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RECENT ADVANCES IN BRANCHING PROBLEMS OF

REPRESENTATIONS

TOSHIYUKI KOBAYASHI

Abstract. How does an irreducible representation of a group behave when

restricted to a subgroup? This is part of branching problems, which are one of
the fundamental problems in representation theory, and also interact naturally

with other fields of mathematics.

This expository paper is an up-to-date account on some new directions
in representation theory highlighting the branching problems for real reduc-

tive groups and their related topics ranging from global analysis of manifolds

via group actions to the theory of discontinuous groups beyond the classical
Riemannian setting.

This article is an outgrowth of the invited lecture that the author delivered
at the commemorative event for the 70th anniversary of the re-establishment

of the Mathematical Society of Japan, and originally appeared in Japanese in

Sugaku 71 (2019).

How does an irreducible representation of a group behave when restricted to a
subgroup? How is its restriction decomposed (in a broad sense) into irreducible
representations of the subgroup? These questions are part of branching problems,
which naturally emerge from various fields of mathematics. The decomposition
of the tensor product of two (or more) representations is such an example. The
Plancherel-type theorem that gives the expansion of functions on a homogeneous
space X is often equivalent to a special case of a branching problem via “hidden
symmetry”. The theta correspondence, which plays a prominent role in number
theory, is also a branching law in the broad sense. Further, when one tries to
understand the geometry of a submanifold through the function space on it, the
branching problems for a pair of transformation groups emerge in a natural way.

For finite-dimensional representations, branching laws are in principle computable.
Combinatorial methods for computing branching laws exist, and various algorithms
have been further developed. On the other hand, irreducible representations of non-
compact reductive Lie groups such as GL(n,R) are mostly infinite-dimensional and
a “general algorithm” that computes branching laws is still far from being known.
Indeed, it often happens that representations cannot be controlled well by a sub-
group even when it is maximal (Section 6.2). Moreover, it could also be the case
that the irreducible representations, which play as “receptacles”, of a subgroup is
not well-understood. Indeed, historically, “new” irreducible representations were
sometimes discovered through the branching laws of the restriction of the “known”
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representations of a larger group. Via the study of branching problems of a represen-
tation of a larger group, we may expect to explore deeper properties of irreducible
representations of subgroups.

In the mid-1980s when the author started to challenge branching problems of
infinite-dimensional representations, there seemed to be a widespread pessimism
that it was “hopeless” to build a general theory of the restriction of infinite-
dimensional representations of reductive Lie groups except for some specific cases.
When one tries to obtain branching laws for groups larger than SL(2,R) or SL(2,C),
some “bad phenomena” such as infinite multiplicities appear and it was not easy
to find a promising direction to develop a theory of the branching problems. In
a thorough analysis of such “bad phenomena”, the author encountered not a few
“mysterious and nice phenomena”. From there he was fortunate to have been able
to reveal some general principles for branching problems. Through new themes such
as “the theory of discretely decomposable restrictions”, “the theory of visible ac-
tions”, “the theory of finite/bounded/multiplicity-free multiplicities”, “global anal-
ysis of the minimal representations”, and “the construction of symmetry breaking
operators”, which were born in this way, more mathematicians have become increas-
ingly interested in these new directions and are advancing the study of branching
problems. Now the theory of branching problems for infinite-dimensional
representations of reductive Lie groups, which used to be regarded as hope-
less, proceeds to a completely new developing stage.

It may be helpful to provide at this stage a brief overview of these developments
in the last 20–30 years. In this expository article we give the ideas on the general
theories of “restrictions of representations” and give some new perspectives with
programs to advance further the study of branching problems. We collect some
references in this area, most of which are closely related to the viewpoint in this
article. The author apologizes to the many people whose works are not mentioned
here because of the author’s ignorance. He would like to notice to the reader in
advance that there are many other important topics that are not treated here.

1. Branching Laws of Representations—Introduction

As part of commemorative events for the 70th anniversary of the re-establishment
of the Mathematical Society of Japan1, the author was requested to give a plenary
talk on an area of mathematics that are remarkably developed recently. The lecture
should be addressed to the wide audience about “why”, “what”, and “how” have
been achieved in the past together with future prospects. As it is not realistic to
cover all the interesting topics, the lecture was dedicated to highlight a new the
theory of branching problems of representations of reductive Lie groups, to which
the author himself involved and also in which there has been significant development
in the last 20–30 years. Besides, recent progress of two relevant topics, global
analysis via representation theory and the theory of discontinuous groups, was also
discussed. This article is written based on the lecture notes [75]. The author has
attempted to clarify the ideas without technicalities and to write this article in a
manner that would simultaneously be generally comprehensive to graduate students

1The organization was established in 1877 as the Tokyo Sugaku Kaisha (Tokyo Mathematics
Society). This was the first academic society in Japan, and was reorganized in its present form in

1946.
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and scholors of diverse backgrounds and yet be of some value to experts desiring
to advance this field.

1.1. What is a branching law of a representation? Hereafter, as a general
rule, irreducible representations of groups and those of their subgroups are denoted
by uppercase and lowercase Greek letters, respectively, such as Π and π. When a
representation Π of a group G is defined on a vector space V , we write Π|G′ for the
representation of its subgroup G′, which is obtained by restricting the action to the
subgroup G′ on the same representation space V . Namely, Π|G′ is the composition
of two group homomorphisms

(1.1) Π|G′ : G′ ↪→ G
Π−→ GL(V ).

Even if Π is an irreducible representation of G, the restriction Π|G′ is in general
not irreducible as a representation of the subgroup G′.2

We begin with a classical case, where Π is a finite-dimensional representation. If
the restriction Π|G′ is completely reducible, then it can be described as the finite
direct sum of irreducible representations of G′:

(1.2) Π|G′ '
⊕
π

(π ⊕ · · · ⊕ π︸ ︷︷ ︸
m(Π,π)

) =
⊕
π

m(Π, π)π.

The irreducible decomposition (1.2) is a prototype of the branching law of the
restriction Π|G′ . The number of times that the irreducible representation π of G′

appears in Π is called the multiplicity of the branching law. Under the assump-
tion that the finite-dimensional representation Π|G′ is completely reducible, the
following identities hold:

(1.3) m(Π, π) = dimC HomG′(π,Π|G′) = dimC HomG′(Π|G′ , π).

In this article we deal with the case that Π is an infinite-dimensional representa-
tion. In contrast to the case that the representation space V is finite-dimensional,
it may happen that there is no irreducible subrepresentation of the subgroup G′

in V . The “multiplicity” of the branching law may also be infinite even when G′

is a maximal subgroup of G. When talking about a branching problem for an
infinite-dimensional representation, we consider not only finding the branching law
(the irreducible decomposition of the restriction) but also the following broader
problem, aiming to understand the “restriction of the representation” itself.

Problem 1.1 (Branching Problem). How does the restriction Π|G′ behave as a
representation of a subgroup G′?

1.2. Restriction of a representation and examples of branching problems.
Let us give a few examples on a “restriction of a representation” that arise from
different contexts. We would like the reader to feel the richness and diversity of the
themes related to branching problems by browsing these examples and possibly by
skipping unfamiliar topics if any.

Example 1.2 (Tensor product representation). The tensor product representations
of two representations (πj , Vj) (j = 1, 2) of a group H

π1 ⊗ π2 : H → GL(V1 ⊗ V2), h 7→ π1(h)⊗ π2(h)

2It may happen that the restriction Π|G′ of an irreducible representation Π of G remains
irreducible as a representation of a subgroup G′, although such cases are rare. See [66] for a list

of such triplets (G,G′,Π) and some geometric explanations.
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can be interpreted as an example of the “restriction of a representation”. Namely,
the tensor product representation π1 ⊗ π2 is identified with the restriction of the
outer tensor product representation

π1 ⊠ π2 : H ×H → GL(V1 ⊗ V2), (h1, h2) 7→ π1(h1)⊗ π2(h2)

of the direct product G := H ×H to a subgroup G′ = diag(H) := {(h, h) : h ∈ H},
which is isomorphic to H. Fusion rules in theoretical physics are the irreducible
decompositions of tensor product representations π1 ⊗ π2. The Clebsch–Gordan
rule and the Pieri rule are special cases of fusion rules.

Example 1.3 (Cartan–Weyl’s highest weight theory). Cartan–Weyl’s theory gives
a classification of irreducible finite-dimensional representations of a connected com-
pact Lie group G by their highest weights. One may interpret it as part of
branching problems, where the highest weights arise as the “edges”of the irre-
ducible decompositions (branching laws) of the representations when restricted to
a maximal torus T of G, or equivalently, as the unique subrepresentation of the
restriction to a Borel subalgebra of the complexified Lie algebra gC (Example 2.7).

Example 1.4 (Vogan’s minimal K-type theory). Vogan’s classification theory of
irreducible admissible representations Π of a reductive group G (Definition 2.12)
utilizes minimal K-type and u-cohomology [125]. This algebraic approach is
different from the analytic approach that was taken in Langlands’ classification
(Sections 2.6 and 2.7). One may interpret Vogan’s method as a branching problem,
where minimal K-types are the “edges”of the branching laws of the representations
restricted to a maximal compact subgroup K of G and u-cohomologies are defined
by the restriction to a nilpotent Lie subalgebra u of gC as variants of highest weight
vectors, see also Example 1.8.

Example 1.5 (Character theory). Let G be a reductive Lie group and let H1,
. . ., Hk be the complete system of representatives of its Cartan subgroups. The
distribution character Trace(Π) of irreducible admissible representation Π (Defini-
tion 2.12) is a locally integrable function on G, and thus, it is determined by the
restrictions to Cartan subgroups Hj (j = 1, . . . , k) (Harish-Chandra). The study
of the characters Trace(Π)|Hj

is related to the understanding of the restriction of
the representation Π to the subgroups Hj . When G is compact, one has k = 1 and
the explicit formula Trace(Π)|H1

= Trace(Π|H1
) is known as the Weyl character

formula.

Example 1.6 (Theta correspondence). Let Π be the Weil representation of meta-
plectic group G = Sp∼ and let G′ := G′

1 · G′
2 be a subgroup of G consisting of a

dual pair, that is, G′
1 and G′

2 are the centralizers of each other in G. The restriction
Π|G′ yields the theta correspondence between irreducible representations of G′

1 and
G′

2 (Howe [34]), which may be also thought of as a branching law (in a broad sense)
from G to the subgroup G′ = G′

1 ·G′
2.

Example 1.7 (Rankin–Cohen differential operator). The Rankin–Cohen differen-
tial operator [16, 110], which explicitly constructs modular forms of higher weights
from ones of lower weights, is a “symmetry breaking operator” for the decomposi-
tion of the tensor product representation of holomorphic discrete series representa-
tions of SL(2,R) (Section 8.2).
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Example 1.8 (Cohomology of a representation). When HomG′(Π|G′ , π) equals to
zero, it is natural to consider higher order cohomologies Ext∗G′(Π|G′ , π). Especially,
when G is a reductive Lie group and π = 1 (trivial representation), the cohomology
for a maximal nilpotent Lie subalgebra n instead of a subgroup G′ contains some
information related to the asymptotic behavior of matrix coefficients on analytic
representation theory.

Example 1.9 (Gross–Prasad conjecture). For a pair of groups (G,G′) = (On, On−1)
defined over real or p-adic fields, the restriction of an irreducible admissible repre-
sentation Π of G to a subgroup G′ is multiplicity-free ([3, 118]). The Gross–Prasad
conjecture [27] describes the branching law (in a broad sense) for tempered repre-
sentations Π (Definition 2.3), and is extended to the Gan–Gross–Prasad conjecture
[26] including a pair of groups (G,G′) = (GLn, GLn−1).

Example 1.10 (Modular variety). On a locally Riemannian symmetric space X =
Γ\G/K obtained by taking a quotient of arithmetic subgroup Γ, a subgroup G′ of G
defines a cycle called amodular variety. Understanding modular variety is closely
related to the branching law of the restriction of automorphic representations of G
to the subgroup G′, as a dual notion between geometry and functions on it.

As observed in these examples, the problem of the branching law is deeply related
to the structure of representations and it also arises widely in various fields of
mathematics.

1.3. Branching laws of infinite-dimensional representations. In this article,
with emphasis on the connection to global analysis, we consider infinite-dimensional
representations of Lie groups. Loosely speaking, there are two approaches in rep-
resentation theory; an algebraic approach which handles a representation without
a topology on a representation space V and an analytic approach which handles a
(continuous) representation by equipping V with a topology. A representation Π
on a topological vector space V of a topological group G is called a continuous
representation if the map

G× V → V, (g, v) 7→ Π(g)v

is continuous. Hereafter, we consider continuous representations on a topological
vector space over C, unless otherwise specified.

Definition 1.11 (Unitary representation). Let V be a Hilbert space. A continuous
representation Π: G → GL(V ) of a group G defined on V is called a unitary
representation if Π(g) is a unitary operator for all g ∈ G on V .

The advantage of unitary representations is that the concept of “irreducible
decompositions” makes sense. That is, if Π is a unitary representation of a locally
compact topological group G, then the restriction Π|G′ can be decomposed into
a direct integral of irreducible representations of G, which may be considered as
a branching law in the unitary case (see Theorem 2.2 below). In contrast to the
case of dimC V < ∞, the “multiplicity” of the branching law is not necessarily
finite and further a “continuous spectrum” may also appear. On the other hand,
in a more general case in which Π is not necessarily a unitary representation, e.g.
V is a Fréchet space, irreducible decompositions have a less clear meaning. In
such a case we may study continuous G′-homomorphisms between the irreducible
representation Π ofG and an irreducible representation π of its subgroupG′, instead
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of the “irreducible decomposition” of the restriction Π|G′ . Then the following two
concepts

the space of symmetry breaking operators HomG′(Π|G′ , π),

the space of holographic operators HomG′(π,Π|G′)

become important research objects. The dimensions of these spaces could largely
vary depending on a choice of the topologies, e.g. the space Π∞ of smooth vectors
or the space Π−∞ of distribution vectors, on the representation spaces [73].

1.4. Branching laws of representations of reductive Lie groups. In complet-
ing this introduction, we shortly highlight the main theme of this article, “branch-
ing problems of reductive Lie groups”, by comparing the cases of finite-dimensional
representations with those of infinite-dimensional representations.

• Branching laws of finite-dimensional representations

– Irreducible representations, which appear as building blocks of branch-
ing laws, were classified in the early 20th century (Cartan–Weyl’s high-
est weight theory, Example 2.7).

– There exist algorithms that compute branching laws, and combina-
torial techniques have been further developed, e.g. the Littlewood–
Richardson rule and Littelman’s path method.

• Branching laws of infinite-dimensional representations (unitary case)

– The classification of irreducible unitary representations, which appear
as building blocks of branching laws of unitary representations, has a
rich history of study but is not completely understood (Section 2.6).

– Algorithms that compute branching laws are not known except for
some special cases (e.g. theta-correspondence or Howe correspondence
[34] and the restriction of highest weight modules [61]).

– A “continuous spectrum” may appear in branching laws (Section 2.3).

– The “grip” of a subgroup G′ may not be strong enough, involving a
phenomenon of infinite multiplicities in branching laws (Section 6.2).

• Branching laws of infinite-dimensional representations (when no unitarity
is imposed)

– The classification of irreducible admissible representations, which ap-
pear as building blocks of (non-unitary) branching laws, was estab-
lished in the 1970s to early 1980s (Section 2.6).

