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Multiplicity in restricting small representations
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Graduate School of Mathematical Sciences and Kavli IPMU (WPI), The University of Tokyo.

Abstract: We give a geometric criterion for the bounded multiplicity property of “small”

infinite-dimensional representations of real reductive Lie groups in both induction and restrictions.

In particular, for a reductive symmetric pair (G,H), we determine the reductive subgroups

G′ having the property that any irreducible H-distinguished admissible representations of G are

of bounded multiplicity when restricted to G′.
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1. Introduction By branching problems in

representation theory, we mean the broad problem

of understanding how irreducible representations of

a group behave when restricted to a subgroup. As

viewed in [12], we may divide the branching problems

into the following three stages:

Stage A. Abstract features of the restriction;

Stage B. Branching law;

Stage C. Construction of symmetry breaking oper-

ators.

The role of Stage A is to develop a theory on

the restriction of representations as generally as pos-

sible. In turn, we may expect a detailed study of

the restriction in Stages B (decomposition of repre-

sentations) and C (decomposition of vectors) in the

“promising” settings that are suggested by the gen-

eral theory in Stage A.

This article concerns a question in Stage A

about “multiplicity” in branching problems.

Let G be a real reductive Lie group, M(G)

the category of finitely generated, smooth admis-

sible representations of G of moderate growth [31,

Chap. 11], and Irr(G) the set of irreducible objects

in M(G). We shall use the uppercase letter Π for

representations of the group G, and the lowercase

letter π for those of a reductive subgroup G′.

For Stage A, we may formulate an abstract fea-

ture of the restrictions as a property for

• the pair (G,G′),

• the triple (G,G′,Π), or

• the quadruple (G,G′,Π, π).
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The formulation for the triple (G,G′,Π) was

adopted in the study of G′-admissible restriction of

Π, namely, the restriction Π|G′ of Π ∈ Irr(G) be-

ing discretely decomposable with finite multiplicity,

see [5, 6, 7] for the general theory, and [17] for some

classification theory of the triples (G,G′,Π).

On the other hand, Fact 2.1 below is formulated

as a property for the pair (G,G′). This is the study

of “multiplicity” of the restrictions, see [11, 16] for

the general theory, and [15] for the classification of

the pairs (G,G′). In this article, we discuss its re-

finement in a formulation for the triple (G,G′,Ω) or

for the quadruple (G,G′,Ω,Ω′) where Ω ⊂ M(G)

and Ω′ ⊂ M(G′) are families of “small” infinite-

dimensional representations, see Problems 2.3 and

4.1. This refinement reveals the underlying geo-

metric structures of some concrete examples, e.g.,

[1, 13, 24], and yields much broader settings that

seem to be promising for analysis of branching prob-

lems in Stage C.

Detail proofs of the theorems in this article will

appear in [14].

2. Bounded multiplicity in restriction

Throughout this article, we shall assume that G ⊃
G′ are real forms of complex reductive algebraic Lie

groups GC ⊃ G′
C, respectively. Their compact real

forms will be denoted by GU ⊃ G′
U . The Lie alge-

bras will be denoted by the corresponding lowercase

German letters g, gC, gU , g
′, etc.

For Π ∈ M(G) and π ∈ M(G′), we define the

multiplicity of the restriction Π|G′ in the category

M by

[Π|G′ : π] := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞},
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where HomG′( , ) denotes the space of continuous

G′-homomorphisms between the Fréchet representa-

tions.

In [16, Thms. C and D] we proved the following

geometric criteria:

Fact 2.1. Let G ⊃ G′ be a pair of algebraic

real reductive Lie groups.

(1) Bounded multiplicity for a pair (G,G′):

(2.1) sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞

if and only if (GC ×G′
C)/ diagG

′
C is spherical.

(2) Finite multiplicity for a pair (G,G′):

(2.2) [Π|G′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G′)

if and only if (G×G′)/ diagG′ is real spherical.

