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1 Introduction

In [5], we initiated a new line of investigation on branching problems

by introducing the concept of generating operator, and found its closed

formula for the family of Rankin–Cohen brackets ([4, 5]).

As an application of generating operators, we proposed in [1] a trick of

transferring discrete data into continuous data, and illustrated these

ideas by an SL2 example, in particular, showing how the generating op-

erator T of the Rankin–Cohen brackets {R`}`∈N yields various families of

non-local intertwining operators with continuous parameter in different geo-

metric settings from the setting where the original operators are defined.

In this note, we explore these principles in a higher-dimensional setting

focusing on a simpler case where symmetry breaking operators (SBOs for

short) are given by normal derivatives ([3]). In this case, the generating

operators reduce to the shift operator, see Example 2.1. This reduction

makes the entire framework more comprehensive as all the technicalities

boil down to elementary computations. More precisely, we shall consider

the case (GLn+1, GLn) through the following process.

Step 1. Description of SBOs given by normal derivatives;

Step 2. Changing real forms;

Step 3. Finding the generating operators;

Step 4. Trick from discrete to continuous.

In this way, we obtain singular non-local SBOs for branching problems of

different real forms from the original setting where all SBOs are differential

operators (localness theorem, [2]). While one could construct the singular

non-local SBOs directly by using the general theory [6, 7], our approach
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shows that the concept of the generating operators bridges normal deriva-

tives and a simple form of non-local SBOs.

In other words, the generating operators provide us a guiding principle

to single out the case where the singularities of the distribution kernels of

non-local symmetry breaking operators are normal crossing.

2 Reminders

2.1. Generating operators. Suppose that Γ(X) and Γ(Y ) are the spaces

of functions on X and Y , respectively. Given a family of linear operators

R` : Γ(X)→ Γ(Y ), we consider a formal power series

(2.1) T ≡ T ({R`}; t) :=

∞∑
`=0

R`
`!
t` ∈ Hom(Γ(X),Γ(Y ))⊗ C[[t]].

When X = {point}, R` is identified with an element of Γ(Y ), and such a

formal power series is called a generating function, which has been par-

ticularly prominent in the classical study of orthogonal polynomials for

Γ(Y ) = C[y].

When X = Y , Hom(Γ(X),Γ(Y )) ' End(Γ(X)) has a ring structure, and

one may take R` to be the `-th power of a single operator R on X. In

this case, the operator T in (2.1) may be written as etR if the summation

converges. For a self-adjoint operator R with bounded eigenvalues from

the above, the operator etR has been intensively studied as the semigroup

generated by R for Re t > 0: examples include

• the heat kernel for R = ∆,

• the Hermite semigroup for R = 1
4(∆− |x|2) on L2(Rn),

• the Laguerre semigroup for R = |x|(∆
4 − 1) on L2(Rn, 1

|x|dx).

In [5], we addressed a new line of investigation in a more general setting

where X 6= {point} and X 6= Y . In this generality, we refer to T in (2.1) as

the generating operator for a family of operators R` : Γ(X)→ Γ(Y ).

Here is a simple example of the generating operator for X = Rn ⊃ Y =

Rn−1:

Example 2.1 (normal derivative). LetX = Rn = {(x0, . . . , xn−1) = (x0, x)}
and Y = Rn−1 = {x = (x1, . . . , xn−1)}, the hyperplane x0 = 0. We consider

a countable family of differential operators

R` : C
ω(X)→ Cω(Y ), F 7→ Restx0=0 ◦(

∂

∂x0
)`F.
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The the Taylor series expansion of F (x0, x1, . . . , xn) along the normal direc-

tion x0 shows that the generating operator T of {R`}`∈N is given as

(TF )(x1, . . . , xn−1; t) =

∞∑
`=0

t`

`!

∂`F

∂x`0
(0, x1, . . . , xn−1)

=F (t, x1, . . . , xn−1).

Thus, T is essentially the identity operator in this special case.