– Nevertheless, it is generally a difficult problem to determine when sym-
metry breaking operators exist (e.g. the Gan–Gross–Prasad conjecture
for specific pairs (G,G′), see Example 1.9). Recently, new theories not
only for the existence but also for the construction and classification
of symmetry breaking operators are emerging (Section 8.3).

In the following we shall introduce new programs in the branching problem and
some recent developments, while explaining the basic notion and facts mentioned
here.
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2. Search for Fundamental Objects and “More” Fundamental
Objects—the Classification of “Irreducibles” and Decomposition

to “Irreducibles”

Let us consider what the possible roles of the branching problems are in the
representation theory of Lie groups. The notion of Lie groups (continuous groups)
was introduced in 1870s by Sophus Lie (1842–1899) in his attempt to develop an
analogous theory for differential equations to the Galois theory for algebraic equa-
tions. Lie groups and their representation theory have been developed through
numerous intersections with analysis, geometry, algebra, and theoretical physics.
In this section, applying the philosophical notion “analysis and synthesis”:

(1) understanding the “smallest objects” (e.g. classification) and
(2) how things are built up from the “smallest objects”,

we give a brief account of the current status of what problems have been solved and
what problems remain open in the representation theory of Lie groups. We then
briefly describe the connection of these with other branches of mathematics. Part
of Section 2 overlaps with the earlier exposition [50] of the author.

2.1. Lie groups and Lie algebras.

Lie algebras and their smallest objects: The “smallest objects” of Lie alge-
bras are a one-dimensional (abelian) Lie algebra and simple Lie algebras which
are of dimension ≥ 2 and do not have nontrivial ideals. Finite-dimensional simple
Lie algebras over R are classified as the 10 series of classical Lie algebras, namely,
sl(n,R), sp(n,R), su(p, q), su∗(2n), so∗(2n), so(p, q), sp(p, q), sl(n,C), so(n,C),
and sp(n,C), and 22 exceptional ones (É. Cartan, 1914).

Building up from the smallest objects: Any finite-dimensional Lie algebra is
obtained by iterating extensions of simple Lie algebras or abelian Lie algebras.
When the extension is trivial, that is, when the Lie algebras are expressed as the
direct sum of simple Lie algebras and abelian Lie algebras, they are called reduc-
tive Lie algebras. When the Lie algebras are expressed as the direct sum of only
simple Lie algebras, they are called semisimple Lie algebras.

Lie groups: A Lie group is a group that carries a manifold structure with contin-
uous (equivalently, smooth) multiplication. Typical examples of Lie groups include
algebraic groups, which are groups obtained as the zero sets of polynomials on
M(n,R). Lie algebras are the infinitesimal algebraic structures of Lie groups and
all the local properties and some of global ones of Lie groups can be described in
terms of Lie algebras (Lie theory). Lie groups whose corresponding Lie algebras
are simple, semisimple, and reductive are called simple Lie groups, semisimple Lie
groups, and reductive Lie groups, respectively.

Reductive Lie groups: Reductive Lie groups are locally isomorphic to the direct
product of abelian Lie groups and simple Lie groups. Classical groups such as
GL(n,R), GL(n,C), O(p, q), Sp(n,R), . . . are reductive algebraic Lie groups, that
is, algebraic groups as well as reductive Lie groups. Any two maximal compact sub-
groups of a Lie group G are conjugate to each other by an inner automorphism. Let
G be a semisimple Lie group of finite center, and K a maximal compact subgroup
of G. Then the homogenous space G/K is simply connected, and has the structure
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of a Riemannian symmetric space [31, Chap. VI]. The classification of simple Lie al-
gebras is equivalent to that of simply connected irreducible Riemannian symmetric
spaces.

2.2. Fundamental problems in representation theory. Since representations
are defined on vector spaces that has linearity, the superposition principle may be
considered in an equivariant fashion for group representations. Then the viewpoint
of the “building up from the smallest units” given in the beginning of Section 2
raises the following two fundamental problems in representation theory:

(1) classify the irreducible representations;
(2) decompose given representations irreducibly.

Branching problems are one of the main themes related to the latter, “irreducible
decomposition”. However, not only that, it provides a useful method on the former,
“classification of irreducible representations”. We shall illustrate this idea with
some examples in Section 2.7.

2.3. Irreducible decomposition. In general representations cannot always be
decomposed into the direct sum of irreducible representations. Indeed, it some-
times happens that a representation Π does not contain any irreducible submodule
when Π is infinite-dimensional. In a program for the branching problems described
in Section 5, we shall propose a new direction of research, that is, the study of
“symmetry breaking operators” between representations of two groups G ⊃ G′,
which are not necessarily unitary and may not be decomposed into irreducibles
in the usual sense. However, in this section, we first focus on a simpler situation
in which irreducible decompositions make sense. For this we recall some classical
results.

The best setting for irreducible decompositions is the case when the represen-
tations are unitary defined on a Hilbert space. The “smallest units” in this case
are irreducible unitary representations. The “decomposition” of a Hilbert space
is defined by using the notion of the direct integral of a family of Hilbert spaces
introduced by von Neumann. Then a result of Mautner and Teleman (Theorem
2.2 given below) states that any unitary representation Π can be decomposed into
irreducibles ([102], also [121, Chapter 6]).

Definition 2.1 (Unitary dual). The set Ĝ of equivalence classes of irreducible
unitary representations of a topological group G is called the unitary dual of G.

For a locally compact group G, the unitary dual Ĝ carries a natural topological
structure called the Fell topology.

Theorem 2.2 (Irreducible decomposition of a unitary representation by the direct
integral). For any unitary representation Π of a locally compact group G, there

exist a Borel measure µ on the unitary dual Ĝ and a measurable function nΠ : Ĝ→
N ∪ {∞} such that Π is unitarily equivalent to the direct integral of irreducible
unitary representations:

(2.1) Π '
∫ ⊕

Ĝ

nΠ(π)πdµ(π).

Here nΠ(π)π stands for a multiple of (π, Vπ) as in (1.2), namely, a unitary rep-
resentation of G on the Hilbert space Hπ ⊗ Vπ where Hπ is a Hilbert space of
dimension nΠ(π) with trivial G-action. We may think of (2.1) as the irreducible
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decomposition of the unitary representation Π. Theorem 2.2 includes the case that
a “continuous spectrum” appears in the irreducible decomposition.

It should be noted that Theorem 2.2 assures the “existence” of an irreducible
decomposition, but the uniqueness may fail in general. However, the irreducible
decomposition (2.1) of a unitary representation is unique up to unitary equivalence
if the group G is an algebraic Lie group, for which the proof of the uniqueness
of the irreducible decomposition (2.1) is reduced to the case where G is a real
reductive Lie group, and this case was proved by Harish-Chandra by using the
K-admissibility theorem (see Remark 6.6 (1) below), see [127, Thm. 14.6.10] for
instance. We shall work mainly with reductive algebraic Lie groups, hence the
irreducible decomposition (2.1) is unique in our setting throughout the paper. In

this case the function nΠ : Ĝ → N ∪ {∞} is well-defined up to a measure zero set,
and is referred to as the multiplicity for the unitary representation Π.

Definition 2.3.

(1) (Support of an irreducible decomposition) Let SuppĜ(Π) be the subset of

the unitary of dual Ĝ defined as the support of the irreducible decompo-
sition (2.1) of a unitary representation Π. If SuppĜ(Π) is a countable set,
then Π is decomposed into the direct sum of irreducible unitary represen-
tations (Π is said to be discretely decomposable).

(2) (Tempered representation) When Π is the regular representation L2(G) of

G, the set SuppĜ(L
2(G)) is denoted by Ĝtemp. A unitary representation

Π of G is called a tempered representation if Π satisfies SuppĜ(Π) ⊂
Ĝtemp, equivalently, if Π is weakly contained in the regular representation
L2(G) in the sense that any matrix coefficient is approximated by a linear
combination of matrix coefficients of L2(G) on compact sets.

Example 2.4. If a Lie group G is amenable, in particular, if G is solvable or

compact, then Ĝtemp = Ĝ.

Example 2.5. When G is a reductive Lie group, irreducible tempered representa-
tions can be characterized by the asymptotic behavior of their matrix coefficients.

The classification of the set Ĝtemp was accomplished by Knapp–Zuckerman [45] in
terms of the direct products of Z/2Z called R groups.

2.4. Classification problem of the unitary dual—the orbit method and
geometric quantization of symplectic manifolds. Do we know all irreducible
unitary representations of Lie groups? Actually, for a general Lie group G, the

classification of the unitary dual Ĝ has not been completely understood. Postponing
a brief summary of the current status to Sections 2.5 and 2.6, we begin with some
typical examples in which the unitary dual is completely classified.

Example 2.6 (Abelian group). All irreducible unitary representations of an abelian
group G are one-dimensional. For instance, when G = R, set χξ : R → GL(1,C),
x 7→ eixξ. Then we have R̂ ' {χξ : ξ ∈ R}.

Example 2.7 (Compact Lie group, Cartan–Weyl 1925). For a compact group G,
all irreducible unitary representations Π of G are finite-dimensional. Suppose G is
a connected compact Lie group with Lie algebra g and b is a Borel subalgebra of
the complexified Lie algebra gC = g⊗R C. Then irreducible representations Π can
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be classified by the unique one-dimensional subrepresentations χ (highest weight)
of b.

Example 2.8 (SL(n,F), F = R,C,H). The unitary dual ofG = PSL(2,R) consists
of the trivial representation, uncountable family of infinite-dimensional representa-
tions that are not equivalent to each other (spherical principal series representations,
complementary series representations), and countable family of infinite-dimensional
representations (discrete series representations and the limit of discrete series rep-
resentations) (Bargmann 1947). This result is generalized to G = SL(n,R) (n = 3:
Vakhutinski 1968, n = 4: Speh 1981, and n general: Vogan 1986). The unitary
dual of G = SL(n,C) started with the case of n = 2 by Gelfand–Naimark (1947),
Tsuchikawa 1968 (n = 3), Duflo 1980 (n ≤ 5), and Barbasch 1985 (n general). The
unitary dual of G = SL(n,H) is classified by Hirai 1962 (n = 2) and Vogan 1986
(n general).

Example 2.9 (Nilpotent Lie group, Kirillov [41], 1962). For a simply connected
nilpotent Lie group G, Kirillov discovered that there exists a natural bijection

(2.2) Ĝ ' g∗/Ad∗(G),

where Ad∗ : G → GLR(g
∗) is the coadjoint representation of the Lie group G,

namely, the contragredient representation of Ad: G → GLR(g). This result is
extended to exponential solvable Lie groups [24], see also [25].

The unitary dual Ĝ for non-compact non-commutative group is “huge”in a sense,
as it may contain uncountably many equivalence classes of irreducible infinite-
dimensional representations. Example 2.9 above asserts that when G is a nilpo-

tent Lie group, the unitary dual Ĝ, though it looks “huge”, can be parametrized
by just one finite-dimensional representation, namely, the coadjoint representation
(Ad∗, g∗). The right-hand side of (2.2) is nothing but the set of coadjoint orbits,

and the idea to understand the unitary dual Ĝ via coadjoint orbits is referred to
as the orbit method or the orbit philosophy by Kirillov–Kostant–Duflo [42].
For instance, when G = GL(n,R), the set g∗/Ad∗(G) of coadjoint orbits may be
identified with the set of the Jordan normal forms of real square matrices of order
n, which is “supposed to approximate” the parameter set of irreducible unitary
representations of GL(n,R) according to the orbit philosophy. Let us see that this
is not just a coincidence and that the “correspondence” from coadjoint orbits to ir-
reducible unitary representations may be interpreted as a “geometric quantization”
at least to some extent.

The “quantization” in physics is the procedure from a classical understanding of
physical phenomena to a newer understanding known as quantization theory such
as

“classical mechanics ⇝ quantum mechanics”.

As its mathematical analogue, one may wish to define “geometric quantization”
under suitable assumptions:

symplectic manifold M ⇝ Hilbert space H;
symplectic transformations on M ⇝ unitary operators on H.
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One may further expect the naturality and the functoriality of this correspondence,
in particular, the following properties are supposed to hold for a family of transfor-
mations:

Hamiltonian actions on M ⇝ unitary representations on H;(2.3)

transitivity⇝ irreducitiblity.

Now, the right-hand side of (2.2) on the orbit method is identified with the space
of coadjoint orbits Oλ = Ad∗(G)λ (λ ∈ g∗) of the Lie group G. Each coadjoint
orbit Oλ has a symplectic structure induced by the skew-symmetric bilinear form

g× g→ R, (X,Y ) 7→ λ([X,Y ])

and the group action of G is clearly Hamiltonian and transitive (Kirillov–Kostant–
Soureau). Therefore, if the idea of the geometric quantization (2.3) works, then
one expects to obtain irreducible unitary representations of G corresponding to the
coadjoint orbits Oλ, namely, the correspondence from the right-hand side to the
left-hand side in the orbit method (2.2).

For a real reductive Lie group G, it has been observed by experts that there

is no natural bijection between the unitary dual Ĝ and (a subset of ) g∗/Ad∗(G),
and the orbit method does not work perfectly. For instance, it is notoriously diffi-
cult to give a natural interpretation of complementary series representations from
the orbit philosophy.3 Nevertheless, the set g∗/Ad∗(G) of coadjoint orbits gives a

rough approximation of the unitary dual Ĝ. In particular, geometric quantization
of semisimple coadjoint orbits is quite satisfactory, and this provides a considerable

part of the unitary dual Ĝ. In fact, when the coadjoint orbit Oλ is semisimple
satisfying certain mild conditions including integrality of λ, one can define an ir-
reducible unitary representation of G as a “geometric quantization” of Oλ, as one
can see by combining analytic/geometric results with algebraic representation the-
ory [44, 125, 126, 127, 131] in the 1950s–1990s in the representation theory of Lie
groups. Roughly speaking, the irreducible unitary representations obtained as the
“geometric quantization” of semisimple orbits Oλ ∈ g∗/Ad∗(G) are as follows:

Spherical unitary principal series representation · · · Oλ is a hyperbolic orbit;

Zuckerman’s derived functor module Aq(λ) · · · Oλ is an elliptic orbit;

Tempered representation · · · the dimension of Oλ is maximal

(=
1

2
(dim g− rank g)).

Here, one conducts the geometric quantization by using the real polarization for
hyperbolic orbits and the complex polarization for elliptic orbits. In particular,
when G is a connected compact Lie group, orbits Oλ are always elliptic orbits and
further they are compact Kählar manifolds. In this case the geometric quantization
of Oλ that puts “integral conditions” to λ can be constructed by the Borel–Weil–
Bott theorem. This is equivalent to the opposite manipulation of taking highest
weights (Example 2.7). More details such as terminology, an explicit construction,
and some delicate issues for singular parameters may be found in the expository
paper [50, Sect. 2], see also [117, Commentary].

3There is some recent trial, e.g., a geometric construction of the full complementary series

representations of SO(n, 1) is proposed in [33, Thm. 3.4] along the orbit philosophy.