Here we recall that a complex GC-manifold X

is called spherical if a Borel subgroup of GC has an

open orbit in X, and that a G-manifold Y is called

real spherical if a minimal parabolic subgroup of G

has an open orbit in Y .

A remarkable feature of Fact 2.1 (1) is that the

bounded multiplicity property (2.1) is determined

only by the complexifications of G and G′, hence

the classification of such pairs (G,G′) is reduced to

a classical result [20]: the pair (gC, g
′
C) is the direct

sum of the following ones up to abelian ideals:

(2.3) (sln, gln−1), (son, son−1), or (so8, spin7).

On the other hand, the finite multiplicity prop-

erty (2.2) depends on real forms. It is fulfilled for any

Riemannian symmetric pair by Harish-Chandra’s ad-

missibility theorem, whereas it is not the case for

some reductive symmetric pairs such as (G,G′) =

(SL(p + q,R), SO(p, q)). A complete classification

of the symmetric pairs (G,G′) satisfying the finite

multiplicity property (2.2) was accomplished in [15].

Example 2.2. Let p1 + p2 = p, q1 + q2 = q,

and (G,G′) = (O(p, q), O(p1, q1) × O(p2, q2)). Sup-

pose p + q ≥ 5. The criteria in Fact 2.1 give the

equivalences:

(2.1) ⇐⇒ p1 + q1 = 1 or p2 + q2 = 1.

(2.2) ⇐⇒ p1 + q1 = 1, p2 + q2 = 1, p = 1, or q = 1.

This means that for general p1, q1, p2, q2, there exist

Π ∈ Irr(G) and π ∈ Irr(G′) such that [Π|G′ : π] =

∞. Nevertheless, a multiplicity-free theorem holds

for the restriction Π|G′ for any p1, p2, q1, q2, and for

any discrete series representation Π for the symmet-

ric space G/H with H = O(p − 1, q), see [13] for a

precise statement.

This example suggests us to work with the triple

(G,G′,Π) rather than the pair (G,G′) for the finer

study of multiplicity estimates as mentioned in In-

troduction.

Take Π ∈ M(G). We say the restriction Π|G′

has the finite multiplicity property if [Π|G′ : π] < ∞
for all π ∈ Irr(G′), and has the bounded multiplicity

property if m(Π|G′) < ∞, where we set

(2.4) m(Π|G′) := sup
π∈Irr(G′)

[Π|G′ : π] ∈ N ∪ {∞}.

In search for broader settings in which we could

expect a detailed study of the restriction Π|G′ in

Stages B and C, we address the following:

Problem 2.3. Given a pair G ⊃ G′, find a

subset Ω of M(G) such that sup
Π∈Ω

m(Π|G′) < ∞.

We bear in mind that branching problems often

arise for a family of representations Π. For a bet-

ter understanding of Problem 2.3, we first examine

two opposite extremal choices of Ω. When Ω is a

singleton, Problem 2.3 concerns the triple (G,G′,Π)

having the bounded multiplicity property. When Ω

is the whole set Irr(G), Problem 2.3 asks the condi-

tion (2.1), and is solved by the geometric criterion for

the pair (G,G′), as seen in Fact 2.1 (1). Second, we

note that Problem 2.3 is nontrivial even when G is

a compact Lie group where m(Π|G′) is individually

finite. In this article we discuss Problem 2.3 with

focus on the following two cases:

(1) Ω = Irr(G)H , the set of H-distinguished irre-

ducible representations of G (Theorem 3.2);

(2) Ω = ΩP ,ΩP,q: families of degenerate principal

series representations (Theorems 4.2 and 4.3).

Remark 2.4. One may wonder why we did

not use [π : Π|G′ ] := dimC HomG′(π,Π|G′) in-

stead of [Π|G′ : π]. The reason is that the space

HomG′(π,Π|G′) may be too small to capture the

whole picture of the restriction Π|G′ in the category

M. This feature is akin to the fact in the category of

Harish-Chandra modules that Homg′,K′(πK′ ,ΠK |g′)

vanishes unless ΠK is “discretely decomposable” as

a (g′,K ′)-module [7].