In general, symmetry breaking operators are not given by normal deriva-

tives, and finding find a closed formula of the generating operator is even

more involved in such cases. The one for the Rankin–Cohen brackets in the

specific setting where (X,Y ) = (C2,C) was obtained in [4, 5].

2.2. Trick from discrete to continuous.

According to the recipe proposed in [1, Sect.3.3], we define a “meromor-

phic continuation” of a countable family of differential operators {R`}`∈N
through its generating operator T =

∞∑̀
=0

t`

`!R` by the following scheme.

{R`}`∈N
(2.1)
99K T

(2.2)
99K Tµ,δ.

To implement the procedure T 99K Tµ,δ, we recall that the locally inte-

grable functions |x|µ and |x|µ sgnx, initially defined for Reµ > −1 on R,

extend to tempered distributions depending meromorphically on µ ∈ C. The

poles of this family are all simple, and are located at {−1,−3,−5, . . . , } and

{−2,−4,−6, . . . , }, respectively.

Building on the generating operator T : Γ(X)→ Γ(Y )⊗C[[t]] of {R`}, we

consider, for µ ∈ C and δ ∈ {0, 1} = Z/2Z,

(Tµ,δf)(z) =〈|t|µ(sgn t)δ, Tf(z, t)〉(2.2)

=〈|t|µ(sgn t)δ,

∞∑
`=0

t`

`!
(R`f)(z)〉.

We may expect that Tµ,δ constitutes a family of operators from Γ(X) to

Γ(Y ) that depends meromorphically on µ if the formal power series (2.1)

converges in an appropriate way.

Furthermore, let T̃µ,δ be renormalization of Tµ,δ given by the distribution

kernels
1

Γ(µ+1
2 )
|x|µ (δ = 0),

|x|µ sgnx

Γ(µ2 + 1)
(δ = 1)
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which depend holomorphically on µ in the entire complex plane C. Finally,

we note that there are non-zero constants Cm such that

1

Γ(µ+1
2 )
|x|µ

∣∣∣∣∣
µ=−2k−1

=C2kδ
(2k),

1

Γ(µ2 + 1)
|x|µ sgnx

∣∣∣∣
µ=−2k−2

=C2k+1δ
(2k+1).

2.3. Differential SBOs, localness theorem and extension theorem.

For a pair of real reductive Lie groups G ⊃ G′, continuous symmetry

breaking operators between two principal series representations of G and G′

are generically given by integral transforms and their meromorphic contin-

uations, see [6, 7] for example.

However, in some geometric models, only differential symmetry breaking

operators exist. This phenomenon, formalized as ‘localness theorem’, per-

sists even for vector-bundle valued principal series representations, see [7].

For our purpose, we briefly recall from [2, Section 5] a prototype of this

phenomenon in the holomorphic setting as below.

Fact 2.2 (Localness Theorems [2, Thm. 5.3]). Suppose that G ⊃ G′ is a

pair of reductive Lie groups such that both of the associated Riemannian

symmetric spaces Y = G′/K ′ and X = G/K are Hermitian symmetric.

Moreover, assume that the natural G′-equivariant embedding ι : Y ↪→ X is

holomorphic, see [2, (2.1)] for precision. Consider a G-equivariant holo-

morphic vector bundle VX over G/K associated to a K-module V , and a

G′-equivariant one WY associated to a K ′-module W . Then, any continu-

ous G′-homomorphism from O(X,V) to O(Y,W) is given by a holomorphic

differential operator with respect to ι : Y ↪→ X, that is,

Diffhol
G′ (VX ,WY ) = HomG′ (O (X,VX) ,O(Y,WY )) .

Let X = G/K ↪→ XC = GC/PC, Y = G′/K ′ ↪→ YC = G′C/P
′
C be Borel

embeddings. We write VXC and WYC for the GC-and G′C-equivariant holo-

morphic vector bundles over XC and YC, respectively.

Fact 2.3 (Automatic Continuity theorem [2, Thm. 5.13]). In the setting

of Fact 2.2 any differential symmetry breaking operator (or equivalently,

any continuous G′-homomorphism) extends to a differential operator be-

tween holomorphic vector bundles over the compactifications YC ↪→ XC of
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the Hermitian symmetric spaces Y ↪→ X, namely, the injection

(2.3) Diffhol
G′C

(VXC ,WYC) ↪→ Diffhol
G′ (VX ,WY )

is bijective.