12 TOSHIYUKI KOBAYASHI

On the other hand, “geometric quantizations” of nilpotent orbits have yet to be
fully elucidated. For minimal nilpotent orbits, there have been some new progress
in constructing geometric models of the “corresponding” unitary representations
(minimal representations) including the L2-model (the “Schrödinger model”)
on the Lagrangian submanifold in the nilpotent orbits and the global analysis with
motif in minimal representations in the last 20 years, in which the author himself
has been also involved [9, 72, 82], see Section 4.4. A recent progress of the geometric
quantization of nilpotent orbits shows some interesting interactions with other areas
of mathematics, which would deserve a separate survey.

2.5. Classification of irreducible unitary representations: a role of re-
ductive Lie groups. The Mackey theory analyzes (irreducible) unitary repre-
sentations of a group via those of normal subgroups and of their quotients. The
following theorem is proven by using the Mackey theory for group extension and
by the structure of algebraic Lie groups.

Theorem 2.10 (Duflo [19]). The classification of irreducible unitary representa-
tions of real algebraic groups reduces to the classification problem of the unitary
duals of real reductive Lie groups.

The reductive Lie groups required in Theorem 2.10 are abelian when G is a
nilpotent Lie group as it is obtained as an iteration of group extensions by abelian
Lie groups. Thus, any irreducible unitary representation of a nilpotent Lie group
G is built up from irreducible unitary representations of abelian groups, namely,
from one-dimensional unitary representations, and this is how Kirillov classified
the unitary dual of simply-connected nilpotent Lie groups (Example 2.9). For
the classification of the unitary dual for a general Lie group G, it is sufficient to
determine the unitary dual when G is a simple Lie group by Theorem 2.10. We
will review the current status of this long-standing problem in the next subsection.

2.6. Classification theory of irreducible representations of reductive Lie
groups. In this subsection we overview what has been known about the classi-
fication problem for irreducible representations of simple Lie groups (or slightly

more generally reductive Lie groups). Although we highlight the unitary dual Ĝ

of a reductive Lie group G, we also consider a smaller set Ĝtemp (irreducible tem-
pered representations, Definition 2.3) and a larger set Irr(G) (irreducible admissible
representations, Definition 2.12).

Ĝtemp ⊂ Ĝ ⊂ Irr(G).

Example 2.11. For G = R, we set χξ : G→ C×, x 7→ e
√
−1xξ for ξ ∈ C. Then we

have the following bijections: Ĝtemp = Ĝ ' {χξ : ξ ∈ R} ' R, Irr(G) ' {χξ : ξ ∈
C} ' C.

In order to define Irr(G), the set of equivalence classes of “irreducible admissible
representations”, we need to clarify what “admissibility” means. There are several
ways for the characterization of admissibility ([127, Chap, 3], see also Remark 2.14
(1) below). We choose one of the equivalent definitions of admissibility, which
fits with the branching law, a main theme of this article. For this, we recall that
there are at most countably many equivalence classes of irreducible representations
of compact Lie groups. We also recall that any continuous representation of a
compact Lie group defined over a suitable topological vector space (for instance,
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a Hilbert space, or more generally, a complete locally convex topological vector
space) contains the algebraic direct sum of irreducible representations as a dense
subspace (discrete decomposition), but the number of appearances of the same
irreducible representations (multiplicity) may vary from 0 to infinity.

Definition 2.12 (Harish-Chandra’s admissible representation). A continuous rep-
resentation Π of a reductive Lie group G is said to be admissible when the restriction
Π|K to a maximal compact subgroup K of G contains each irreducible representa-
tion of K with at most finite multiplicity.

In Section 6.1, we shall extend the notion “admissibility” to the restriction with
respect to a more general (non-compact) subgroup, and refer to Harish-Chandra’s
admissibility as K-admissibility.

In analysis one may consider various function spaces and equip them with natural
topologies such as the Banach space topology for Lp-functions or the Fréchet space
topology for C∞-functions on a manifold. Analogously, in analytic representation
theory, when a continuous representation Π of a Lie group G is defined over a
Banach space V (or more generally, a complete locally convex topological vector
space), one may consider the space V ∞ of C∞-vectors:

V ∞ := {v ∈ V : G→ V, g 7→ Π(g)v is a C∞-map}.
The space V ∞ is a G-invariant dense subspace of V and also the differential rep-
resentation dΠ of the Lie algebra g can be defined on V ∞. Then V ∞ is com-
plete with respect to the family of seminorms given by ‖dΠ(X1) · · · dΠ(Xk)v‖
for X1, . . . , Xk ∈ g. With respect to this topology the map G × V ∞ → V ∞,
(g, v) 7→ Π(g)v is continuous, hence one obtains a continuous representation of G
on the Fréchet space V ∞, to be denoted by Π∞.

A vector v ∈ V is called K-finite if dimC C-span{Π(k)v} <∞. We write VK for
the space of K-finite vectors. If (Π, V ) is an admissible representation on a Banach
space V , then VK ⊂ V ∞, hence one can define the action of the Lie algebra g as
well as that of the maximal compact subgroup K on VK , to which we refer to as
the underlying (g,K)-module of (Π, V ).

In this article, we adopt the Fréchet representation ofmoderate growth in defining
the set Irr(G), which fits with the study of symmetry breaking operators in later
sections. Some justification is given in Remark 2.14 via (essentially) equivalent
definitions.

Definition 2.13 (Irreducible admissible representation). Suppose G is a reductive
Lie group. If (Π, V ) is an irreducible admissible representation of G on a Banach
space V , then the Fréchet representation (Π∞, V ∞) is also irreducible, and called
of moderate growth from the behavior of the matrix coefficients, see [127, Chap. 11].
We denote by Irr(G) the set of equivalence classes of such irreducible admissible
Fréchet representations (Π∞, V ∞).

Remark 2.14. (1) (Harish-Chandra) If (Π, V ) is an irreducible representation
realized on a Banach space V , then the following are equivalent.

(2.4)
The center of the universal enveloping algebra U(g) acts on V ∞ by scalar.

⇐⇒ (Π, V ) is an admissible representation.

(2) If (Π1, V1) and (Π2, V2) are two irreducible admissible representations of G on
Banach spaces V1 and V2. Then the underlying (g,K)-modules (Π1)K and (Π2)K
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are isomorphic to each other as (g,K)-modules if and only if (Π1)
∞ and (Π2)

∞

are isomorphic as Fréchet representations of G. We note that Π1 and Π2 are not
necessarily isomorphic as Banach representations of G.
(3) For every irreducible (g,K)-module X, there exists Π ∈ Irr(G) such that ΠK '
X, hence one has a natural bijection between Irr(G) and the set of equivalence
classes of irreducible (g,K)-modules.

(4) Via the correspondence (Π, V ) ⇝ (Π∞, V ∞), the unitary dual Ĝ can be re-
garded as a subset of Irr(G).

The statements (2) and (3) in Remark 2.14 are part of Casselman–Wallach’s
globalization theory [127, Chap. 11].

The classification of irreducible unitary representations of reductive Lie

groups: The classification problem of the unitary dual Ĝ of a reductive Lie group
G has a history of over 70 years. It is completed for some special cases such as
SL(n,F) (F = R,C,H) explained in Example 2.8, complex Lie groups SO(n,C)
and Sp(n,C) or some real reductive Lie groups of low rank. Moreover, recently,
the “Atlas project” led by Adams, van Leeuwen, Trapa, Vogan, and others, which

aims to give a “description” of Ĝ by finite algorithms, has been also developed [1].
However, the unitary duals of simple Lie groups remain to be fully elucidated even
for classical cases such as indefinite orthogonal groups O(p, q) with general p, q.

As we mention below in Example 2.5, the classification of Ĝtemp (tempered

representations), which is a subset of the unitary dual Ĝ, is completed by Knapp–
Zuckerman.
The classification of irreducible representations of reductive Lie groups
(when no unitarity is imposed): In contrast to the long-standing problem on the

classification of the unitary dual Ĝ, the classification of Irr(G), which is larger than

Ĝ, was completed from 1970s to the early 1980s. (In other words, the current status

of the classification of Ĝ is that although the classification of Irr(G) is completed,

we do not fully understand the whole picture of the subset Ĝ of Irr(G).
The classification of the set of infinitesimal equivalence classes of irreducible

admissible representations (equivalently, that of Irr(G) as Fréchet modules, see
Remark 2.14 (3)) is reduced to that of irreducible (g,K)-modules. There are three
approaches to the classification of irreducible (g,K)-modules.

• (Langlands classification) This is an analytic approach that reduces to the

classification of Ĝtemp by focusing on the asymptotic behavior of matrix

coefficients. The classification of Ĝtemp (irreducible tempered representa-
tions) was accomplished by Knapp–Zuckerman.

• (Vogan’s classification) This employs a purely algebraic method that uses
minimal K-type theory, Zuckerman’s derived functor modules (an algebraic
generalization of the Borel–Weil–Bott theory), and the Lie algebra coho-
mology (a generalization of highest weights).

• (D-module approach) This method has a geometric feature: it reduces the
classification of irreducible (g,K)-modules (with regular infinitesimal char-
acters) to that of irreducible modules of the ring of twisted differential
operators over flag manifolds (Beilinson–Bernstein, Brylinski–Kashiwara)
and to the geometry of KC-orbits.
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2.7. A role of the branching law on the classification of irreducible repre-
sentations. The concept of the “smallest units” varies depending on the viewpoint.
Taking subgroups changes the viewpoint in representation theory: irreducible rep-
resentations of a group are no longer “smallest units” when the action is restricted
to subgroups. The theory of branching law aims to elucidate structures of repre-
sentations from the viewpoint of subgroups. Conversely, its idea plays a useful role
in the classification theory of irreducible representations itself [59], as mentioned
in Section 1. Indeed, the idea of branching laws is used to define “invariants” of
irreducible representations, e.g., in Cartan–Weyl’s highest weight theory for the
classification of irreducible finite-dimensional representations and also in Vogan’s
theory for that of irreducible (g,K)-modules, where the restriction to a maximal
torus and a maximal compact subgroups respectively, is discretely decomposable
and the “edge” of the branching law (with respect to a certain partial order) gives
“invariants” in the classification. Further, sometimes, “new irreducible unitary rep-
resentations” have been discovered in the process of finding branching laws such as
via the theta correspondence (Example 1.6).

3. From Local to Global—Global Analysis on Manifolds with
Indefinite Metric

The theory of discontinuous groups beyond the Riemannian setting is another
young field that has remarkably developed in the last 30 years. The ideas from
discontinuous groups inspired the author at several turning points in inventing the
theory of the restriction of infinite-dimensional representations. In this section we
shall shed light on the parts in which both theories are related.

3.1. Mysterious phenomena on the global analysis for indefinite metrics.
A pseudo-Riemannian manifold is a manifold M equipped with a non-degenerate
quadratic form gx at the tangent space TxM depending smoothly on x ∈M . When
g is positive definite, (M, g) is a Riemannian manifold. When only one eigenvalue
of g is negative, it is called a Lorentzian manifold, which appears as a geometric
structure of spacetime in general relativity. The group of isometries of a pseudo-
Riemannian manifold is automatically a Lie group. Semisimple symmetric spaces
(in particular, irreducible symmetric spaces) are examples of pseudo-Riemannian
manifolds, on which semisimple Lie groups act transitively as isometric transfor-
mations.

The motif

local property ⇝ global form

has been one of the main streams in geometry since the 20th century, especially
in Riemannian geometry. The question that when a local structure is fixed, “how
flexible the global form is, or conversely, what kind of limitations exists in the global
form?” is a prototype of the motif, which would bring us to deformation theory
and rigidity theorems, respectively.

The study of “local to global” interacts with various fields of mathematics, de-
pending on the types of local properties of interest. If one highlights “local ho-
mogeneity” as a local property, Lie theory and number theory will enter naturally
in this study through an algebraic structure called discontinuous groups, which
controls the global nature of such manifolds. In the case of Riemannian manifolds
(where the metric g is positive definite), the study of discontinuous groups has
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been already entered its golden age since the 1950s, of which the interaction ranges
from Riemannian symmetric spaces, Lie theory, and number theory to differential
geometry and topology.

On the other hand, the study of pseudo-Riemannian geometry seemed to be
behind the trend of “local to global”.

An early work is due to Calabi–Markus [13] in 1960s for de Sitter manifolds.
A systematic study of discontinuous groups for pseudo-Riemannian homogeneous
manifolds started with [46] in the late 1980s. As an introduction to this theme, we
begin this section with three phenomena in pseudo-Riemannian (locally homoge-
neous) geometry that look strange from the “classical point of view” in Riemannian
geometry, see also the research survey paper [57] for more details of the first two of
them.

3.1.(1) Curvature and global form: Curvatures are typical examples of local
invariants of (pseudo-)Riemannian manifolds. To see what kind of constraints the
curvature (local property) gives to the global form of a manifold, let us compare
classical results on Riemannian manifolds (Theorems 3.1 and 3.3) and some different
features on pseudo-Riemannian manifolds (Theorems 3.2 and 3.4). A Riemannian
manifold, or more generally, a pseudo-Riemannian manifold is called a space form
if its sectional curvature κ is constant. In the Riemannian case, it is called a
hyperbolic manifold when κ < 0. In the Lorentzian case, it is a de Sitter manifold
or an anti-de Sitter manifold when κ < 0 or κ > 0, respectively. We highlight
the contrast between Riemannian and Lorentzian cases: Theorems 3.1 and 3.2 are
for positive curvatures, whereas Theorems 3.3 and 3.4 are for negative curvatures.

Theorem 3.1 (Myers). Every complete Riemannian manifold with Ricci curvature
≥ ε(> 0) is compact.

Theorem 3.2 (Calabi–Markus phenomenon [13]). Every de Sitter manifold is non-
compact.

Theorem 3.3. There exists a compact hyperbolic manifold for every dimension.

Theorem 3.4. Compact anti-de Sitter manifolds exist if and only if the dimension
is odd.

3.1.(2) Rigidity of discontinuous groups and “deformability”: Can we “de-
form” discontinuous groups for pseudo-Riemannian symmetric spaces G/H? Since
automorphisms of G induce “uninteresting” deformation of discontinuous groups,
we consider “deformation” up to automorphisms of G. Let us compare a classical
rigidity theorem (Theorem 3.5) when the metric tensor g is positive definite with
a discovery on the “flexibility of discontinuous groups” (Theorem 3.6) when g is
indefinite.

Theorem 3.5 (Selberg–Weil’s local rigidity [128]). Any cocompact discontinuous
group for an irreducible Riemannian symmetric space of dimension > 2 does not
allow non-trivial continuous deformation.

Theorem 3.6 (Kobayashi [56]). There exists an irreducible symmetric space of
arbitrarily higher dimension having a cocompact discontinuous group that allows
non-trivial continuous deformation.
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The local rigidity theorem by Selberg and Weil in Theorem 3.5 has brought a
sequence of revolutionary works on rigidity theorems by Mostow, Margulis, and
Zimmer among others, whereas in deformation theory of discontinuous groups for
the Poincaré disk (the two-dimensional case) the last century has seen the develop-
ment of an abundant theory of Teichmüller spaces on moduli spaces of Riemann
surfaces. Theorem 3.6 concerning indefinite metrics may be thought of as providing
a new theme such as “higher dimensional Teichmüller theory” for locally semisimple
symmetric spaces with indefinite metric.