3. H-distinguished representations of G

For Π ∈ Irr(G), we denote by Π−∞ the representa-

tion on the space of distribution vectors, that is, the

topological dual of Π. For a closed subgroup H of

G, we set

(3.1) Irr(G)H := {Π ∈ Irr(G) : (Π−∞)H ̸= {0}}.
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The Frobenius reciprocity tells Π ∈ Irr(G)H
if and only if HomG(Π

∨, C∞(G/H)) ̸= {0}, where
Π∨ is the contragredient representation in the cat-

egory M(G). Elements Π in Irr(G)H (or Π∨) are

sometimes referred to as H-distinguished, or having

nonzero H-periods.

For a reductive symmetric pair (G,H), the set

Irr(G)H is described by the Cartan–Helgason theo-

rem when H is compact, whereas the full classifica-

tion is far from being achieved in the general setting

where H is not compact, although one has still some

useful information about Irr(G)H , see e.g., Theorem

6.2 below.

The following notions are a key in answering

Problem 2.3 for Ω = Irr(G)H .

Definition 3.1. Let G/H be a reductive sym-

metric space defined by an involution σ of G. We

take GU (⊂ GC) such that GU ∩ H is a maximal

compact subgroup of H.

(1) We say a complex parabolic subalgebra q of gC
is a Borel subalgebra for G/H if q is defined by

a generic element in
√
−1g−σ

U .

(2) We say a real parabolic subalgebra p of g is a

minimal parabolic subalgebra for G/H if p is de-

fined by a generic element in g ∩
√
−1g−σ

U .

Borel subalgebras for the symmetric space G/H

are unique up to inner automorphisms of gC. Like-

wise, minimal parabolic subalgebras for G/H are

unique up to inner automorphisms of g. We shall

write BG/H (⊂ GC) and PG/H (⊂ G) for the corre-

sponding parabolic subgroups, referred to as a Borel

subgroup and a minimal parabolic subgroup for the

symmetric space G/H, respectively. We note that

the Borel subalgebra bG/H for G/H is not necessar-

ily solvable, and that it is determined only by the

complexification (gC, hC).

Here is an answer to Problem 2.3 for Ω =

Irr(G)H when (G,H) is a reductive symmetric pair.

Theorem 3.2. Let BG/H be a Borel subgroup

for G/H. Suppose G′ is an algebraic reductive sub-

group of G. Then the following three conditions on

the triple (G,H,G′) are equivalent:

(i) sup
Π∈Irr(G)H

m(Π|G′) < ∞.

(ii) GC/BG/H is G′
U -strongly visible.

(iii) GC/BG/H is G′
C-spherical.

See [8, Def. 3.3.1] for the definition of strongly

visible actions on complex manifolds, and [29] for the

equivalence (ii) ⇐⇒ (iii).

The list of the triples (G,H,G′) is given in The-

orem 5.1 below in the setting that (G,G′) is a sym-

metric pair and that gC is simple.

We also discuss the following finite multiplic-

ity property (FM) for the restriction Π|G′ , weaker

than the bounded multiplicity property (i) in Theo-

rem 3.2:

(FM) [Π|G′ ;π] < ∞, ∀Π ∈ Irr(G)H , ∀π ∈ Irr(G′).

Proposition 3.3. Let PG/H be a minimal

parabolic subgroup for a reductive symmetric space

G/H. Let G′ be an algebraic reductive subgroup of

G, and P ′ a minimal parabolic subgroup of G′.

(1) If #(P ′
C\GC/(PG/H)C) < ∞, then (FM) holds.

(2) If (FM) holds, G/PG/H is G′-real spherical.

Proposition 3.3 (2) was proved in [11]. The con-

verse statement of Proposition 3.3 (2) holds in the

group manifold case, namely, if G/H is of the form

(‵G× ‵G)/ diag ‵G and if G′ is of the form G′
1 ×G′

2,

see Fact 2.1 (2).