2.4. Generalities: Normal derivatives as symmetry breaking op-

erators.

In [3], we addressed a question of which pairs of Hermitian symmetric

spaces (X,Y ) = (G/K,G′/K ′) do admit symmetry breaking operators that

are given by normal derivatives. It turns out that such pairs are quite rare.

We established a classification theorem in the case when rankRG/G
′ = 1.

Namely, there are six complex geometries arising from real symmetric pairs

of split rank one, which we review here:

(1) PnC ↪→ PnC× PnC (4) Grp−1(Cp+q) ↪→ Grp(Cp+q)
(2) LGr(C2n−2)× LGr(C2) ↪→ LGr(C2n) (5) PnC ↪→ Q2nC
(3) QnC ↪→ Qn+1C (6) IGrn−1(C2n−2) ↪→ IGrn(C2n)

Table 2.1. Equivariant embeddings of flag varieties

Here Grp(Cn) is the Grassmanian of p-planes in Cn,

QmC := {z ∈ Pm+1C : z2
0 + · · ·+ z2

m+1 = 0}

is the complex quadric, and

IGrn(C2n) := {V ⊂ C2n : dimV = n, Q|V ≡ 0}

is the Grassmanian of isotropic subspaces of C2n equipped with a non-

degenerate quadratic form Q, and

LGrn(C2n) := {V ⊂ C2n : dimV = n, ω|V×V ≡ 0}

is the Grassmanian of Lagrangian subspaces of C2n equipped with a sym-

plectic form ω.

Among them only three do admit normal derivatives as symmetry break-

ing operators.

Fact 2.4. (1) Any continuous G′-homomorphism from O(X,Lλ) to O(Y,W)

is given by normal derivatives with respect to the equivariant embedding Y ↪→
X if the embedding Y ↪→ X is of type (4), (5) or (6) in Table 2.1.
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(2) None of normal derivatives of positive order is a G′-homomorphism

if the embedding Y ↪→ X is of type (1), (2) and (3) in Table 2.1.

Recall that if E = E′ ⊕ E′′ is a direct sum of complex vector spaces and

VE := E × V and WE′ := E′ ×W is a direct product vector bundles over

E and E′, respectively, then O(E,VE) ' O(E) ⊗ V , and O(E′,WE′) '
O(E′)⊗W .

Take coordinates y = (y1, · · · , yp) in E′ and z = (z1, · · · , zn) in E′′. The

subspace E′ is given by the condition z = 0 in E = {(y, z) : y ∈ E′, z ∈ E′′}.
A holomorphic differential operator T̃ : O(E)⊗ V → O(E′)⊗W, f(y, z) 7→
(T̃ f)(y) is said to be a normal derivative with respect to the decomposition

E = E′ ⊕ E′′ if it is of the form

(2.4)
(
T̃ f
)

(y) =
∑
α∈Nq

Tα(y)

(
∂|α|f(y, z)

∂zα

∣∣∣∣
z=0

)
,

for some Tα ∈ O(E′)⊗HomC(V,W ).

We writeNDiffhol(VE ,WE′) for the space of (holomorphic) normal deriva-

tives. This notion depends on the direct sum decomposition E = E′ ⊕ E′′

and we may apply it to the subsymmetric space G′/K ′ in the Hermitian

symmetric space G/K using the fact that we have the following direct sum

decomposition of K ′-modules:

(2.5) n− = n′− ⊕ n′′−.

Since the trivialization of the vector bundle GC ×PC V is KC-equivariant,

there is a natural isomorphism:

HomK′(V, S(n′′−)⊗W )
∼−→ NDiffconst

K′ (VX ,WY ).

