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Abstract

Let G be a real reductive Lie group, L a compact subgroup, and π an ir-

reducible admissible representation of G. This paper proves a necessary and

sufficient condition for the finiteness of the multiplicities of L-types occurring in

π based on symplectic techniques. This leads us to a new proof of the criterion

for the discrete decomposability of the restriction of unitary representations with

respect to noncompact subgroups (the author, Ann. Math. 1998). A number of

examples are presented in connection with Kostant’s convexity theorem and also

with non-Riemannian locally symmetric spaces.

§1 Introduction and Statement of Main Results

This article is a continuation of [11, 12, 13], where we studied the restriction of an

irreducible unitary representation π of a real reductive Lie group G with respect to a

reductive subgroup G′. There, we highlight branching laws without continuous spec-

trum. A key to this property is K ′-admissibility of π ([11, Thm. 1.2]), that is,

dimHomK′(τ, π|K′) < ∞ for any τ ∈ K̂ ′, (1.1)
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where K ′ is a maximal compact subgroup of G′.

In this article we prove a necessary and sufficient condition for the K ′-admissibility,

of irreducible (g, K)-modules X.

1.1. Two closed cones ASK(X) and CK(K
′)

In order to state our main results, let us fix some notation.

Let G be a connected linear reductive Lie group, K a maximal compact subgroup

of G, and T a maximal torus of K. Their Lie algebras will be denoted by the lowercase

German letters. Fix a positive system ∆+(kC, tC), and we write t∗+ (⊂
√
−1t∗) for the

dominant Weyl chamber. The set of dominant weights which lift to the torus T is

denoted by Λ+. It is a submonoid of t∗+ (that is, it contains 0 and is invariant under

addition). The Cartan–Weyl highest weight theory for the group version establishes a

bijection between K̂ with Λ+. We shall denote by Vµ the irreducible representation of

K with highest weight µ ∈ Λ+.

For a subset S in a Euclidean space E, the limit cone S∞ is the set of E consisting

of all elements of the form limj→∞ ϵjµj for some sequence (µj, εj) ∈ S × R+ with

limj→∞ ϵj = 0 ([7, Def. 2.4.2]). The asymptotic K-support ASK(X) of a K-module X

is defined to be the limit cone of the K-support of X (Kashiwara–Vergne [8]):

SuppK(X) := {µ ∈ Λ+ : HomK(Vµ, X) 6= {0}} ⊂ Λ+, (1.2)

ASK(X) := SuppK(X)∞ ⊂ t∗+. (1.3)

Let K ′ be a closed subgroup of K, and set (k′)⊥ := {λ ∈ k∗ : λ|k′ ≡ 0}. We regard

t∗ as a subspace of k∗ via a K-invariant inner product on k, and define a closed cone in√
−1t∗ by

CK(K
′) := t∗+ ∩

√
−1Ad∗(K)(k′)⊥. (1.4)

These two closed cones ASK(X) and CK(K
′) are a finite union of convex polyhedral

cones (Propositions 2.6 and 2.3, respectively).

1.2. Criterion for finite multiplicities

Here is our main theorem:

Theorem 1.1. Let X be a (g, K)-module of finite length, and K ′ a closed subgroup of

K. Then the following two conditions are equivalent:

(i) X is K ′-admissible;

(ii) ASK(X) ∩ CK(K
′) = {0}.
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Some remarks are in order.

(1) The main result of [12] was a discovery of the criterion (ii) in Theorem 1.1, and

the implication (ii) ⇒ (i) was proved in [12, Thm. 2.8] based on micro-local study:

the asymptotic K-support ASK(X) played a role in an estimate of the singularity

spectrum of the hyperfunction character of X|K . In this article we give a new and

simpler proof for the implication (ii) ⇒ (i) based on symplectic geometry: the cone

CK(K
′) is interpreted as the momentum set for the natural Hamiltonian action on the

cotangent bundle T ∗(K/K ′), see Section 2.3.

(2) The implication (i) ⇒ (ii) was announced in [16, Chap. 6].

(3) Theorem 1.1 still holds for disconnected groups, namely, we may allow K to have

finitely many connected components. In this case, we use the asymptotic K0-support

for ASK(X), where K0 is the identity component of K.

1.3. Admissible restriction to noncompact subgroups

Let π be a unitary representation of G, and G′ a subgroup. By the general theory of

unitary representations of locally compact groups [25], the restriction π|G′ is decom-

posed into the direct integral of irreducible unitary representations of G′, uniquely up

to isomorphisms when G′ is reductive [5], as follows:

π|G′ '
∫ ⊕

Ĝ′
mπ(τ)dµ(τ) (direct integral), (1.5)

where Ĝ′ denotes the unitary dual of G′, that is, the set of equivalence classes of ir-

reducible unitary representations of G′, dµ is a Borel measure of Ĝ′, and mπ : Ĝ′ →
N ∪ {∞} is a measurable function. The irreducible decomposition (1.5) is called the

branching law of the restriction π|G′ , and mπ is the multiplicity. In general the branch-

ing law may involve continuous spectrum, and the multiplicity mπ may take infinite

values. The following definition singles out a framework in which we could expect a

simple and detailed algebraic study of the restriction π|G′ (symmetry breaking).