3.1.(3) Rigidity of spectrum: So far we have seen distinguished aspects in the
geometry of discontinuous groups for pseudo-Riemannian manifolds. We now ad-
dress an analytic question: Suppose that a discontinuous group Γ for a (pseudo-
)Riemannian manifold X admits a non-trivial continuous deformation. Do the
eigenvalues of the Laplacian on the quotient space Γ\X vary according to defor-
mation of Γ, or are there “stable eigenvalues”? We consider this problem in the
setting where X is a space form, i.e., a pseudo-Riemannian manifold with sectional
curvature −1. Theorem 3.7 is a classical result for Riemannian manifolds of di-
mension two and Theorem 3.8 is a new phenomenon for the Lorentzian manifold of
dimension three discovered in a joint work with F. Kassel [38]. See also [74].

Theorem 3.7 (Wolpert [130]). There does not exist a “stable eigenvalue”(> 1/4)
on closed Riemann surfaces.

Theorem 3.8 (Kassel–Kobayashi [38]). There exist infinitely many positive “stable
eigenvalues”on three-dimensional compact anti-de Sitter manifolds.

Here we say λ is a stable eigenvalue if there exists a non-zero L2-function f
(depending on ϕ) on the quotient manifold ϕ(Γ)\X satisfying ∆f = λf (weak
sense) for every injective homomorphism ϕ : Γ→ G that is sufficiently close to the
original embedding ι : Γ ↪→ G.

Remark 3.9. The existence of “stable eigenvalues” in Theorem 3.8 is proved in [38]
by constructing Γ-periodic eigenfunctions that are obtained as the “Γ-average” of
non-periodic eigenfunctions. For the proof of the convergence and the non-vanishing
of the “Γ-average”, one uses a geometric estimate such as the “counting” of the
Γ-orbit in a pseudo-ball of a pseudo-Riemannian symmetric space (Section 3.3)
and analytic estimate of eigenfunctions, see Section 4.1 for the non-commutative
harmonic analysis. On the other hand, by using the branching law (Section 6) of
infinite-dimensional representations, it can be shown that there also exist infinitely
many eigenvalues (< 0) that “vary” according to deformation of a discontinuous
group, see [40, 76] for a precise formulation.

3.2. Inspiration from the theory of discontinuous groups. Let us explain a
loose idea that connects the “theory of discontinuous groups of pseudo-Riemannian
manifolds” for which some mysterious phenomena are described in Section 3.1 with
the “theory of the restriction of infinite-dimensional representations” which is the
main theme of this article.

First, we review basic notion on group actions. Suppose a topological group Γ
acts continuously on a locally compact space X. We define a subset ΓS ⊂ Γ for a
given subset S ⊂ X as

ΓS := {γ ∈ Γ : γS ∩ S 6= ∅}.
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When S is a singleton {x}, the subset ΓS is a subgroup. Let us recall the following
basic concepts.

Definition 3.10. (1) An action is properly discontinuous ⇐⇒ #ΓS <∞ for
any compact set S.

(2) An action is proper ⇐⇒ ΓS is compact for any compact set S.
(3) An action is free ⇐⇒ Γ{x} = {e} for any x ∈ X.

One may think of each of the above three concepts as a kind of properties that
ΓS is reasonably “small” whenever S is “small”.

If Γ acts on a manifold X properly discontinuously and freely, then the quotient
space Γ\X is a Hausdorff space with respect to quotient topology and, further, there
exists a unique manifold structure in Γ\X for which the quotient map X → Γ\X is
a smooth covering. Conversely, the fundamental group π1(M) of a manifold M acts

properly discontinuously and freely on the universal covering space M̃ as covering

transformations and the original manifold M can be recovered as π1(M)\M̃ 'M .
Suppose that X is a pseudo-Riemannian manifold with metric tensor g, and that

G is the group of isometries of X. Then G is always a Lie group. For a subgroup
Γ of G, the following equivalence does not hold generally even when Γ acts freely
on X (the implication ⇐ always holds):

Γ is discrete (in G) ⇐⇒ the action of Γ on X is properly discontinuous.

This is a significant difference from Riemannian manifolds with g positive definite,
where the equivalence automatically holds, and the failure of the implication ⇒
in the pseudo-Riemannian case is one of the causes of “mysterious phenomena”
described in Section 3.1. Thus it is crucial to gain a profound understanding (not
a formal paraphrase of the definition of proper discontinuity) when a discrete sub-
group of G acts on a non-Riemannian homogenous space. An explicit properness
criterion is known for reductive Lie groups G, which we recall now.

Let G = K exp(a)K be the Cartan decomposition of a reductive Lie group G and
µ : G → a/W the corresponding Cartan projection. Here W stands for the Weyl
group of the restricted root system of the Lie algebra g with respect to the maximal
abelian split subalgebra a. The next theorem extends the properness criterion given
by the author [46] in the setting where both Γ and H are reductive subgroups.

Theorem 3.11 (Criteria for proper discontinuity; Benoist [4], Kobayashi [52]). Let
Γ be a discrete subgroup of a reductive Lie group G and H a closed subgroup of G.
Then the following two conditions on (Γ, G,H) are equivalent:

(i) the action of Γ on G/H is properly discontinuous;

(ii) the set µ(Γ)∩µ(H)ε is a finite set for any ε > 0, where µ(H)ε is a tubular
neighborhood of µ(H) in a/W .

Theorem 3.11 plays a key role to prove the necessary and sufficient condition
for the Calabi-Markus phenomenon for reductive homogeneous spaces G/H (cf.
Theorem 3.2) in [46] and the existence problem of compact pseudo-Riemannian
locally homogeneous spaces such as space forms (Theorem 3.4 for the Lorentzian
case), which were introduced in Section 3.1 as “mysterious phenomena” for pseudo-
Riemannian manifolds, and also Theorem 3.6 (the deformation of discontinuous
groups in higher dimension).
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The criterion for discrete decomposability for the branching law of unitary rep-
resentations (Section 6) was inspired by the properness criterion [46] in its for-
mulation. Although the techniques to prove Theorems 3.11 (topology) and 6.5
(decomposition of a Hilbert space, micro-local analysis) are quite different, there
are some common characteristics in both cases, that is, one searches a setting in
which non-compact subgroups behave as if they were compact groups.4

3.3. Application from the theory of discontinuous groups: from qualita-
tive theorems to quantitative estimates. Properness (or proper discontinuity)
of the action is initially a qualitative property. As a second step, we may deepen
such qualitative properties to quantitative estimates, from which a further con-
nection to another field of mathematics emerges. Let us give two such examples.

(1) Quantitative estimates of proper discontinuity
If a discrete group Γ acts on X properly discontinuously (Definition 3.10), then

the following inequality holds for any compact subset S ⊂ X:

#ΓS <∞.

Then we may consider a generalization of the classical counting of lattice points in
non-Riemannian geometry as follows.

Problem 3.12. When a compact set S is gradually increased, how does #ΓS in-
crease?

For instance, if X is a Riemannian manifold and S is a ball B(R) of radius R
centered at o ∈ X, then ΓB(R) coincides with the set {γ ∈ Γ : γ · o ∈ B(2R)},
and Problem 3.12 is a classical counting problem of a lattice which asks about the
asymptotic behavior of #ΓB(R) as the radius R tends to infinity. Such an estimate
for a pseudo-Riemannian manifold is utilized in the proof of the existence (Theo-
rem 3.8) of “stable eigenvalues” for the Laplacian on a locally pseudo-Riemannian
symmetric space [38].

(2) Quantitative estimates of non-proper actions
We may also formalize “quantification” of “non-properness” in the opposite situ-

ation where the action of the group is not proper. Along this direction we propose a
new approach in non-commutative harmonic analysis by using an idea of dynamical
system instead of the traditional method of differential equations for the study of
the unitary representation on L2(G/H), see Section 4.3.

4. Program for Non-commutative Harmonic Analysis

In contrast to local analysis, global analysis involves many difficult problems.
Further, in order to establish global results, certain “appropriate structure” (e.g.,
curvature pinching) should be imposed on the manifold X unless otherwise easy
“counterexamples” show up because of the non-compactness of X. Such a “struc-
ture on X” may be provided by means of a non-compact transformation group G
of X. This is an idea to investigate global analysis successfully in the following
scheme:

global analysis on X ←→ representation theory of G.

4Not just “apparent similarities”, a close relationship between the “proper action” and the
“discretely decomposable restriction” is recently elucidated in [76] under the assumption of certain

“hidden symmetry” on spherical varieties.
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In this section we focus on global analysis via transformation groups. After giving
a brief overview on some major achievements about non-commutative harmonic
analysis in the 20th century in Section 4.1, we describe a program for a new line of
studies in Sections 4.2–4.4. Its connection to the theory of branching laws will be
dealt with in Sections 5–8.

4.1. Non-commutative harmonic analysis on semisimple symmetric spaces
—perspectives and achievements in the 20th century. In global analysis on
a manifold X, non-commutative harmonic analysis concerns the space of func-
tions rather than individual functions, and uses the regular representation of the
transformation group G defined on the space of all functions.

Let us review basic notions. When a group G acts on a manifold X, a linear
action of G on the space Γ(X) of functions (Γ = C∞, C, D′, . . .) is naturally
defined. That is, for each g ∈ G, one transforms functions f on X to different
functions π(g)f := f(g−1·) by the pull-back of the geometric action. Since the
resulting family of the linear map π(g) : Γ(X)→ Γ(X) satisfy π(g1g2) = π(g1)π(g2)
with respect to compositions of maps, π defines a representation of the group G on
the function space Γ(X), which is referred to as regular representation. Further,
if there exists a G-invariant Radon measure on X, then π(g) preserves the L2-norm
and therefore one can define a unitary representation on the Hilbert space L2(X)
of square integrable functions on X.

Remark 4.1. Even when a manifold X is too small to allow a non-trivial action of
a group (no symmetry in geometry), it may be possible to define a representation of
the group on the space of functions (symmetry in analysis). This viewpoint leads
us to “global analysis with minimal representations as a motif” [65], where one
utilizes “hidden symmetry” on the space of functions. This new direction of global
analysis will be mentioned in Section 4.4.

Before explaining what “non-commutative harmonic analysis” means, we first
review classical “commutative” harmonic analysis. The Fourier transform on the
Euclidean space

(4.1) F : Cc(R)→ C(R), (Ff)(ξ) := 1√
2π

∫ ∞

−∞
f(x)e−ixξdx

initially defined, for instance, in the space Cc(R) of compactly supported continuous
functions, extends to a unitary operator on the Hilbert space L2(R) of square-
integrable functions (the Plancherel theorem). On the other hand, if we put
π(t)f := f(·− t), then the Fourier transform F also satisfies the following algebraic
relations

F(π(t)f)(ξ) = e−itξ(Ff)(ξ) (∀t ∈ R).

These properties of the Fourier transform F may be reinterpreted from the stand-
point of the representation theory of groups as follows. For later purpose, we
separate the role of the transformation group G from that of the geometry X, and
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consider G acts on X and L2(X), even though G = X = R here.

Algebraic relations · · ·The Fourier transform f 7→ Ff(ξ) gives a G-homomorphism

for each ξ ∈ C from the regular representation π on Cc(X) of

the additive group G to the representation space C of the

irreducible representation χ−ξ : G→ GL(1,C), t 7→ e−itξ of G.

L2-theory · · ·The Plancherel theorem decomposes the regular representation

L2(X) into irreducible unitary representations of G.

When a transformation group G is the abelian group R, the representation space
of the irreducible representation χξ of G is one-dimensional, hence the above group-
theoretic interpretation may seem stress too much on formalism. However, thanks
to this Weyl’s point of view, the representation theory of transformation groups
G of manifolds X have been incorporated with global analysis in a broad sense
and led to a great development of its own. The irreducible decomposition of the
unitary representation L2(X) of G is called the Plancherel-type theorem. The
harmonic analysis on the Euclidean space is extended to that on abelian locally com-
pact groups G (“commutative harmonic analysis”) by Pontryagin in 1930s, where
all irreducible unitary representations of G are one-dimensional. In contrast, this
analysis is called “non-commutative harmonic analysis” if the transformation group
G is non-commutative. When the transformation group G is compact, then all ir-
reducible representations are finite-dimensional and L2(X) decomposes discretely
as in the case of Fourier series expansions in the case G = X = S1. When the
transformation group G is non-abelian and non-compact, the theory of “infinite-
dimensional irreducible representations” of G may be used for global analysis on
the manifold X as a powerful tool. Here are successful cases for the Plancherel-type
theorem for G-spaces X with emphasis on real reductive Lie groups G.

X = G (group manifold)

Peter–Weyl (1927) G is a compact group.

Pontryagin (1934) G is an abelian locally compact group.

Gelfand school, Harish-Chandra (1950s) G is a complex semisimple Lie group.

Harish-Chandra (1976) G is a semisimple Lie group.

X = G/H (symmetric space)

T. Oshima (1980s), Delorme,

van den Ban–Schlichtkrull (late 1990s) X is a semisimple symmetric space.

These great achievements in the 20th century were not limited to theorems in
representation theory, but also served as the driving forces for the development of
analysis such as functional analysis and algebraic analysis. On the other hand, the
beautiful and successful theory on global analysis on symmetric spaces (including
group manifolds) seemed to give an impression that these objects live in a “closed
world”. Here we note that group manifolds G may be seen as a special case of
symmetric spaces (G×G)/ diag(G). In fact, many of the techniques used in global
analysis in there were based on the structure theory of these spaces (e.g. the proof for
group manifolds or symmetric spaces can be often reduced to that for smaller groups
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or smaller symmetric spaces), and thus it was not obvious to foresee a promising
direction of global analysis beyond symmetric spaces in the 1980s around the time
when the Plancherel-type theorem for reductive symmetric spaces was announced
by T. Oshima [106].

4.2. “Grip strength” of representations on global analysis — new per-
spective, part 1. To find a nice framework beyond symmetric spaces, let us start
from scratch, and consider the very basic question whether representation theory
is “useful” for global analysis in the first place. As a guiding principle to explore
this question, we propose the following perspective.

Basic Problem 4.2 (“Grip strength” of representations [51]). When a Lie group
G acts on X, can the space of functions on X be “sufficiently controlled” by the
representation theory of G?

The vague words, “sufficiently controlled”, or conversely,“uncontrollable”, need
to be formulated rigorously as mathematics. Suppose V is the space of functions
of a G-manifold X. There are (sometimes uncountably many) inequivalent irre-
ducible subrepresentations in the infinite-dimensional G-module V . Moreover the
multiplicity of each irreducible representation can range from finite to infinite.

Confronting such a general situation, we emphasize the following principle:

• even though there are infinitely many inequivalent irreducible subrepresen-
tations, the group action can distinguish the inequivalent parts;

• the group action cannot distinguish the parts where the same irreducible
representations occur with multiplicities.

This observation suggests us to think of the multiplicity of irreducible represen-
tations as the quantity measuring the “grip strength of a group”. For an irreducible
representation Π of a group G, the multiplicity of Π in C∞(X) is defined by

(4.2) dimC HomG(Π, C
∞(X)) ∈ N ∪ {∞}.

We formulate Basic Problem 4.2 as follows.

Problem 4.3 (Grip strength of representations on global analysis). Let X be a
manifold on which a Lie group G acts.

(1) Find a necessary and sufficient condition on the pair (G,X) for which the
multiplicity of each irreducible representation Π of G in the regular repre-
sentation C∞(X) is always finite.

(2) Determine a condition on the pair (G,X) for which the multiplicity is uni-
formly bounded with respect to all irreducible representations Π.