It was proven in [3, Theorem 5.3] that in the case when dimV = 1 and the

spectral parameter of the homogeneous line bundle over X = G/K satisfies

a certain positivity condition all continuous G′-homomorphisms

O(X,Lλ) −→ O(Y,W),

are given by normal derivatives with respect to the decomposition n− = n′−⊕
n
′′
− for any irreducible K ′-module W if and only if the symmetric pair (g, g′)

is isomorphic to one of (su(p, q), s(u(1)⊕ u(p− 1, q))), (so(2, 2n), u(1, n)) or

(so∗(2n), so(2)⊕ so∗(2n− 2)), see Fact 2.4 (2).
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3 Test case (GR, G
′
R) = (GL(n+ 1,R), GL(n,R))

We apply our strategy of meromorphic continuation to the generating op-

erator and test it in the simplest setting for the pair (GL(n+1,R), GL(n,R)).

3.1. Step 1: Description of symmetry breaking operators given

by normal derivatives.

Let (G,G′) = (U(p, q), U(p− 1, q)). We realize the Hermitian symmetric

spaces G′/K ′ and G/K as bounded complex symmetric domains:

G′/K ′ '{Y ∈M(p− 1, q;C) : Ip−1 − Y Y ∗ � 0},

G/K '{X ∈M(p, q;C) : Ip −XX∗ � 0}.

Let P ′C and PC be maximal parabolic subgroups of G′C and GC with Levi

subgroups K ′C and KC, respectively. Then the embedding G′/K ′ ↪→ G/K

is naturally realized via

G′C/P
′
C
� � //⋃ GC/PC⋃

M(p− 1, q;C) �
� //⋃ M(p, q;C)⋃

G′/K ′ �
� // G/K.

3.2. Step 2: Changing real form.

All symmetry breaking operators regarding the embedding G′/K ′ ↪→
G/K in the holomorphic setting are holomorphic differential operators by

the localness theorem (Fact 2.2). Moreover, they extend to the whole com-

plex flag varieties regarding the embedding G′C/P
′
C ↪→ GC/PC by the exten-

sion theorem (Fact 2.3). We restrict them to other real forms as follows. For

(G,G′) = (U(p, q), U(p − 1, q)), we set (GR, G
′
R) := (GL(p + q,R), GL(p +

q − 1,R)) and PR := GR ∩ PC, P ′R := G′R ∩ P ′C, so that

G/K ⊂
open

GC/PC ⊃
real form

GR/PR.

Proposition 3.1. One has a natural morphism

DiffG′(O(G/K,Lλ),O(G′/K ′,L′ν)) ↪→ DiffG′R(IndGR
PR

(Cλ), Ind
G′R
P ′R

(Cν)).

We shall see in Section 3.7 that this morphism is not necessarily surjective,

see (3.8).
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3.3. Degenerate principal series representations πλ,δ of GR.

For λ, ν ∈ C and δ, ε ∈ {0, 1} ' Z/2Z, we define characters of PR and P ′R
by

χλ,δ

(
A 0

C D

)
:= | detD|λ sgn(detD)δ for

(
A 0

C D

)
∈ PR ⊂ GR.

χ′ν,ε

(
A 0

c d

)
:= |det d|ν sgn(det d)ε for

(
A 0

c d

)
∈ P ′R ⊂ G′R,

where C ∈M(q, p;R) and c ∈M(q, p− 1;R).

For g−1 =

(
A B

C D

)
∈ GR = GL(p+ q,R), one has

(
A B

C D

)(
Ip X

0 Iq

)

=

(
Ip (AX +B)(CX +D)−1

0 Iq

)(
A− (AX +B)(CX +D)−1C 0

C CX +D

)
,

therefore the representation Πλ,δ of GR induced from a character χλ,δ of the

parabolic subgroup PR is given as a multiplier representation in the open

Bruhat cell

(Πλ,δ(g)F )(X) = | det(CX+D)|−λ ( sgn(det(CX+D)))δF ((AX+B)(CX+D)−1).

Our convention is to use an unnormalized induction without ‘ρ-shift’.

It may be useful for later purpose to write a formula of the infinitesimal

representation dΠλ,δ. For 1 ≤ i ≤ p and p+ 1 ≤ j ≤ p+ q,

(3.1) dΠλ,δ(Eii − Ejj) = −λ Id−
q∑

a=1

Xia
∂

∂Xia
−

p∑
b=1

Xbj
∂

∂Xbj
.