Definition 1.2 ([11]). A unitary representation π of G is G′-admissible if π splits into

a direct sum of irreducible unitary representations of G′

π|G′ '
∑⊕

τ∈Ĝ′

m(τ)τ (Hilbert direct sum)

with multiplicity m(τ) < ∞ for all τ ∈ Ĝ′.
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If G′ itself is compact, then the decomposition (1.5) is automatically discrete, and

thus, G′-admissibility is nothing but the finiteness of the multiplicity mπ(τ) for all τ .

In the general case where G′ is noncompact, we take a maximal compact subgroup K ′

of G′. Then K ′-admissibility implies G′-admissibility ([11, Thm. 1.2]). Therefore, as

an immediate corollary of Theorem 1.1, we recover:

Corollary 1.3 ([12, Thm. 2.9]). Let π ∈ Ĝ, and G′ a reductive subgroup of G. If

ASK(π) ∩ Ad∗(K)(k′)⊥ = {0}, then the restriction π|G′ splits into a discrete sum of

irreducible unitary representations of G′ with finite multiplicities.

1.4. Restriction of discrete series representations

It is plausible that G′-admissibility is equivalent to K ′-admissibility if the representa-

tion arises as the restriction of an irreducible unitary representation of a real reductive

linear Lie group G to its reductive subgroup G′ [15, Conj. D]. See [2, 18, 31] for some

affirmative results. If this is affirmative, then the criterion in Theorem 1.1 will give a

necessary and sufficient condition for the restriction π|G′ to be G′-admissible. In this

section we discuss such an example.

An irreducible unitary representation π of G is called a square-integrable represen-

tation if it is realized in a closed invariant subspace of the regular representation on the

Hilbert space L2(G). The isomorphism classes of all such irreducible, square integrable

representations constitute a subset Disc(G) ⊂ Ĝ, the discrete series of G. By Theorem

1.1, we can detect whether π is G′-admissible or not when restricted to a reductive

subgroup G′:

Corollary 1.4. Let π be a square-integrable representation of G, and G′ a closed

reductive subgroup of G. Then the following four conditions on the triple (G,G′, π) are

equivalent:

(i) The restriction π|G′ is G′-admissible.

(i)′ There is a map m : Disc(G′) → N such that

π|G′ '
∑⊕

τ∈Disc(G′)

m(τ)τ (Hilbert direct sum).

(ii) The restriction π|K′ is K ′-admissible.

(iii) ASK(π) ∩
√
−1Ad∗(K)(k′)⊥ = {0}.

Remark 1.5. When (G,G′) is an irreducible symmetric pair, the triple (G,G′, π) sat-

isfying the criterion (iii) was classified in [20]. The case G′ = SL(2,R) was studied in

Duflo–Galina–Vargas [2].
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The proof of Theorem 1.1 and Corollary 1.4 is given in Section 2. Applications of

Theorem 1.1 are given in connection with Kostant’s convexity theorem for momentum

maps and with the boundaries of semisimple symmetric spaces in Sections 3 and 4,

respectively.

Notation: R≥0 := {x ∈ R : x ≥ 0}, Q≥0 := Q ∩ R≥0 and N≥0 := N ∩ R≥0.

§2 Proof of Main Results

In this section, we give an interpretation of the two invariants ASK(π) and CK(K
′)

from a viewpoint of symplectic geometry, and prove Theorem 1.1.

2.1. Rational convex polyhedral cones

Let E be a finite-dimensional vector space over Q, and S a finite subset of E. The

convex polyhedral cone spanned by S is the smallest convex cone in E, that is,

Q≥0 -spanS = {
k∑

j=1

ajSj : a1, · · · , ak ∈ Q≥0, s1, · · · , sk ∈ S}.

Similarly, we can define Z≥0 -spanS (⊂ E) and R≥0 -spanS (⊂ E ⊗Q R).
Here is an elementary observation of the intersections of two such polyhedral cones.

Lemma 2.1. Let S, T be finite subsets of Qn. Then the following four conditions on

S and T are equivalent:

(i) Z≥0-spanS ∩ Z≥0-spanT 6= {0};
(ii) Q≥0-spanS ∩Q≥0-spanT 6= {0};
(iii) R≥0-spanS ∩ R≥0-spanT 6= {0};
(iv) (δ-neighbourhood of R≥0-spanT ) ∩ R≥0-spanT is unbounded for some δ > 0.