4. Degenerate principal series represen-

tations Let P be a parabolic subgroup of G. We

write Irr(P )f for the set of equivalence classes of irre-

ducible finite-dimensional representations of P . Let

IndGP (ξ) be the degenerate principal series represen-

tation of G obtained as a smooth induction from ξ ∈
Irr(P )f . Then IndGP (ξ) ∈ M(G).

Suppose that P ′ is a parabolic subgroup of a real

reductive algebraic subgroup G′ of G. Degenerate

principal series representations IndG′

P ′(η) of G′ are de-

fined similarly for η ∈ Irr(P ′)f . This section studies

the multiplicity [IndG
P (ξ)|G′ : IndG

′

P ′(η)], namely, the

dimension of the space HomG′(IndGP (ξ)|G′ , IndG
′

P ′(η))

of “symmetry breaking operators”.

In the case (G,G′) = (O(n + 1, 1), O(n, 1)),

this is the space of conformally covariant symmetry

breaking operators for the totally geodesic embed-

ding Sn−1 ↪→ Sn. All such operators have been con-

structed and classified recently, see [18] for the scalar

case, and [19] for differential forms. In this case, the

multiplicity takes the values in {0, 1, 2}.
For a finer estimate of the multiplicity

[IndGP (ξ)|G′ : IndG
′

P ′(η)] in the general setting, we im-

plement yet other parabolic subgroups Q ⊂ PC and

Q′ ⊂ P ′
C. What we call a “QP estimate” of the mul-

tiplicity will play a key role in the proof of Theorem

3.2 for H-distinguished representations.

Let Q be a complex parabolic subgroup of GC
with q ⊂ pC. We do not require q to be defined over

R. For ξ ∈ Irr(P )f , we define dq(ξ) to be the min-
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imum of the dimensions of non-zero q-submodules

in η, and denote by Irr(P ; q)f the subset of Irr(P )f
with dq(ξ) = 1.

We define subsets of M(G) by

ΩP :={IndGP (ξ) : ξ is a character of P},(4.1)

ΩP,q :={IndGP (ξ) : ξ ∈ Irr(P ; q)f}.(4.2)

Obviously, one has ΩP ⊂ ΩP,q. Moreover, ΩP,q is

the whole set {IndGP (ξ) : ξ ∈ Irr(P )f} if q is a Borel

subalgebra of gC.

We consider the following refinement of Problem

2.3:

Problem 4.1. Given a pair G ⊃ G′, find sub-

sets Ω ⊂ M(G) and Ω′ ⊂ M(G′) such that

sup
Π∈Ω

sup
π∈Ω′

[Π|G′ : π] < ∞.

One observes that Problem 2.3 corresponds to

the case where Ω′ = Irr(G′).

Theorem 4.2 (“QP estimate” for restriction).

Suppose that Q and Q′ are complex parabolic sub-

groups of GC and G′
C, respectively, such that q ⊂

pC, q
′ ⊂ p′C, and #(Q′

opp\GC/Q) < ∞. Here Q′
opp

stands for the opposite parabolic subgroup of Q′ in

P ′
C. Then there exists C > 0 such that

(4.3) [IndGP (ξ)|G′ : IndG
′

P ′(η)] ≤ Cdq(ξ)dq′(η)

for any ξ ∈ Irr(P )f and any η ∈ Irr(P ′)f . In partic-

ular, one has

sup
ξ∈Irr(P ;q)f

sup
η∈Irr(P ′;q′)f

[IndGP (ξ)|G′ : IndG
′

P ′(η)] ≤ C.

When Q′ is a Borel subgroup of G′
C, one obtains

the converse statement of Theorem 4.2 as follows.

Theorem 4.3. Let G ⊃ G′ be a pair of real re-

ductive algebraic Lie groups, P a parabolic subgroup

of G, and Q a complex parabolic subgroup of GC such

that q ⊂ pC. Then the following four conditions on

(G,G′;P,Q) are equivalent:

(i) sup
Π∈ΩP,q

m(Π|G′) < ∞.

(ii) There exists C > 0 such that

m(IndGP (ξ)|G′) ≤ Cdq(ξ) for all ξ ∈ Irr(P )f .