3.4. (p, q) = (n, 1) case.

From now, we set (p, q) = (n, 1). Our notation is as follows:

GR = GL(n+ 1,R) acting Rn+1 with standard basis e0, e1, . . . , en

G′R = GL(n,R) is the stabilizer of e0.

Let µ ∈ C and δ ∈ Z/2Z. A C∞-function f(x) defined on Rn+1 \ {0} is

of homogeneous degree of (µ, δ) if

f(rx) =rµf(x) for every r > 0,

f(−x) =(−1)δf(x).
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Let Ξ∞µ,δ(Rn+1) denote the vector space of smooth homogeneous functions of

degree (µ, δ). An analogous notation Ξ−∞µ,δ (Rn+1) will be used for generalized

functions à la Gelfand so that Ξ∞µ,δ(Rn+1) ⊂ Ξ−∞µ,δ (Rn+1).

We identify the real flag variety GR/PR with the real projective space

GR/PR
∼−→ PnR = {[x0 : · · · : xn]}, gPR 7→ [gt(0, . . . , 0, 1)].

Then the regular representation of GR on Ξ∞−λ,δ is identified with the prin-

cipal series representation Πλ,δ on C∞(GR/PR,Lλ,δ).
We take a covering of Rn+1 \ {0} by Vi := {(x0, . . . , xn) : xi 6= 0} for

0 ≤ i ≤ n. Then Vi/R× ' Rn, and the inclusive map Vi ↪→ Rn \ {0} induces

coordinates ιi : Rn ↪→ PnR. For F ∈ Ξ∞−λ,δ(Rn+1), we set fi := ι∗iF , that is,

(3.2) fi(x0, . . . , x̂i, . . . , xn) := F (x0, . . . , xi−1, 1, xi, . . . , xn).

Then {fk}0≤k≤n satisfies

(3.3) fi(x0, . . . , x̂i, . . . , xn) = |xj |−λ(sgnxj)
δfj(z0, . . . , ẑj , . . . , zn)

on ιi(Rn) ∩ ιj(Rn) = (Vi ∩ Vj)/R× ⊂ PnR, where zk = xk
xj

(k 6= i, j) and

zi = 1
xj

. Then we have a one-to-one correspondence

F ↔ {f0, . . . , fn} subject to the relation (3.3).

For instance,

fn(x0, . . . , xn) = |x0|−λ(sgn x0)δf0(z1, . . . , zn),

where zk = xk
x0

(1 ≤ k ≤ n− 1) and zn = 1
x0

.

For F ∈ Ξ∞−λ,δ(Rn+1) ' C∞(GR/PR,Lλ,δ), fn = ι∗nF gives the ‘N -picture’

of the principal series representation of GR defined on the open Bruhat cell

Vn/R× ' Rn (and similarly for G′R):

GR
Πλ,δy C∞(GR/PR,Lλ,δ) ↪→

ι∗n
C∞(Rn),

G′R
πν,εyC∞(G′R/P

′
R,Lν,ε) ↪→ C∞(Rn−1).

Here we used the letters Πλ,δ for the GR and πν,ε for the G′R -actions, re-

spectively.

In the coordinates ιn : Rn ' Vn/R× ↪→ PnR, we set

(3.4) R` := Restx0=0 ◦(
∂

∂x0
)`.

The normal derivatives R` are restrictions of the holomorphic differential

SBOs defined on holomorphic line bundles over PnC ' GC/PC, and give rise

to symmetry breaking operators in the real setting as well:
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Proposition 3.2 (normal derivatives). If ν − λ = ` and δ − ε ≡ ` mod 2,

then πν,ε ◦R` = R` ◦Πλ,δ as G′R-homomorphisms.