Since the condition (1) concerns individual finiteness with no constraint on the
dependence of irreducible representations Π, we may think that the group G has
“stronger grip power” in (2). The case that the group action of G is transitive is
essential in Problem 4.3, which we shall assume in the following. Then Problem 4.3
is completely solved by Kobayashi–Oshima [91] when G is a reductive algebraic Lie
group. To state the necessary and sufficient condition, we prepare some terminology.

Definition 4.4 (Spherical variety and real spherical variety).
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(1) Suppose that a complex reductive Lie group GC acts biholomorphically on a
connected complex manifold XC. We say XC is spherical or GC-spherical
if a Borel subgroup of GC has an open orbit in XC.

(2) Suppose that a reductive Lie group G acts continuously on a connected real
manifold X. We say X is real spherical or G-real spherical if a minimal
parabolic subgroup of G has an open orbit in X.

The terminology of “real sphericity” was introduced by the author [51] in the
early 1990s for the study of Basic Problem 4.2. By definition, if XC is GC-spherical,
then XC is also GC-real spherical as a real manifold.

Example 4.5. Let X be a homogeneous space of a reductive algebraic Lie group
G and XC its complexification.

(1) The following implications hold (Aomoto, Wolf, and Kobayashi–Oshima
[91, Prop. 4.3]).

X is a symmetric space.

⇓ Aomoto, Wolf

XC is GC-spherical.

⇓ Kobayashi–Oshima

X is G-real spherical.

⇑ obvious

G is compact.

When X admits a G-invariant Riemannian structure, then XC is GC-
spherical if and only if X is a weakly symmetric space in the sense of
Selberg, see Vinberg [124] and Wolf [129].

(2) The irreducible symmetric spaces were classified by Berger [10] at the level
of Lie algebras.

(3) The classification theory of spherical varieties XC is given by Krämer [100],
Brion [12], and Mikityuk [103].

(4) The homogeneous space (G×G×G)/ diag(G) is not a symmetric space. It
was determined by the author [51, Ex. 2.8.6] when it becomes real spherical
in the study of multiplicities when decomposing tensor product representa-
tions (Example 6.16). A generalization of this will be described in Example
6.10 (2) in connection with branching problems for symmetric pairs.

The solutions to Problem 4.3, which is a reformalization of Basic Problem 4.2,
are given by the following two theorems. For simplicity of the exposition, we assume
H to be reductive, see Remark 4.8 for more general cases.

Theorem 4.6 (Criterion for the finiteness of multiplicity). Let G be a reductive
algebraic Lie group and H a reductive algebraic subgroup of G. We set X = G/H.
Then the following two conditions on the pair (G,H) are equivalent.

(i) (representation theory) dimC HomG(Π, C∞(X)) <∞ (∀Π ∈ Irr(G)).

(ii) (geometry) X is G-real spherical.

In [91], we have proved not only a qualitative result (Theorem 4.6) but also quan-
titative results, namely, an upper estimate of the multiplicity by using a boundary
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problem of partial differential equations and a lower estimate by generalizing the
classical Poisson transform [30, Ch. II], see [71, Sect. 6.1]. These estimates from
the above and below yield a criterion of the uniform boundedness of multiplicity as
in the following theorem, where the equivalence (ii) ⇐⇒ (iii) is classically known,
and the main theme here is a connection with the representation theoretic property
(i).

Theorem 4.7 (Criterion for the uniform boundedness of multiplicity [91]). Let
G be a reductive algebraic Lie group, H a reductive algebraic subgroup of G, and
X = G/H. Then the following three conditions on the pair (G,H) are equivalent.

(i) (representation theory) There exists a constant C such that

dimC HomG(Π, C
∞(X)) ≤ C (∀Π ∈ Irr(G)).

(ii) (complex geometry) The complexification XC of X is GC-spherical.

(iii) (ring theory) The ring of G-invariant differential operators on X is com-
mutative.

Remark 4.8. Theorems 4.6 and 4.7 give solutions to Problem 4.3 (1) and (2),
respectively. More generally, these theorems hold not only for the space C∞(X)
of smooth functions but also for the space of distributions/hyperfunctions and the
space of sections of equivariant vector bundles. Furthermore, one can drop the
assumption that the subgroup H is reductive, see [91, Thms. A and B] for precise
formulation. For instance, the theory of the Whittaker model (Kostant–Lynch, H.
Matumoto) considers the case where H is a maximal unipotent subgroup N . In
this case, G/N is always G-real spherical, and GC/NC is GC-spherical if and only if
G is quasi-split. Thus Theorems 4.6 and 4.7 (in a generalized form) can be applied.

Remark 4.9. Theorem 4.7 includes the new discovery that the property of the
“uniform boundedness of multiplicity” is determined only by the complexification
(GC, XC) and is independent of a real form (G,X). This observation suggests that
an analogous result should hold more generally for reductive algebraic groups over
non-archimedean local fields as well. Recently, Sakellaridis–Venkatesh [112] has
obtained some positive results in this direction. See also [79, 122] for an alternative
approach to the proof (ii) ⇒ (i) by using holonomic D-modules.

Theorems 4.6 and 4.7 provide nice settings of global analysis in which the “grip
strength” of representation theory is “firm” on the space of functions. The existing
successful theory such as the Whittaker model and the analysis on semisimple
symmetric spaces (Section 4.1) mentioned above may be thought of as the global
analysis in this framework (Example 4.5). There are also “new” settings suggested
by Theorems 4.6 and 4.7, to which the global analysis has not been paid much
attention, and as one of such settings, we shall discuss an application to branching
problems in Section 6.2.

4.3. Spectrum of the regular representation L2(X): a geometric criterion
for temperedness — new perspective, part 2. In the previous section 4.2, we
focused on “multiplicity” from the perspective of the “grip strength” of a group on
a function space and proposed (real) sphericity as “a nice geometric framework for
detailed study of global analysis” beyond symmetric spaces. On the other hand,
even when the “grip strength” of representation theory is not “firm”, we may still
expect to analyze L2(X) in a “coarse standpoint”. In this subsection, including
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non-spherical cases, let us focus on the support of the Plancherel measure and
consider the following problem.

Basic Problem 4.10. Suppose that a reductive Lie group G acts on a manifold
X, and that there is a G-invariant Radon measure on X. Determine a necessary
and sufficient condition on a pair (G,X) for which the regular representation of G
on L2(X) is a tempered representation (Definition 2.3 (2)).

Basic Problem 4.10 asks the condition that any irreducible non-tempered repre-
sentation (e.g. a complementary series representation) is not allowed to contribute
to the unitary representation L2(X).

Observation 4.11.

(1) In the case where G/H is a semisimple symmetric space, the Plancherel-
type theorem is known [18, 106], however, it seems that a necessary and
sufficient condition on which L2(G/H) is tempered had not been found
until the general theory [5] is proved. In fact, if one tried to apply the
Plancherel-type formula to find an answer to Problem 4.10, one would en-
counter a problem to find a precise (non-)vanishing condition of discrete
series representations for G/H with singular parameters, or equivalently,
that of certain cohomologies (Zuckerman derived functor modules) after
crossing a number of “walls” and such a condition is combinatorically com-
plicated in many cases, see [47, Chaps. 4 and 5] and [123] for instance.

(2) More generally, when XC is not necessarily a spherical variety of GC, the
ring DG(X) of G-invariant differential operators on X is not commutative
as seen in the equivalence (ii) ⇐⇒ (iii) of Theorem 4.7, and so we cannot
use effectively the existing method on non-commutative harmonic analysis
based on an expansion of the functions on X into joint eigenfunctions with
respect to the commutative ring DG(X) as was the case of symmetric spaces.

As observed above, to tackle Basic Problem 4.10, we need to develop a completely
new method itself. For this, we bring an idea of geometric group theory mentioned
in Section 3. Let us start with an observation of an easy example. If H is a compact
subgroup of G, then L2(G/H) ⊂ L2(G) holds. The following can be readily drawn
from this observation.

Example 4.12. If the action of a group G on X is proper (Definition 3.10), then
the regular representation in L2(X) is tempered.

Therefore, in the study of Basic Problem 4.10, the non-trivial case is when the
action of G on X is not proper. Properness of the action is qualitative property,
namely, a non-proper action means that there exists a compact subset S of X such
that the set {g ∈ G : gS ∩ S 6= ∅} is not compact. In order to quantify this
property, we highlight the volume vol(gS ∩S) with respect to a Radon measure on
X. Viewed as a function of g ∈ G

(4.3) G 3 g 7→ vol(gS ∩ S) ∈ R
is a continuous function on G. Definition 3.10 tells us that the G-action on X
is not proper if and only if the support of the function (4.3) is non-compact for
some compact subset S of X. This suggests that the “decay” of the function
(4.3) at infinity may be considered as a “quantification” of non-properness of the
action. By pursuing this idea, Basic Problem 4.10 is settled in Benoist–Kobayashi



26 TOSHIYUKI KOBAYASHI

[5, 6] when X is a homogeneous space of a real reductive group G. To describe
the solution, let us introduce a piecewise linear function associated to a finite-
dimensional representation of a Lie algebra.

Definition 4.13 (Moment of a representation [6, Sect. 2.3]). For a representation
σ : h→ EndR(V ) of a Lie algebra h on a finite-dimensional real vector space V , the
moment ρV is a function on h defined as

ρV : h→ R, Y 7→ the sum of the absolute values of the real parts

of the eigenvalues of σ(Y ) on V ⊗R C.

The function ρV is uniquely determined by the restriction to a maximal abelian
split subalgebra a of h. Further, the restriction ρV |a is piecewise linear, in the sense
that there exist finitely many convex polyhedral cones which cover a and on which
ρV is linear. When (σ, V ) is the adjoint representation of a semisimple Lie algebra
h, the restriction ρh|a can be computed by using a root system and coincides with
a scalar multiple of the usual “ρ” on the dominant Weyl chamber.

With the use of the functions ρV for the adjoint actions of h on V = h and g/h,
one can give a necessary and sufficient condition for Basic Problem 4.10.

Theorem 4.14 (Criterion on the temperedness of L2(X)). Let G be a real reductive
Lie group and H a connected closed subgroup of G. Also let g and h be the Lie
algebras of G and H, respectively. Then the following two conditions on a pair
(G,H) are equivalent.

(i) (global analysis) The regular representation L2(G/H) is tempered.
(ii) (combinatorial geometry) ρh ≤ ρg/h.

The implication (i) ⇒ (ii) follows from a local estimate of the asymptotic be-
havior of the volume vol(gS ∩ S), and the converse implication (ii) ⇒ (i) is much
more involved. We note that Basic Problem 4.10 makes sense even when there is
no G-invariant Radon measure on X by replacing L2(X) with the Hilbert space
of L2-sections for the half-density bundle over X. Theorem 4.14 holds in this gen-
erality. See [5, 6] for details, [7] for the classification of the pairs (G,H) of real
reductive groups for which L2(G/H) is non-tempered, and [8] for some connection
with other disciplines such as the orbit philosophy and the limit algebras.

Remark 4.15. If G is an algebraic group and X is an algebraic G-variety, then,
even when X is not a homogeneous space of G, one can give an answer to Basic
Problem 4.10 by applying Theorem 4.14 to generic G-orbits [6].

4.4. The sizes of a group G and a manifold in global analysis. Let us
mention yet another new perspective in global analysis via representation theory. To
give its flavor, we begin with “coarse comparison” of the “size” of the transformation
group G with that of the geometry X. Suppose that a Lie group G acts on a
manifold X. If there are at most finitely many G-orbits in X (in particular, if G
acts transitively), one may regard that the size of G is “comparable” with X which
we write symbolically as

group G ≈ manifold X.

Homogeneous spaces X = G/H are typical examples for the relation G ≈ X.
We may think of the main results of Sections 4.2 and 4.3 as a refinement of the
“relation G ≈ X” by introducing some kind of “smallness of X = G/H relative to
G” or “largeness of H” from the following points of view:



RECENT ADVANCES IN BRANCHING PROBLEMS OF REPRESENTATIONS 27

• Grip strength · · · multiplicity (Theorems 4.6 and 4.7): The “larger” H is
(or the “smaller” X is), the better G controls the function space on X.

• Spectrum · · · temperedness criterion (Theorem 4.14): The “larger” H is
(or the “smaller” X is), the less likely the regular representation of G on
L2(X) becomes tempered.

As we have seen, the two notions of “smallness of X” are alike in appearance
but quite different in nature among the case G ≈ X. In the rest of this section,
we discuss new directions of representation theory and global analysis beyond the
setting G ≈ X:
(1) group G � manifold X (G is “too large” to act on X non-trivially.)
(2) group G � manifold X (The dimensions of all G-orbits are smaller than

that of X.)

Global analysis of minimal representations — an example for the case that
the size of G � the size of a manifold X

Let e(G) be the smallest value of the codimensions of proper subgroups of a
Lie group G. For example, if G = GL(n,R), then e(G) = n − 1. This means
that if the dimension of a manifold X is less than e(G), then any (continuous)
action of G on X must be trivial. In this way, if a Lie group G is “too large”
compared to a manifold X, for instance, if e(G) > dimX, then G cannot act on X
geometrically. We write group G � manifold X in this case. Even when G � X,
we may perform global analysis on X from a different perspective if one can define
a natural representation of the group G on the space of functions on X although
the representation does not arise from a geometric action of G on X. In such a
case the “grip strength” of G on the space of functions will be extremely firm,
hence one may expect that the representation theory plays a powerful role in the
global analysis, even more powerful than in the analysis on homogeneous spaces
[65]. One of the examples is that X is a Lagrangian submanifold of the minimal
nilpotent coadjoint orbit (Section 2.4) and in this point of view, “global analysis
with minimal representations as a motif” has emerged [65]. Global analysis in new
directions based on the Schrödinger model of a minimal representation beyond the
Segel–Shale–Weil representation [33, 82, 89] has been developed rapidly in recent
years. It includes the construction and the unitarization of a minimal representation
by the use of conformal geometry [87, 88], the theory of special functions associated
with fourth-order differential equations [32, 72] and the deformation theory of the
Fourier transform such as the (k, a)-generalized Fourier transform [9, 17].

Visible action — an example for the case that the size of G � the size of a
manifold X

We consider the opposite extremal case where groupG�manifoldX in the sense
that there is no open G-orbit X, and in particular, G has continuously many orbits
in X. Even in such a case, there is still a possibility to develop global analysis with
a reasonable “control” by group representations if one imposes further constraints
such as geometrically defined differential equations. The theory of visible actions
on complex manifolds and the propagation of multiplicity-free property [60, 69] is
a new attempt in the direction (see Section 6.3).
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5. Program for Branching Problems in Representation Theory

In the latter part of this article we discuss branching problems that ask how the
restrictions of irreducible representations behave when restricted to subgroups, e.g.,
finding their irreducible decompositions (the branching laws) for infinite-dimensional
representations of Lie groups. In spite of its potential importance, the study of the
restriction of irreducible representations of a reductive Lie group to non-compact
subgroups was still underdeveloped in the 1980s, except for some specific cases
such as the theta correspondence [34], highest weight modules, the compact case,
or the SL2-cases [104, 111]. The main difficulty seemed to be the lack of promising
perspectives for the general study of the restrictions of representations. In fact, if
one tries to find a branching law for a group larger than SL2, then bad phenom-
ena appear such as infinite multiplicity in the branching laws, which we express as
“the grip strength of the subgroup is not firm enough”. For instance, when n ≥ 3,
the tensor product of two principal series representations of SLn(R) “contains”
the same irreducible representation with infinite multiplicity. In the late 1980s,
inspired by the new theory of discontinuous groups beyond the Riemannian set-
ting, the author discovered a new example of “good branching laws” in the sense
that an infinite-dimensional irreducible representation Π decomposes discretely and
multiplicity-freely when restricted to non-compact subgroups in the setting that Π
is not a highest weight module.5 This type of branching law had not been previ-
ously known and an attempt to elucidate this example more generally became a
trigger of the general study of the restriction of representations which had been in
a kind of a chaotic state. Enough tools had been accumulated, it was poised to
take off. In the following three steps let us give an overview of some of the progress
of the study of branching problems over around 30 years from the discovery:

Stage A: Abstract feature of the restriction of representations (Section 6).