(iii) GC/Q is G′
U -strongly visible.

(iv) GC/Q is G′
C-spherical.

The parabolic subgroups Q in (iv) are classified

in [2] in the setting where (GC, G
′
C) is a symmetric

pair. Theorem 4.3 with Q = PC shows:

Corollary 4.4. Let P be a parabolic subgroup

of G, and G′ an algebraic subgroup of G. Then one

has the equivalence on the triple (G,G′;P ) :

GC/PC is G′
C-spherical ⇐⇒ sup

Π∈ΩP

m(Π|G′) < ∞.

Example 4.5. If the unipotent radical of P is

abelian, then Corollary 4.4 applies for any symmetric

pair (G,G′) by [8, Cor. 15].

Theorem 4.2 also implies the following.

Theorem 4.6 (Invariant trilinear forms). Let

G be a real reductive algebraic Lie group, and Pj

(j = 1, 2, 3) parabolic subgroups of G. Suppose that

Qj (j = 1, 2, 3) are complex parabolic subgroups

of GC such that Qj ⊂ (Pj)C (1 ≤ j ≤ 3) and

#(diag(GC)\(GC × GC × GC)/(Q1 × Q2 × Q3)) <

∞. Then there exists C > 0 such that

dimC HomG(
3
⊗
j=1

IndGPj
(ξj),C) ≤ C

3

Π
j=1

dqj
(ξj)

for all ξj ∈ Irr(Pj)f (j = 1, 2, 3).

See [22, 23] for a classification of (Q1, Q2, Q3)

with the above geometric property for some classical

groups GC.

For Π1,Π2 ∈ M(G), we consider the tensor

product representation Π1 ⊗Π2, and set

m(Π1 ⊗Π2) := sup
Π∈Irr(G)

dimC HomG(Π1 ⊗Π2,Π).

A special case of Theorem 4.6 implies (v) ⇒ (i)

of the theorem below.

Theorem 4.7. Let G be a real reductive al-

gebraic Lie group, and Pj (j = 1, 2) parabolic sub-

groups. Then the following five conditions on the

triple (G,P1, P2) are equivalent:

(i) There exists C > 0 such that

m(IndGP1
(ξ1)⊗ IndGP2

(ξ2)) ≤ C dim ξ1 dim ξ2

for all ξj ∈ Irr(Pj)f (j = 1, 2).

(ii) There exists C > 0 such that

m(IndGP1
(ξ1)⊗ IndGP2

(ξ2)) ≤ C

for all characters ξj of Pj (j = 1, 2).

(iii) O(GC/P1C,L1)⊗O(GC/P2C,L2) is a multiplic-

ity free GC-module for any GC-equivariant holomor-

phic line bundles Lj on GC/PjC (j = 1, 2).

(iv) GC/P1C ×GC/P2C is diag(GU )-strongly visible.

(v) GC/P1C ×GC/P2C is diag(GC)-spherical.

The classification of such pairs (P1C, P2C) ap-

peared in different contexts. For instance, one may

read from [26] for the multiplicity-free results on

finite-dimensional representations (iii). The classifi-

cation theory of visible actions also gives a complete
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gC hC g′C
sln gln−1 slp ⊕ slq ⊕ C
sl2m gl2m−1 spm
sl6 sp3 sl4 ⊕ sl2 ⊕ C
son son−1 sop ⊕ soq
so2m so2m−1 glm
so2m so2m−2 ⊕ C glm
spn spn−1 ⊕ sp1 spp ⊕ spq
spn spn−2 ⊕ sp2 spn−1 ⊕ sp1
e6 f4 so10 ⊕ C
f4 so9 so9

Table 5.1. Triples (gC, hC, g
′
C) with gC simple in Theorem 5.1

list of the pairs (P1C, P2C) satisfying (iv), see [10] for

type A, and [28] for the other cases. See also [21] for

the list satisfying (v) when PjC are maximal.