Proof. Let g−1 =

(
A b

c d

)
∈ G′R = GL(n,R) where A ∈ GL(n − 1,R),

b, tc ∈ Rn−1, d ∈ R. Then for f = ι∗nF where F ∈ Ξ∞−λ,δ(Rn),

(R` ◦Πλ,δ(g)f)(x)

= Restx0=0 ◦(
∂

∂x0
)`|(c, x) + d|−λ(sgn((c, x) + d))δf(

x0

(c, x) + d
,
Ax+ b

(c, x) + d
)

=|(c, x) + d|−λ(sgn(c, x) + d)δ Restx0=0 ◦(
∂

∂x0
)`f(

x0

(c, x) + d
,
Ax+ b

(c, x) + d
)

=|(c, x) + d|−λ−`(sgn(c, x) + d)δ−`
∂`f

∂x`0
(0,

Ax+ b

(c, x) + d
)

=(πν,ε(s) ◦R`f)(x).

�

3.5. Step 3: Generating function of SBOs {R`}.

Since all R` are given by normal derivatives in our setting, the generating

operator T of {R`}`∈N is easy to find, as shown in Example 2.1. Explicitly,

it is essentially the identity map, that is,

(Tf)(x2, . . . , xn; t) =
∞∑
`=0

t`

`!
(R`f)(x2, . . . , xn) = f(t, x2, . . . , xn)

for fn ≡ f(x1, x2, . . . , xn) ∈ C∞(GR/PR,Lλ,δ) defined on ιn(Rn) ⊂ PnR.

3.6. Step 4: From discrete to continuous.

The operator Tµ,δ constructed in (2.2) by the general idea [1] “from dis-

crete to continuous” is a non-local operator as follows:

(3.5)

(Tµ,κF )(x1, . . . , xn−1, xn) =

∫
R
|x0|µ(sgnx0)κF (x0, x1, . . . , xn−1, xn)dx0

in the homogeneous coordinates, for F ∈ Ξ−λ,δ(Rn). Clearly, Tµ,κF is ho-

mogeneous of degree (−λ+µ+ 1, δ+κ), whenever the integral makes sense.

This yields a non-local symmetry breaking operator, which depends mero-

morphically on µ ∈ C. We write T̃µ,κ for a normalization that depends

holomorphically on µ ∈ C. Then we have the following.
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Proposition 3.3. If λ = µ+ ν + 1 and δ ≡ ε+ κ mod 2, then

πν,ε ◦ T̃µ,κ = T̃µ,κ ◦Πλ,δ,

as G′R-homomorphisms.

Proof. It suffices to verify the statement for generic µ. In the N -picture for

fn = ι∗nF on ιn(Rn) ⊂ PnR one has:

(3.6) (Tµ,κfn)(x1, . . . , xn−1) =

∫
R
|x0|µ(sgnx0)κfn(x0, x1, . . . , xn−1)dx0.

Let g−1 =

(
A b

c d

)
∈ G′R = GL(n,R) where A ∈ GL(n− 1,R), b, tc ∈ Rn−1,

d ∈ R. Then, (Tµ,κ ◦Πλ,δ(g)fn)(x) amounts to∫
R
|x0|µ(sgnx0)κ|(c, x) + d|−λ(sgn((c, x) + d))δfn(

x0

(c, x) + d
,
Ax+ b

(c, x) + d
)dx0

=

∫
R
|(c, x) + d|µ−λ+1(sgn((c, x) + d))κ+δ|t|µ(sgn t)κfn(t,

Ax+ b

(c, x) + d
)dt

=πν,ε(g)(Tµ,κfn)(x).

�

3.7. From continuous to discrete.

This section explains a transfer from the family of differential SBOs {R`} to

another family of differential SBOs {L`} via the meromorphic family Tµ,κ

in (3.6). According to the transition

{R`} {Tµ,κ} {L`},

the supports of the distribution kernels of these operators vary geometrically

as

X ′0  X1 ∪X0 ∪X ′0  X0

with the notation of the diagram in Section 4 below.