Stage B: Branching laws (Section 7).

Stage C: Construction of symmetry breaking operators (Section 8).

The name of each stage comes from their initials [73]. We shall look into the roles of
Stages A, B, and C in Sections 8.1 and 8.2 later. For more details of the program,
see [73].

6. Program for Branching Problems: Stage A

The aim of Stage A is to develop an abstract theory on the restriction of repre-
sentations in the setting as general as possible. Stage A will provide a bird’s-eye
view to the problem of the “restriction of representations” in which various new
directions of research may open up. In particular, this stage will play a role to
single out a nice setting where one could develop a detailed study of branching laws
in Stages B and C. For instance, in Stage A, we aim to construct a general theory
to elucidate the following properties.

• (Existence of the continuous spectrum [49]) Does a continuous spectrum appear
in the branching law of the restriction Π|G′ of a unitary representation Π of a group
G to non-compact subgroups G′? Or, does it decompose discretely? (Section 6.1)

5As its geometric background there was an open problem of spectral geometry proposed by

Toshikazu Sunada at the time. For the details see [86] on Sunada’s conjecture and also [64].



RECENT ADVANCES IN BRANCHING PROBLEMS OF REPRESENTATIONS 29

• (Finiteness/boundedness of multiplicity [51, 91]) For irreducible representations
of a group G, is the multiplicity (i.e. the number of times that irreducible repre-
sentations of a subgroup G′ appears) finite or infinite? In case each multiplicity is
finite, we may also ask, even strongly, if it has uniform boundedness? Even further,
under what assumptions does a multiplicity-free theorem hold? We may formulate
these problems without assuming that the representations are unitary, see Section
6.2.

• (Support of branching laws [5]) Properties on irreducible representations that
appear in a branching law. For instance, as an analogue of temperedness criterion
in Section 4.3, one may ask if the restriction Π|G′ is tempered as a representation
of a subgroup G′ when Π is a non-tempered irreducible unitary representations of
a group G.

6.1. Existence problem of the continuous spectrum in branching laws. If
G′ is a reductive Lie group, then with the use of the notion of the direct integral
(Section 2.3), the restriction of Π|G′ of a unitary representation Π is decomposed
uniquely into irreducible representations of the subgroup G′ as

(6.1) Π|G′ '
∫ ⊕

Ĝ′
nΠ(π)π dµ(π)

where µ is a Borel measure on the unitary dual Ĝ′ (Theorem 2.2). As one of the
problems in Stage A, first consider whether a continuous spectrum appears in the
branching law (6.1). When a continuous spectrum appears in a branching law,
analytic approaches will be natural for a detailed study of the restriction Π|G′ . On
the other hand, if one knows a priori the branching law (6.1) is discrete, one may
study the restriction Π|G′ also by purely algebraic approach, and expect to develop
even more combinatorial techniques and algorithms that compute branching laws.
Thus we address the following problem.

Basic Problem 6.1 ([48]). Suppose that Π is an irreducible unitary representation
of a group G and that G′ is a subgroup of G. Find a criterion on a triple (G,G′,Π)
to decompose the restriction Π|G′ into the discrete direct sum of irreducible repre-
sentations of G′. Moreover, find a criterion that the multiplicity of each irreducible
representation is finite in the discrete branching law of the restriction Π|G′ .

In the latter case, we say the restriction Π|G′ is G′-admissible ([49, Sect. 1]).
When G′ is a maximal compact subgroup K of G, the K-admissibility is nothing
but Harish-Chandra’s admissibility (Definition 2.12).

In the following let G be a real reductive Lie group, Π an irreducible unitary
representation of G, and G′ a reductive subgroup of G.

Let us give three elementary examples of discretely decomposable restrictions
that we ask in Basic Problem 6.1.

Example 6.2. If Π is finite-dimensional, then the restriction Π|G′ is completely
reducible, and hence decomposes discretely.

Example 6.3. If G′ is compact, then the restriction Π|G′ decomposes discretely.

Example 6.4 ([53, 55]). If Π is a highest weight representation and also a pair
G ⊃ G′ is of holomorphic type, then the restriction Π|G′ decomposes discretely.
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Let us recall the terminology in Example 6.4. An irreducible representation Π
of a reductive Lie group G is called a highest weight representation if its dif-
ferential representation contains a nontrivial subspace invariant under some Borel
subalgebra of the complex Lie algebra gC = g⊗RC. This subspace is automatically
one-dimensional because Π is irreducible. All finite-dimensional irreducible repre-
sentations are highest weight representations, whereas highest weight representa-
tions are “rare” among irreducible infinite-dimensional representations. Moreover,
a simple Lie group G has an infinite-dimensional highest weight representation if
and only if G is of Hermitian type, that is, X = G/K has the structure of a Her-
mitian symmetric space. Here K is the fixed point subgroup of a Cartan involution
θ of G. For a reductive Lie group G, we say G is of Hermitian type if it is locally
isomorphic to the direct product of a compact Lie group and simple Lie groups of
Hermitian type. Now, let G′ be a reductive subgroup of G. Without loss of gener-
ality, we assume the Cartan involution θ leaves G′ invariant. We set K ′ := G′ ∩K.
We say a pair G ⊃ G′ is of holomorphic type if both G and G′ are of Hermitian
type and if the natural embedding G′/K ′ ↪→ G/K is holomorphic when we choose
appropriate G′-invariant and G-invariant complex structures on G′/K ′ and G/K,
respectively. See [55, 61] for the list of symmetric pairs (G,G′) of holomorphic type.

Highest weight representations and finite-dimensional representations are very
much alike and they share many common properties, whereas irreducible infinite-
dimensional representations that are not highest weight representations to which we
refer as “truly infinite-dimensional representations”, do not. In contrast to Example
6.4 for highest weight representations, experts seemed to have believed for a long
time that it would not be plausible for “truly infinite-dimensional” representations
to decompose discretely when they are restricted to a non-compact subgroup. This
“common sense” was reversed through a study of discontinuous groups for the
indefinite Kähler manifold X = SU(2, 2)/U(1, 2): the trigger was a discovery that
any irreducible representation π of SU(2, 2) in L2(X) is discretely decomposable
with respect to the restriction to the subgroup Sp(1, 1) ' Spin(4, 1) though π
is a “truly infinite-dimensional representation” (1988). We refer to [64] for the
details. The general theory of discretely decomposable branching laws has emerged
in the 1990s from the attempts that elucidate this particular example as a general
principle. The series of the three papers [49, 53, 54] answer Basic Problem 6.1 from
perspectives in geometry, analysis, and algebra, respectively. We provide a brief
introduction to the main theorem in [53] here, which was obtained by techniques
of microlocal analysis. An alternative proof based on symplectic geometry is given
in [80].

Theorem 6.5 (Criterion for the discrete decomposability of unitary representa-
tions). Let Π be any irreducible unitary representation of a reductive Lie group
G and G′ a reductive subgroup of G. Then the implication (ii) ⇒ (i) on a triple
(Π, G,G′) holds.

(i) The restriction Π|G′ is G′-admissible, namely, it decomposes discretely and
also the multiplicity is finite.

(ii) AS(Π) ∩ Cone(G′) = {0}.

Here AS(Π) denotes the asymptotic cone of the K-types of the representation Π
[37] and Cone(G′) is the cone determined from the subgroup G′ (or more precisely,
determined only by its maximal compact subgroup K ′), which is defined by the
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structure theory of Lie algebras [53] or by the moment map for the Hamiltonian
K-action on T ∗(K/K ′) [59, Thm 6.4.3].

Remark 6.6. (1) When G′ = K, one has Cone(K) = {0} hence Theorem 6.5
means Harish-Chandra’s basic theorem, see [127, Thm. 3.4.10] for instance, that
Π|K is K-admissible for any irreducible unitary representation Π of G.

(2) When G′ is compact, the equivalence (i) ⇐⇒ (ii) in Theorem 6.5 holds
[59, 80].

(3) For a discrete series representation Π of G, the equivalence (i) ⇐⇒ (ii) in
Theorem 6.5 holds [21, 59, 132].

(4) Even for nonunitary representations, one may formulate algebraically the no-
tion of “discrete decomposability” of the restriction of representations [54]. Then
(ii) ⇒ (i) in Theorem 6.5 still holds. Moreover the necessary condition for (alge-
braic) discrete decomposability is also given in [54, Cor. 3.4] for the category of
(g,K)-modules and in [67, Thm. 4.1] for the category O.

Classification theory of discretely decomposable branching laws: For re-
ductive symmetric pairs (G,G′), the triple (G,G′,Π), for which the underlying
(g,K)-module of an irreducible unitary representation Π is discretely decompos-
able when restricted to the subgroup G′ in the algebraic sense (Remark 6.6 (4)),
has been classified in the following settings by carrying out the combinatorial com-
putations for the condition (ii) in Theorem 6.5 and for the criterion by using the
associated variety in [54] detecting the opposite direction:

• Π is a “geometric quantization” of an elliptic orbit ( ⇐⇒ the underlying
(g,K)-module ΠK is a Zuckerman derived functor module Aq(λ)) [92],

• Π is a “geometric quantization” of the minimal nilpotent orbit (⇐⇒ Π is
a minimal representation) [93], and

• the tensor product representation of two irreducible representations (⇐⇒
(G,G′) is of the form (H ×H, diag(H))) [93].

These classification results for discretely decomposable restrictions for symmet-
ric pairs have been recently extended to non-symmetric pairs (G,G′) by several
authors, see [20, 29, 101] for example.

6.2. Multiplicity of branching laws. Next let us discuss the multiplicity in
branching laws. In the following, let G ⊃ G′ be a pair of reductive Lie groups.
Here we allow representations to be nonunitary, and Π ∈ Irr(G) and π ∈ Irr(G′),
that is, Π and π be irreducible admissible representations of moderate growth of G
and G′, respectively (Definition 2.13). We say

(6.2) m(Π, π) := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞}
is the multiplicity of π in the restriction Π|G′ .6 Unlike the case that Π is finite-
dimensional, the second equation of (1.3) does not hold generally when Π is infinite
dimensional. Moreover, the multiplicity m(Π, π) could be infinite even in a natural
situation that G′ is a maximal subgroup of G. For instance, the multiplicity on the
tensor product of infinite-dimensional irreducible representations is often infinite,
see Example 6.11.

6When Π is a unitary representation, the multiplicity m(Π, π) for the spaces of C∞ vectors

could be larger than the multiplicity nΠ(π) in the direct integral (6.1).
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In view of these observations, let us illustrate schematically the hierarchy of the
multiplicity in branching laws.

a. Some multiplicity is infinite.

b. All the multiplicity is finite.

c. The multiplicity is uniformly bounded.

d. multiplicity-free.

The “grip strength” of the subgroup is larger in order of a ≺ b ≺ c ≺ d and it is
expected that one could do more detailed analysis of branching laws accordingly.

By applying the criterion for the “grip strength of representations in global anal-
ysis” on homogeneous spaces (Theorem 4.6) discussed in Section 4.2 to the homo-
geneous space (G×G′)/ diag(G′), one obtains a necessary and sufficient condition
that the multiplicity in the branching law is always finite ([51, 71, 91]):

Theorem 6.7 (Finiteness of the multiplicity of branching laws). The following two
conditions on reductive Lie groups G ⊃ G′ are equivalent.

(i) (representation theory) For any Π ∈ Irr(G) and π ∈ Irr(G′), m(Π, π) <∞.
(ii) (geometry) (G×G′)/ diag(G′) is a real spherical variety (Definition 4.4).

If one requires the “uniform boundedness” of the multiplicity of branching laws,
then the following characterization holds [51, 71, 91].

Theorem 6.8 (Uniform boundedness of multiplicity). The following three condi-
tions on a pair (G,G′) of reductive Lie groups are equivalent.

(i) (representation theory) There exists a constant C > 0 such that

m(Π, π) ≤ C (∀Π ∈ Irr(G), ∀π ∈ Irr(G′)).

(ii) (complex geometry) (GC ×G′
C)/diag(G

′
C) is a spherical variety.

(iii) (ring theory) The subalgebra U(g)G
′
of the universal enveloping algebra

U(g) of the Lie algebra g is commutative.

As variants of Theorems 6.7 and 6.8, one may fix Π ∈ Irr(G) and also ask a cri-
terion for the triple (G,G′,Π) with uniformly bounded multiplicity m(Π, π) where
π ∈ Irr(G′) varies [73, Prob. 6.2]. See [78, Thm. 7.6] and [79, Thm. 4.2] for necessary
and sufficient conditions on the triple (G,G′,Π) with uniformly bounded multiplic-
ity property in the setting where Π is H-distinguished for symmetric pairs (G,H)
or where Π is a (degenerate) principal series representation of G, respectively.

Remark 6.9. Similar to the criterion (Theorem 4.7) for uniform boundedness in
global analysis, Theorem 6.8 includes the discovery that the uniform boundedness
of the multiplicity of branching laws is determined only by the complexifications
(gC, g

′
C) of the Lie algebras and independent of the real forms. This suggests that

similar results may also hold for reductive algebraic groups over other local fields. In
fact, the assertion corresponding to (ii)⇒ (i) in Theorem 6.8 (more strongly C = 1)
is shown by Aizenbud–Gourevitch–Rallis–Schiffmann [3] over a non-Archimedean
local field.

Classification theory of pairs of reductive Lie groups for which the branching
laws have always finite multiplicity: The easy-to-check geometric condition in
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Theorems 6.7 and 6.8 allow us to extract settings in which branching laws behave
nicely in terms of multiplicity.

(1) Since the criterion (ii) in Theorem 6.8 is determined by the complexifications
(GC, G

′
C), one may check when G is a compact group, and thus the criterion (ii) in

Theorem 6.8 coincides with the one which already appeared in finite-dimensional
representation theory. In fact, the complexified pairs (GC, G

′
C) satisfying (ii) were

classified in the 1970s, that is, such pairs (GC, G
′
C) are locally isomorphic to the

direct product of the pairs (SL(n,C), GL(n− 1,C)), (SO(n,C), SO(n− 1,C)), or
pairs of abelian Lie algebras (Kostant and Krämer [100]). The following example
on a pair of reductive Lie groups is their real forms.

Example 6.10. The constant C in Theorem 6.8 (i) can be taken to be C = 1 for
many of real forms (G,G′) of (SL(n,C), GL(n− 1,C)) or (SO(n,C), SO(n− 1,C))
such as (G,G′) = (SL(n,R), GL(n− 1,R)), (SO(p, q), SO(p−1, q)), see Aizenbud–
Gourevitch [2] and Sun–Zhu [118].

