(2). Then there
ezist reqular semisimple elements X andY € g such that G(t{X,Y}) =
G for allt # 0. In particular, 7(G) = 2 for every n € N,.

Proof. We write G as the almost direct product of groups
G=25-8,,
which corresponds to the direct sum decomposition of the Lie algebra
g5, D D5y,

where each s; is isomorphic to the same simple Lie algebra s. For
1 <4 < n, we choose Cartan subgroups J; and J; of S;, and regu-
lar semisimple elements X;,Y; € s; as in Lemma E222, satisfying the
following conditions:

SHtX;}) = J; for any t € R\ A,

S;({tY:}) = J; for any t € R AL,
Si(Ji; {tY;}) = S; for all t € R,
Si(J5{tX ) = S; for all t € R,

where A; and A} are countable sets such that A; N A} = {0}. We define
X=X+ --+X,and Y ;=Y +---+Y,. Then G(t{X,Y}) contains
the subgroup S; for every 1 < ¢ <mn and for each ¢t € R \ {0}. Hence,
it follows that G(t{X,Y}) = G for all t € R~ {0}. O

Proof of Theorem [EZ4. By Proposition ET1], it suffices to show that
the Lie algebra g is either commutative or the direct sum of simple Lie
algebras of the same type.
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The commutative case is proved in Proposition E13, with two ex-
ceptional cases given in Lemma ET3.

The formulas for n(G) and n(G) in the non-commutative case are
proved in Proposition EZI8. The formula for 7(G) in the non-commutative
case is proved in Proposition EZ28, with the exception case given in
Proposition EZ2TI.

Hence, the proof of Theorem [EH is complete. O
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