Since F ∈ C∞(GR/PR,Lλ,δ ' Ξ∞−λ,δ(Rn+1) is of homogeneous degree

(−λ, δ), the formula (3.5) of Tµ,κF (x1, · · ·xn) amounts to :

|xn|µ+1(sgnxn)κ
∫
R
|t|λ−µ−2(sgn t)−δ+κF (xn, tx1, . . . , txn−1, txn)dt

=|xn|µ+1(sgnxn)κ
∫
R
|t|ν−1(sgn t)εF (xn, tx1, . . . , txn−1, txn)dt.(3.7)
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The integral kernel |t|ν−1(sgn t)ε in the right-hand side has simple poles at

ν = −` (` ∈ N) if ε ≡ ` mod 2, and its residue is given as a non-zero scalar

multiple of δ(`)(t), and therefore, (Tµ,κF )(x1, · · · , xn) is proportional to

|xn|µ+1(sgnxn)κ
∑
|α|=`

`!

α!
xα1

1 · · ·x
αn
n

∂|α|F

∂xα
(xn, 0, . . . , 0)

=
∑
|α|=`

`!

α!
xα1

1 · · ·x
αn
n

∂|α|F

∂xα
(1, 0, . . . , 0),

where α = (α1, . . . , αn) ∈ Nn. Here the last equality follows from that ∂|α|F
∂xα

is of homogeneous degree (−λ− `, δ+ `) and that, according to Proposition

3.3, λ = µ+ ν + 1 = µ− `+ 1, δ ≡ κ+ ε ≡ κ+ `.

Define for F (x0, · · · , xn) ∈ C∞(Rn+1)

(3.8) (L`F )(x1, · · · , xn) :=
∑
|α|=`

`!

α!
xα1

1 · · ·x
αn
n

∂|α|F

∂xα
(1, 0, . . . , 0).

Thus, we have obtained yet another family of differential SBOs {L`} induced

by T̃λ+`−1,`mod 2 for ` ∈ N:

L` : C∞(GR/PR,Lλ,δ)

∼��

// C∞(G′R/P
′
R,L−`,`mod 2)

∼��
Ξ∞−λ,δ(Rn+1) // Ξ∞`,`mod 2(Rn)

∈ ∈

F (x0, . . . , xn) � //
∑
|α|=`

`!
α!x

α1
1 · · ·xαnn ∂|α|F

∂xα (1, 0, . . . , 0)

The image of L` is a finite-dimensional subrepresentation Pol`, which

consists of homogeneous polynomials of degree ` in x1, . . . , xn.

When ` = 0, the subrepresentation Pol` is the trivial one-dimensional

representation. Using the same trick as in [6, Thm. 14.9] we obtain the

following corollary:

Corollary 3.4. For any λ ∈ C and δ ∈ Z/2Z,

HomGR(Πλ,δ, C
∞(GR/G

′
R)) 6= 0.

Remark 3.5. It is notable that the family {R`}`∈N arises from the holomor-

phic embedding of the Hermitian symmetric spaces G′/K ′ ↪→ G/K, while

{L`}`∈N does not because the operator Restzn=0 does not produce functions

on

G′/K ′ = {z ∈ PnC : z0 = 0, |z1|2 + · · ·+ |zn−1|2 < |zn|2}.
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4 Appendix: Orbit picture P ′R\GR/PR

In [7, Chap. 3], we proposed a general scheme for classifying all symmetry

breaking operators. This scheme is based on the Hasse diagram of the double

coset space P ′R\GR/PR, with closed orbits producing differential SBOs ([2]).

From this perspective, we examine the results discussed in the previous

sections.

We recall our convention that G′R/P
′
R is identified with the hypersurface

x0 = 0 in GR/PR ' PnR = {[x0 : · · · : xn]}. We define the following subsets

of GR/PR by

Xn :={[x0 : · · · : xn] : x0 6= 0, (x1, . . . , xn−1) 6= (0, . . . , 0)},

Xn−1 :={[x0 : · · · : xn] : x0 = 0, (x1, . . . , xn−1) 6= (0, . . . , 0)},

X1 :={[x0 : · · · : xn] : x0 6= 0, (x1, . . . , xn−1) = (0, . . . , 0), xn 6= 0},

X0 :={[x0 : · · · : xn] : x0 6= 0, x1 = · · · = xn = 0},

X ′0 :={[x0 : · · · : xn] : x0 = · · · = xn−1 = 0, xn 6= 0}.