(2) The symmetric pairs (G,G′) that satisfy the criterion (ii) in Theorem 6.7 or
in other words, for which (G×G′)/ diagG′ is real spherical were classified in 2013
(Kobayashi–Matsuki [83]). This is also a generalization of the following earlier
example in 1995 by the author [51], see also [71, Cor. 4.2].

Example 6.11. For a simple Lie group G, the following four conditions are equiv-
alent.
(i) (invariant trilinear form) For any π1, π2, π3 ∈ Irr(G), the space of invariant
trilinear forms HomG(π1⊗π2⊗π3,C) is finite-dimensional.
(ii) (tensor product representation) For any π1, π2, π3 ∈ Irr(G), m(π1⊗π2, π3) <
∞.
(iii) (geometric condition) (G×G×G)/ diag(G) is real spherical.
(iv) (classification) g ' o(n, 1) (n ≥ 2) or G is compact.

See also [73, 79] for finer classification results of the triples (G,G′,Π) rather than
the pairs (G,G′) for the uniformly bounded multiplicity restriction Π|G′ .

Example 6.11 suggests that invariant trilinear forms could be investigated explic-
itly when G = O(n, 1). Indeed, invariant trilinear forms have been studied in detail
for this group in recent years, not only algebraically but also analytically (Stage
C) (for n = 2, Bernstein–Reznikov [11]; for general n, Deitmar, Clerc–Kobayashi–
Ørsted–Pevzner [15], Clerc [14], etc.).

In recent years, rapid progress in “Stage C” for the branching problems has
been made in the construction and classification problems of symmetry breaking
operators [23, 36, 81, 97, 99] in the “good framework” suggested by Theorem 6.7
or more strongly by Theorem 6.8. Some of them interact with parabolic geometry
such as conformal geometry and also with the theory of automorphic forms. These
topics will be discussed in Section 8.3.

Case of infinite multiplicity: When the multiplicity m(Π, π) = ∞ for irre-
ducible representations Π and π of G and its subgroup G′, respectively, we have
viewed “the grip strength of the subgroup G′ in the restriction Π|G′ is weak”. Ap-
parently, the branching problems are “uncontrollable”. However, even in this case,
if we find an external algebraic structure to control the (infinite-dimensional) space
HomG′(Π|G′ , π) of symmetry breaking operators (Section 8), then, by using the
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structure as a good clue, it would be still possible to investigate the restriction of
representations. A plausible candidate of such a structure is the algebra U(g)G

′

(see Theorem 6.8 (iii)), which acts on HomG′(Π|G′ , π) naturally. Loosely speaking,
the property m(Π, π) = ∞ can be described (in the level of the actions on the
representation space) as follows.

G′ is relatively small. ⇐⇒ The ring U(g)G
′
is large.

One of the motivations for Kitagawa’s thesis [43] is to understand HomG′(Π|G′ , π)

algebraically as a U(g)G
′
-module beyond the case where HomG′(Π|G′ , π) is finite-

dimensional.

6.3. Visible actions and multiplicity-freeness. In Section 6.2, we discussed
mainly the multiplicity m(Π, π) for all irreducible representations Π of a group G
and for all π of its subgroup G′, and gave geometric criteria for the pairs G ⊃ G′

of groups that guarantee the finiteness of the multiplicity (Theorem 6.7) and the
uniform boundedness (Theorem 6.8). In this section we discuss an estimate of the
multiplicity of branching laws for the individual irreducible representations Π in
more detail, see also [73, Problems 6.1 and 6.2].

Basic Problem 6.12. Classify triples (G,G′,Π) for which the restriction of an
irreducible representation Π of a group G to its subgroup G′ is multiplicity-free.

The following two formulations are possible for Basic Problem 6.12 based on the
definitions of the “multiplicity”.

• the case of unitary representations: the multiplicity nΠ(π) in the irreducible
decomposition by using the direct integral, see (6.1).

• the case of representations that are not necessarily unitary: the multiplicity
m(Π, π) as the dimension of the space of symmetry breaking operators, see
(6.2).

In this subsection we consider the former case and introduce a new geometric prin-
ciple that gives the multiplicity-freeness of branching laws.

Definition 6.13 ([60, Def. 3.3.1]). Let X be a connected complex manifold. A
biholomorphic action of a Lie group G on X is said to be strongly visible if there
exist a non-empty G-invariant open set X ′, an anti-holomorphic diffeomorphism σ
of X ′, and real submanifold S (slice) such that

σ|S = id and G · S = X ′.

A strongly visible action is visible [60, Thm. 4], where we recall that the G-action
on a complex manifold is visible if there exist a non-empty G′-invariant open setX ′

and a totally real submanifold S in X such that G ·S = X ′ and Jx(TxS) ⊂ Tx(G ·x)
for all x ∈ X [58, Def. 2.3].

On the multiplicity-freeness of representations, the strong visibility gives a new
“mechanism” that produces systematically from simple examples (for instance, one-
dimensional representations, which are clearly multiplicity-free) to more compli-
cated examples (for instance, multiplicity-free infinite-dimensional representations).
This mechanism is formulated as a “propagation theorem of multiplicity-freeness”,
for which we describe in a slightly simplified way by omitting some small technical
compatibility conditions about the isotropy action on fibers (that are automati-
cally satisfied in many situations) so the next theorem mentions only the main
assumptions and conclusions. For precise statements, see [69].
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Theorem 6.14 (Propagation theorem of multiplicity-freeness). Suppose that a
group G acts on a holomorphic vector bundle V over a complex manifold X and that
the action of G on the base space X is strongly visible. If the isotropy representation
of the isotropy subgroup at a generic point on the fiber is multiplicity-free, then
any unitary representation Π of G realized on subspaces of the space O(X,V) of
holomorphic sections is multiplicity-free.

Here are two examples of the applications.

Example 6.15 (Highest weight representations). Suppose that (G,G′) is a sym-
metric pair and Π is a unitary highest weight representation of G. If the minimal
K-type of Π is one-dimensional, then the irreducible decomposition of the restric-
tion Π|G′ is multiplicity-free (Kobayashi [60]). This theorem can be derived from
the fact that the subgroup G′ acts on the Hermitian symmetric space G/K strongly
visibly [62] and from Theorem 6.14. The restriction Π|G′ may or may not contain
continuous spectrum, cf [54, Sect. 5]. See Theorem 7.1 for an explicit branching
law in the discretely decomposable setting.

Example 6.16 (Tensor product representations). Consider the pairs (π1, π2) of
irreducible finite-dimensional representations of the unitary group U(n), for which
the tensor product representation π1 ⊗ π2 decomposes multiplicity-freely. Such
pairs (π1, π2) include the classical cases when π2 '

∧
j(Cn) or Sj(Cn) (Pieri’s

rule) and were classified by a combinatorial method (Stembridge [116], 2001). All
such pairs (π1, π2) can be reconstructed geometrically from a (G×G)-equivariant
holomorphic vector bundle over a double flag variety X = G/P1 × G/P2 with
strongly visible action of G via the diagonal action (Kobayashi [58]). This geometric
interpretation based on the theory of visible actions is extended to a reconstruction
of all multiplicity-free tensor product representations of SO(n) (Tanaka [119]).

Classification theory of visible actions: Whereas (strongly) visible actions are
defined on complex manifolds, there are analogous notions in other geometries:
polar actions of isometry groups on Riemannian manifolds and coisotropic actions
on symplectic manifolds (Guillemin–Sternberg and Huckleberry–Wurzbacher [35]).
For Kähler manifolds on which complex, symplectic and Riemannian structures
are defined in a compatible fashion, these three notions are close to each other
to some extent, see Podestà–Thorbergsson [109] and the author [60, Thms. 7 and
8] for precise formulation. For polar actions of compact groups on Riemannian
manifolds, the classification theory has been developed over decades. On the other
hand, the classification theory for visible actions has started only recently (see
Kobayashi [62, 63], Sasaki [113], Tanaka [119], and the references therein), and it
would be interesting to pursue further developments and discoveries in this “young”
area. Whereas the classification theory of polar actions has focused mainly on the
compact setting from topological viewpoints historically, the classification theory of
visible actions will be useful also for non-compact transformation groups G because
it will yield new families of infinite-dimensional multiplicity-free representations of
non-compact Lie groups. We note that for a compact Lie group G, strongly visible
action of the group G is essentially equivalent to sphericity of the complexified
group GC, see Tanaka [120], and thus the classification theory of strongly visible
actions of a compact G is essentially the same with that of spherical varieties
for the complexified reductive group GC. In the expository paper [60], we have
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presented various classification results of visible actions including those of non-
compact Lie groups, which have led us, via Theorem 6.14, to new multiplicity-
free theorems as well as a unified and geometric proof of the existing multiplicity-
free theorems for some families of representations that were found in the past by
individual arguments.

7. Branching Laws: Stage B

In Stage B of the program, we aim to find explicitly the irreducible decomposition
of the restriction of representations (branching law). Here Stage A (Section 6)
serves as a guideline to single out a “nice setting” in which we could expect a simple
and detailed study of branching laws through a priori estimate. In this section we
describe typical examples for branching laws with focus on the following two “nice
settings”: multiplicity-free cases (Section 7.1) and discretely decomposable cases
(Section 7.2).

7.1. Multiplicity-free representations. Multiplicity-free representations are of-
ten hidden in classical analysis, even though we usually do not notice that there
are representations behind. For example, the Fourier expansion, Taylor expan-
sion, and spherical harmonics expansion were already useful tools in analysis, his-
torically much before the notion of groups and representations emerged. From
representation-theoretic viewpoints, these expansions may be regarded as irre-
ducible decompositions of multiplicity-free representations. We observe here the
“multiplicity-freeness” is the underlying algebraic structure of these expansions in
the sense that multiplicity-freeness assures that the irreducible decomposition is
canonical. The expansion by the Gelfand–Tsetlin basis is also defined by this prin-
ciple. More generally, we may utilize multiplicity-free representations as a driving
force not only for studying the explicit formulas of branching laws (Stage B) but
also for pursuing global analysis through canonical expansions of functions via rep-
resentation theory (Stage C).

In this subsection we consider the setting of Example 6.15 as a case in which we
know in advance that the branching law is multiplicity-free. Moreover, we assume
that (G,G′) is of holomorphic type, by which we know a priori that the branching
law is further discretely decomposable (Example 6.4). In this case the explicit
formulas of branching laws (Stage B) should take a simple form, which we describe
now.

First we set up some notation. Let G be a real simple Lie group of Hermitian
type (Example 6.4) and (G,G′) a symmetric pair of holomorphic type defined by
an involution σ of G. For simplicity, we take G′ to be the connected component
Gσ

0 containing the identity element of Gσ := {g ∈ G : σg = g}. Take a Cartan
involution θ of G commuting with σ and we write K for the fixed point group
of the Cartan involution θ. Then the complexification gC of the Lie algebra of
G can be decomposed into the direct sum gC = kC + p+ + p− as a K-module,
and G/K carries a structure of a Hermitian symmetric space with holomorphic
tangent space TeK(G/K) ' p+. We take a Cartan subalgebra j of k such that
jσ is also a Cartan subalgebra of kσ = {X ∈ k : σX = X}. We fix compatible
positive systems ∆+(kC, jC) and ∆+(kσC, j

σ
C). Since σθ = θσ, we have (σθ)2 = id,

hence gσθC is a reductive Lie algebra. We decompose gσθC into the direct sum of

the simple Lie algebras g
(i)
C (1 ≤ i ≤ N) and the abelian ideal g

(0)
C . For each i
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( 6= 0), we write {ν(i)1 , . . . , ν
(i)
ki
} for a maximal set of strongly orthogonal roots of

∆(p−σ
+ ∩ g

(i)
C )(⊂ (jσC)

∗) with ν
(i)
k the lowest among the elements in ∆(p−σ

+ ∩ g
(i)
C )

that are strongly orthogonal to ν
(i)
1 , . . . , ν

(i)
k−1.

We parametrize holomorphic discrete series representations as follows. Any holo-
morphic discrete series representation Π of G is determined by its unique minimal
K-type. We denote Π by ΠG(λ) if λ ∈ j∗C is the highest weight of the minimal
K-type of Π. Similarly, holomorphic discrete series representations of the subgroup

G′ = Gσ
0 are expressed as πG′

(µ) ∈ Ĝ′ if µ ∈ (jσC)
∗ is the highest weight of the

minimal K ′-type with respect to ∆+(kσC, j
σ
C), where K ′ = K ∩G′ = Kσ

0 .

Theorem 7.1 (Hua–Kostant–Schmid–Kobayashi). Let (G,G′) be a symmetric pair
of holomorphic type. For any holomorphic discrete series representation ΠG(λ) of
scalar type, the following multiplicity-free decomposition holds.

(7.1) ΠG(λ)|G′ '
N⊕
i=1

∑
a
(i)
1 ≥···≥a

(i)
ki

≥0

⊕
πG′

(λ|jσ −
ki∑
j=1

a
(i)
j ν

(i)
j ) (Hilbert direct sum).

Remark 7.2. If G′ is a maximal compact subgroup of G, then g
(0)
C = {0}, N = 1,

gσθ = g, and any irreducible summand πG′
(µ) is finite-dimensional. In this case, the

formula (7.1) is due to Hua (classical groups), Kostant (unpublished), and Schmid
[114]. The proof for the branching law (7.1) in the general setting where G′ is
non-compact can be found in [61, Thm. 8.3].

Remark 7.3. The “geometric quantization” in Section 2.4 commutes with the
reduction in this case, and the “classical limit” of the branching law (7.1) is given
by the Corwin–Greenleaf function for coadjoint orbits [84, 85, 108].

Yet another important multiplicity-free results in the branching laws are for
more special pairs (G,G′), but for more general representations. Typical cases
are those which we have seen in Section 6.2, that is, the real forms (G,G′) of
(GL(n,C), GL(n− 1,C)) or (SO(n,C), SO(n− 1,C)), such as (GL(n,R), GL(n −
1,R) or (SO(p, q), SO(p− 1, q)), have the property that the multiplicity m(Π, π) =
dimC HomG′(Π|G′ , π) is either 0 or 1 for any Π ∈ Irr(G) and π ∈ Irr(G′) even
when Π is neither a unitarizable representation nor a highest weight representation
(Example 6.10). For these pairs, when Π and π are both tempered representations,
the description of m(Π, π) is predicted by the (local) Gan–Gross–Prasad conjecture
[27, 28]. In Section 8.3, we shall consider the case in which some aspect of this
conjecture (and more generally, non-tempered cases) is connected with a particular
problem in conformal geometry.

7.2. Discretely decomposable branching laws. When the restriction is dis-
cretely decomposable, it is expected that algebraic approaches would be useful in
finding explicit branching laws. The first general theory of discretely decomposable
restriction was established in 1990s in [49, 53, 54], see e.g. Theorem 6.5 for the
criterion of the triples (G,G′,Π) with discretely decomposable restriction Π|G′ . In
parallel, there have been various attempts to find concrete branching laws in the
framework of discretely decomposable restriction. Among them, especially impor-
tant is the case that Π is the geometric quantization of an elliptic orbit (see Section
2.4), namely, the case that the (g,K)-module ΠK is a Zuckerman derived func-
tor module Aq(λ), where q is a θ-stable parabolic subalgebra, see Knapp–Vogan
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[44] for instance, for the definition of Aq(λ). The first explicit branching laws for
ΠK = Aq(λ) in the general setting where ΠK do not have highest weights were
given for any of the adjacent pairs (G,G′) in the following diagram (Kobayashi
[48, 49]).