Example 4.8. Let G be a real reductive Lie

group, and P1, P2 parabolic subgroups with abelian

unipotent radical. The double flag variety GC/P1C×
GC/P2C is strongly visible via the diagonal GU -

action [9, Thm. 1.7], hence Theorem 4.7 applies. In

particular, by taking P2 to be the opposite parabolic

subgroup of P1, one sees from Theorem 4.7 the uni-

form bounded multiplicity property in the Plancherel

formula for any para-Hermitian symmetric space.

5. Classification of triples (G,H,G′)

In this section, we present the classification of the

triples (G,H,G′) satisfying

(5.1) sup
Π∈Irr(G)H

m(Π|G′) < ∞

on the level of Lie algebras up to outer automor-

phisms in the following setting:

• both (G,H) and (G,G′) are symmetric pairs,

• gC is simple.

Theorem 5.1. Suppose that gC is simple and

that (G,H) and (G,G′) are symmetric pairs. Then

the triple (G,H,G′) satisfies the bounded multiplicity

property (5.1) if and only if the triple (gC, hC, g
′
C)

of the complexified Lie algebras is in Table 5.1 or

the pair (gC, g
′
C) is in (2.3). In the table, p, q are

arbitrary subject to n = p+ q.

Example 5.2. The triple (G,H,G′) in Exam-

ple 2.2 is a real form of the triple (gC, hC, g
′
C) in the

fourth row of Table 5.1, hence Theorem 5.1 guaran-

tees the bounded multiplicity property of the restric-

tion Π|G′ for all Π ∈ Irr(G)H , see [13, 24].

Remark 5.3. When the pair (gC, g
′
C) is in the

list (2.3), the supremum of the multiplicity (2.1)

is equal to one for many of the real forms such as

(SO(p, q), SO(p− 1, q)), see [27].

6. Sketch of the proof for our main re-

sults We give two ingredients that are used in the

proof of out main results.

In the classical harmonic analysis on the Rie-

mannian symmetric space G/K, building blocks

of representations in C∞(G/K) are constructed

by the twisted Poisson transform, an integral G-

intertwining operator from the spherical principal

series representation to C∞(G/K). More gener-

ally, for a closed subgroup H in G, we consider the

space HomG(Ind
G
P (ξ), Ind

G
H(τ)) of generalized Pois-

son transforms, where P is a parabolic subgroup of

G, ξ ∈ Irr(P )f , and τ ∈ Irr(H)f . We give a “QP

estimate” of the dimension of this space. Along the

same line as in [11, 16], the “QP estimate” for re-

striction (e.g., the implication (iv) ⇒ (i) in Theorem

4.3) is deduced from the following “QP estimates for

induction” applied to (G×G′)/ diagG′. Theorem 6.1

(1) below is a generalization of some results in [16] re-

lying on the “boundary valued maps” and in Tauchi

[30] relying on the theory of holonomic D-modules

[3, 4].

Theorem 6.1 (“QP estimate” for induction).

Let G be a real reductive algebraic Lie group, H an

algebraic subgroup, P a parabolic subgroup of G, and

Q a complex parabolic subgroup of GC with Q ⊂ PC.

(1) If #(Q\GC/HC) < ∞, then there exists C > 0

such that for all η ∈ Irr(P )f and all τ ∈ Irr(H)f

dimC HomG(Ind
G
P (η), Ind

G
H(τ)) ≤ Cdq(η) dim τ.

(2) Conversely, if the conclusion in (1) holds, then

Q has an open orbit in GC/HC.

For the proof of Theorem 3.2, we also use the

following reformulation [14] of Casselman–Oshima’s

subrepresentation theorem [25, 31].

Theorem 6.2 (Quotient representation theo-

rem). Let G/H be a reductive symmetric space, and

PG/H and bG/H a minimal parabolic subgroup and a

Borel subalgebra for G/H, respectively, with bG/H ⊂
(pG/H)C. Then for any Π ∈ Irr(G)H , there exists ξ ∈
Irr(PG/H ; bG/H)f such that Π is a quotient of the de-

generate principal series representation IndGPG/H
(ξ).
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