Then, dimXj = j,dimX ′0 = 0 and P ′R acts transitively on each of these sets.

Thus one has an orbit decomposition of the action of P ′R on GR/PR:

PnR = Xn qXn−1 qX1 qX0 qX ′0.

The closure relations among these orbits are represented by the following

Hasse diagram:

Xn

Xn−1

X1

X0 X ′0

The two singletons X0 and X ′0 are the fixed points by P ′R, however, they

have significant differences, that is, X0 is a fixed point of the whole groupG′R,

while the G′R-orbit through X ′0 is the (n− 1)-dimensional variety Pn−1R '
Xn−1 ∪X ′0.
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The general isomorphism [6, Prop. 3.2] describing all symmetry breaking

operators amounts to

(4.1) HomG′R
(Πλ,δ|G′R , πν,ε) ' (D′(GR/PR,L−λ+2ρ,δ)⊗ Cν,ε)P

′
R ,

where 2ρ = (−1, . . . ,−1;n).

The procedure in Section 3.6 inflates the support of the distribution kernel

of the SBOs appearing in the right-hand side of (4.1) from the singleton X ′0
to the closureX1 = X1∪X0∪X ′0 ' P1R of the one-dimensional orbitX1. The

procedure developed in Section 3.7 goes into the usual direction of taking

the residues of a meromorphic family of distributions, and consequently, it

shrinks the support from X1 ' P1R to the singleton X0.

In the coordinates, the set X ′0 is at the origin in the open Bruhat cell

Vn/R× ' Rn ⊂ PnR, and differential operators {R`}`∈N are supported on

the singleton X ′0 via the isomorphism (4.1).

On the other hand, the closed orbit X0 ∈ PnR sits outside the open dense

subset ιn : Vn/R× ' Rn ↪→ PnR (Bruhat cell), but corresponds to the origin

in the coordinates ι0 : V0/R× ' Rn ↪→ PnR, which we used in Section 3.7.

A detailed proof will appear elsewhere.

References

[1] T. Kobayashi, Generating operators of symmetry breaking—from discrete to contin-

uous, Indagationes Mathematicæ, 2024. 18 pages. Published online 15 March 2024.

DOI: 10.1016/j.indag.2024.03.007. Available also at arXiv: 2307.16587.

[2] T. Kobayashi, M. Pevzner, Differential symmetry breaking operators: I. General the-

ory and F-method , Selecta Math. (N.S.), 22 (2016) no.2, 801–845.

[3] T. Kobayashi, M. Pevzner. Differential symmetry breaking operators. II. Rankin–

Cohen operators for symmetric pairs, Selecta Mathematica (N.S.), 22 (2016), 847–

911.

[4] T. Kobayashi, M. Pevzner, A short proof for Rankin–Cohen brackets and gen-

erating operators, in press. Lie Theory and its Applications in Physics, (ed. V.

Dobrev), Springer Proceedings in Mathematics & Statistics 473, (2024), 1–13.

https://doi.org./10.1007/978-981-97-6453-2 1. Available also at arXiv: 2402.05363.

[5] T. Kobayashi, M. Pevzner, A generating operator for Rankin–Cohen brackets,

preprint. 24 pp. arXiv: 2306.16800

[6] T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthog-

onal Groups, I , Memoirs of Amer. Math. Soc. 238 no.1126, vi+ 112 pages, Amer.

Math. Soc. 2015.

[7] T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthog-

onal Groups, II , Lecture Notes in Math., 2234 Springer, 2018. xv+342 pages.



GENERATING OPERATORS AND NORMAL DERIVATIVES 15

Toshiyuki KOBAYASHI

– Graduate School of Mathematical Sciences,

The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan.

– French-Japanese Laboratory in Mathematics and its Interactions,

FJ-LMI CNRS IRL2025, Tokyo, Japan.

E-mail: toshi@ms.u-tokyo.ac.jp

Michael PEVZNER
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