O(4p, 4q) ⊃ O(4k)×O(4p− 4k, 4q)

∪ ∪
U(2p, 2q) ⊃ U(2k)× U(2p− 2k, 2q)

∪ ∪
Sp(p, q) ⊃ Sp(k) × Sp(p− k, q)

The method in obtaining the branching laws [48, 49] was to use a structural
theorem of the ring of invariant differential operators on homogeneous spaces X
with “overgroups” and to realize Aq(λ) in the space of functions on X, see [64]
for a related geometric problem and [39, 76] for the method in full generality.
Ever since [48, 49], various methods have been developed for finding explicit for-
mulas of discretely decomposable branching laws (Stage B) in the other settings
by Gross–Wallach [28], Loke, J.-S. Li, Huang–Pandžić–Savin, Ørsted–Speh [105],
Duflo–Vargas [21], Sekiguchi [115], Y. Oshima [107], Kobayashi [61, 76], and so
on. Among them, Duflo–Vargas [21] develops the idea of the orbit method and
symplectic geometry when Π is a discrete series representation, and Y. Oshima
[107] makes use of the theory of D-modules for Zuckerman derived functor modules
ΠK = Aq(λ).

8. Program for the Theory of Branching Laws: Stage C

In Stage C, we consider not only abstract branching laws (the decomposition
of representations) but also how they decompose (the decomposition of vectors).
For the latter purpose, a crucial step is to construct G′-intertwining operators from
Π to π (symmetry breaking operators) in a geometric model of irreducible
representations Π and π of a group G and its subgroup G′, respectively. One can
also consider G′-intertwining operators in the opposite direction, namely, from π
to Π (holographic operators [78, 96]) as a dual notion, but we do not discuss
holographic operators in this article. Let us start with an elementary example.

8.1. The regular representation of R and Fourier transform. By using the
regular representation L2(R) of the additive group R, we illustrate Stages A, B,
and C in Section 5.
Stage A. The irreducible decomposition of the regular representation L2(R) is
multiplicity-free and has only continuous spectrum.

Stage B. The regular representation L2(R) is decomposed into the direct integral
(Theorem 2.2) of one-dimensional Hilbert spaces Ceixξ.
Stage C. The irreducible decomposition of L2(R) is realized by the Fourier trans-
form (4.1) concretely.

Apparently, this example on the classical harmonic analysis looks nothing to do
with branching laws, however, one may interpret it as an example of restriction
problems. For example, let Π be a unitary principal series representation of G =
SL(2,R), and N(' R) a maximal unipotent subgroup. Then the restriction Π|N
is unitarily equivalent to the regular representation L2(R) of the additive group R
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(see, for instance, [59, Prop. 3.3.2]). Thus the above case may be interpreted as
Stages A–C for the restriction problem of SL(2,R) ↓ R. Needless to say, since we
already know the theory of the Fourier transform on L2(R) which corresponds to
Stage C for this particular example Π|N , Stages A and B stay in the background.

8.2. Tensor product representation of SL(2,R). Next, we illustrate Stages
A–C of branching laws by another example where the groups are “highly non-
commutative” this time rather than abelian subgroups as in the previous case.

Let O(H) denote the space of holomorphic functions on the upper half plane
H = {z ∈ C : Im z > 0}. Then, there are a family of linear actions of the group
G = SL(2,R) on O(H) with integer parameters λ ∈ Z as follows.

(πλ

(
a b
c d

)
f)(z) := (−cz + a)−λf

(
dz − b

−cz + a

)
.

Moreover, if λ > 1, then Vλ := O(H) ∩ L2(H, yλ−2dxdy) is an infinite-dimensional
Hilbert space and the action πλ on Vλ defines an irreducible and unitary representa-
tion of G = SL(2,R), referred to as the holomorphic discrete series representation.
We consider the tensor product πλ′ ⊗ πλ′′ of two such representations, which may
be interpreted as an example of the restriction from the direct product group G×G
to the diagonal subgroup diag(G) ' G.

• In Stage A, we have the following a priori estimate on “abstract features”
of the branching law:

For λ′, λ′′ > 1, the tensor product representation πλ′ ⊗ πλ′′ decomposes
discretely and multiplicity-freely into irreducible unitary representations of
G. Here the symbol for the tensor product ⊗ of two Hilbert spaces means
taking the Hilbert completion of the algebraic tensor product. (Each prop-
erty “discrete decomposability” and “multiplicity-freeness” of the tensor
product representation πλ′ ⊗ πλ′′ is a special case of the general results the
restriction in Stage A as we have seen in Theorems 6.5 and 6.14, respec-
tively.)

• In Stage B, we determine a concrete branching law:
If λ′, λ′′ > 1, then one has the following irreducible decomposition

(8.1) πλ′ ⊗ πλ′′ '
∑
a∈N

⊕
πλ′+λ′′+2a (Hilbert direct sum).

The formula (8.1) in the SL(2,R) case is due to Molchanov [104] and Repka
[111]. Theorem 7.1 is a generalization of the formula (8.1) to arbitrary
semisimple symmetric pairs of holomorphic type.

• In Stage C, we construct symmetry breaking operators.
For given λ′, λ′′, λ′′′ ∈ Z, a linear map R : O(H) ⊗ O(H) → O(H)

satisfying

(8.2) R(πλ′(g)f1 ⊗ πλ′′(g)f2) = πλ′′′(g)R(f1 ⊗ f2) (∀g ∈ G)

is a symmetry breaking operator from the tensor product representation
πλ′ ⊗ πλ′′ to πλ′′′ with respect to the restriction G × G ↓ G where G =
SL(2,R). The next theorem interprets the classical Rankin–Cohen bidif-
ferential operator [16, 110], which was originally used to construct modular
forms of higher weight from those of lower weight, as a symmetry breaking
operator in branching problems of representation theory.
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Theorem 8.1 (Rankin–Cohen bidifferential operator [16, 95, 110]). Suppose that
λ′′′ − λ′ − λ′′ is a non-negative even integer. If we set 2a := λ′′′ − λ′ − λ′′ (a is a

natural number), then the linear map RCλ′′′

λ′,λ′′ : O(H)⊗O(H)→ O(H) defined by

(8.3) RCλ′′′

λ′,λ′′(f1 ⊗ f2)(z) :=

a∑
ℓ=0

(−1)ℓΓ(λ′ + a)Γ(λ′′ + a)

`!(a− `)!Γ(λ′ + a− `)Γ(λ′′ + `)

∂a−ℓf1
∂za−ℓ

∂ℓf2
∂zℓ

satisfies (8.2), hence is a symmetry breaking operator from πλ′ ⊗ πλ′′ to πλ′′′ .

Remark 8.2. (1) It turns out that the coefficients appeared in the finite sum (8.3)
coincide with those of a Jacobi polynomial. This fact can be checked if we know
the formula (8.3), which is found, for example, by recurrence relations that reflect
the intertwining property (8.2). But more intrinsically, the “F-method”, a method
that the author and his collaborators introduced [68, 70, 94], reveals directly why
the Jacobi polynomial shows up, see [95, Sect. 9] for example.
(2) Theorem 8.1 does not assert the uniqueness of the Rankin–Cohen bidifferential
operators. In fact, it turns out quite recently that there exist symmetry breaking
operators other than the Rankin–Cohen operator RCλ′′′

λ′,λ′′ for exceptional (negative)

parameters (λ′, λ′′, λ′′′), and we gave the complete classification in [95, Cor. 9.3]
(2015). The main machinery of the proof is the “F-method”, which connects the
following different topics:

• the dimension of the polynomial solutions to the hypergeometric differential
equation,

• the determination of the composition series of the tensor product of two
reducible Verma modules.

The name “F-method” originated from the fact that it utilizes the “algebraic Fourier
transform of Verma modules” [68, 94]. This method is also applied to the con-
struction of differential symmetry breaking operators for groups of higher rank
[22, 81, 90, 95].

8.3. Classification theory of symmetry breaking operators in conformal
geometry. We end this article with yet another example for interactions of the the-
ory of branching laws with different fields of mathematics, this time with conformal
geometry.

Consider the following problem: given a Riemannian manifold X and its sub-
manifold Y , find “conformally covariant” operators from the space of functions on
X to that on the submanifold Y . We may also consider a generalization of this
problem, e.g. from “functions” to “differential forms” or from “Riemannian man-
ifolds” to “pseudo-Riemannian manifolds”. To formulate the problem rigorously,
we introduce the following notation.

G : = Conf(X) : the group of conformal transformations of X,

G′ : = Conf(X;Y ) : the subgroup of G consisting of elements that preserve Y .

For any Riemannian manifold X, one can form a family of Conf(X)-equivariant line
bundles Lλ (λ ∈ C) over X, hence obtain a natural family of representations Πλ of
the conformal group G on the space Γ(X,Lλ) of smooth sections for the line bundle
Lλ. Since these line bundles are trivial topologically, one may realize the family Πλ

of representations of G as multiplier representations on the vector space C∞(X) [87,
Sect. 2]. Since the subgroup G′ acts conformally on the submanifold Y equipped
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with the induced metric, a similar family πν (ν ∈ C) of representations of G′ can be
defined on C∞(Y ) via the canonical group homomorphism Conf(X;Y )→ Conf(Y ).

These representations are extended to the representations Π
(i)
λ and π

(j)
ν on the

spaces E i(X) and Ej(Y ) of differential forms, respectively.

Basic Problem 8.3 (Symmetry breaking operators in conformal geometry [22,
81, 99]). Let X be a Riemannian manifold and Y a submanifold of X. For what
parameters (i, j, λ, ν), does a non-zero continuous operator T : E i(X)→ Ej(Y ) sat-
isfying

π(j)
ν (h) ◦ T = T ◦Π(i)

λ (h) ∀h ∈ Conf(X;Y )

exist? Further, find an explicit formula for such T .

For Basic Problem 8.3, if there exists a “universal construction” of such an
operator T for any pair (X,Y ) of Riemannian manifolds, then the “solution” must
survive in the model space (X,Y ) = (Sn, Sn−1), which has “large symmetry” in
the sense that the dimension of the group Conf(X;Y ) attains its maximum among
all pairs (X,Y ) of Riemannian manifolds with dimY = n − 1(≥ 3). Recently, the
construction and classification theory of conformally covariant symmetry breaking
operators for the case (X,Y ) = (Sn, Sn−1) have been rapidly developed as follows
and completed in [99].

• (i = j = 0; T : differential operator) Juhl constructed all conformally
covariant, differential symmetry breaking operators T in the flat model
by determining the coefficients of T using recurrence relations (Book [36],
2009). Afterwards, a short proof on the construction and classification
of T was given by a different approach (F-method) (Kobayashi–Ørsted–
Somberg–Souček [90]).

• (i = j = 0; T : general) In general, there is much more possibility of hav-
ing symmetry breaking operators if we allow integral operators or singular
integral operators other than just differential operators [70]. For the scalar-
valued case (i = j = 0), all the symmetry breaking operators (including in-
tegral operators and singular integral operators) were classified with explicit
construction of the distribution kernels of operators T by Kobayashi–Speh
(Book [97], 2015).

• (i, j: general ; T : differential operator) By enhancing the F-method to the
matrix-valued case, the construction and classification of T in the matrix-
valued case (i, j: general) were shown by Kobayashi–Kubo–Pevzner (Book
[81], 2016). See also Fischmann–Juhl–Somberg (Book [22], 2020) which
uses the F-method, too.

• (i, j: general; T : general) The classification was completed by Kobayashi–
Speh (Book [99], 2018). For j = i + 1 or i − 2, all the symmetry breaking
operators are differential operators [99, Thm. 3.6], whereas all the differ-
ential symmetry breaking operators for j = i, or i − 1 are obtained as
the “residues” of integral symmetry breaking operators with meromorphic
parameter [77].

In this way, Basic Problem 8.3 (construction and classification of symmetry
breaking operators) for the model space (X,Y ) = (Sn, Sn−1) was completely solved
in [99] based on the results of [81] and [97]. The three books [81, 97, 99] over 600
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pages long in total develop a general idea for the construction and the classification
of symmetry breaking operators for a pair G ⊃ G′ of reductive Lie groups, and
then apply the idea to the particular case (G,G′) = (O(n + 1, 1), O(n, 1)), which
is also important in conformal geometry, giving a proof of the construction and
classification of those operators. Functional equations of such operators yield some
new results to the (local) Gross–Prasad conjecture in number theory and its gener-
alization to the non-tempered case (Kobayashi–Speh [98]). It is not easy to explain
the methods in [81, 97, 99] in a few lines, but we try to give its flavor here at the
last part of this article.

The pair (X,Y ) = (Sn, Sn−1) is regarded as a pair (G/P,G′/P ′) of real flag va-
rieties for the pair (G,G′) = (O(n+1, 1), O(n, 1)) of real reductive Lie groups. We
have chosen this specific pair (G,G′) in the article [97], as the first test case of an
explicit construction and complete classification of (non-local) symmetry breaking
operators between principal series representations. The pair (G,G′) satisfies the
sphericity condition (ii) in Theorem 6.8, hence the uniform boundedness of multi-
plicity in the branching laws is a priori guaranteed (Stage A). In this sense, various
results of [81, 97, 99] can be interpreted as a step forward to branching problems
in Stages B and C in the general setting with uniformly bounded (in particular,
finite) multiplicity property. With this in mind, we explain the ideas and methods
for the proofs given in the three books in this general setting. First, it follows from
Theorem 6.7 that (G×G′)/ diag(G′) is real spherical; in particular, the number of
G′-orbits on the real flag variety (G × G′)/(P × P ′) under the diagonal action is
finite, where P and P ′ are minimal parabolic subgroups of G and G′, respectively.
Second, the support of the distribution kernel for any symmetry breaking operator
from a principal series representation of G to that of the subgroup G′ is a closed
diag(G′)-invariant subset of the real flag variety (G × G′)/(P × P ′). Thus there
are only finitely many possibilities of the support. Third, we construct distribu-
tion kernels of symmetry breaking operators for each orbit and show meromorphic
continuation and functional equations. The residue of the meromorphic family of
symmetry breaking operators are symmetry breaking operators with distribution
kernels of smaller support. Then we proceed by induction on the stratification for
the closure relations in diag(G′)\(G×G′)/(P×P ′) ' P ′\G/P . The first step of the
induction is the symmetry breaking operators that can be described as “differential
operators”, which correspond to the smallest orbit, namely, the unique closed orbit
[94, Lem. 2.3]. Symmetry breaking operators that can be described as differential
operators could appear not only as a “series” but also “sporadically” [95, 99]. The
former one may be obtained as the “residues” of the meromorphic continuation of
other operators such as integral symmetry operators (e.g. [77]), but the latter is
more involved. By the F-method, the construction of all such operators can be re-
duced to a problem of determining some polynomials (“special polynomials”) that
satisfy a system of differential equations. The classification for differential symme-
try breaking operators is completed by solving such a system of equations [81, 90].
The support of other symmetry breaking operators is strictly larger than the closed
orbit. Thus an inductive argument with respect to the closure relation of diag(G′)-
orbits on the real flag variety (G × G′)/(P × P ′) exhausts all symmetry breaking
operators, with the last one being “regular symmetry breaking operators” that are
obtained by the analytic continuation of integral symmetry breaking operators. See
[99, Chap. 3, Sect. 3] for further details.
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