Proof. The implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) are obvious. The implication (iv) ⇒
(iii) is immediate by taking the limit cone. For the remaining implication (iii) ⇒ (ii),

we observe that the condition (iii) holds if and only if R≥0-spanS∩R≥0-spanT contains

a face of positive dimension, say W ′. We extend W ′ to the equi-dimensional subspace

W in Rn. Then W is defined over Q, hence Q≥0-spanS∩Q≥0-spanT ⊃ W ′∩Qn 6= {0}.
Thus we have proved (iii) ⇒ (ii).
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2.2. Regular functions on affine KC-varieties

Let V be an irreducible affineKC-variety over C. Then the ring C[V ] of regular functions
is finitely generated. We need some basic fact on the KC-module structure of C[V ].

Lemma 2.2. The K-support SuppK(C[V ]) is a finitely generated submonoid of Λ+,

that is, there exist finitely many λ1, . . . , λk ∈ Λ+ such that

SuppK(C[V ]) = Z≥0-span {λ1, . . . , λk}.

For the convenience of the reader, we review quickly its proof, see [1, 27].

Proof. We write N(KC) for the maximal unipotent subgroup of KC corresponding to

the positive system ∆+(kC, tC). Then the ring C[KC/N(KC)] '
⊕

λ∈Λ+
Vλ is finitely

generated since VλVµ = Vλ+µ. Then the left-hand side of the isomorphism:

(C[KC/N(KC)]⊗ C[V ])KC ' C[V ]N(KC)

is finitely generated because KC is reductive. Thus the ring C[V ]N(KC) is finitely gen-

erated, whence the K-support SuppK(C[V ]) is finitely generated as a monoid.

2.3. Hamiltonian actions and cotangent bundles

Let (M,ω) be a symplectic manifold, and K a Lie group acting on M as symplectic

diffeomorphisms. The action is called Hamiltonian if there exists a momentum map

Φ: M → k∗ with the property that dΦZ = ι(ZM)ω for all Z ∈ k, where ZM denotes

the vector field on M induced by Z, and ΦZ is the function on M defined by ΦZ(m) =

Φ(m)(Z). The momentum set ∆(M) is defined by

∆(M) :=
√
−1Φ(M) ∩ t∗+ (2.1)

Let K ′ be a connected closed subgroup of K. The cotangent bundle T ∗(K/K ′) of

the homogeneous space K/K ′ is given as a homogeneous vector bundle K ×K′ (k′)⊥.

Thus the symplectic manifold T ∗(K/K ′) is a Hamiltonian K-space with moment map

Ψ: T ∗(K/K ′) → k∗, (k,X) 7→ Ad∗(k)X. (2.2)

Let K ′
C ⊂ KC be the complexifications of K ′ ⊂ K. For the affine variety KC/K

′
C, we

take λ1, . . . , λk ∈ Λ+ as in Lemma 2.2 such that

C[KC/K
′
C] = Z≥0-span {λ1, . . . , λk}. (2.3)
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Proposition 2.3. (1) The momentum set ∆(T ∗(K/K ′)) is equal to CK(K
′).

(2) CK(K
′) = ASK(C

∞(K/K ′)). In particular, CK(K
′) = R≥0-span {λ1, . . . , λk}.

Proof. (1) It follows from the definitions (2.2) and (1.4) that

∆(T ∗(K/K ′)) =
√
−1Ad∗(K)(k′)⊥ ∩ t∗+ = CK(K

′). (2.4)

(2) By Sjamaar [27, Thms. 4.9 and 7.6], we have

∆(T ∗(K/K ′)) = ∆(KC/K
′
C) = R≥0-span {λ1, . . . , λk}.

Combining this with (2.4), we get the second statement.

2.4. Associated varieties

The associated varieties V(X) are coarse approximation of g-modules X, which we

brought in [13] into the study of discretely decomposable restrictions of Harish-Chandra

modules. In this section we collect some important properties of associated varieties,

and reduce the K ′-admissibility of a Harish-Chandra module on V(X) to that of the

space of regular functions on V(X).

Let {Uj(gC)}j∈N be the standard increasing filtration of the universal envelop-

ing algebra U(gC). Suppose X is a finitely generated g-module. Let F be a fi-

nite set of generators, and we set Xj := Uj(gC)F . The graded algebra grU(gC) :=⊕
j∈N Uj(gC)/Uj−1(gC) is isomorphic to the symmetric algebra S(gC) by the Poincaré–

Birkhoff–Witt theorem and we regard the graded module grX :=
⊕

j∈N Xj/Xj−1 as a

S(gC)-module. Define

AnnS(gC)(grX) :={f ∈ S(gC) : fv = 0 for any v ∈ grX},
V(X) :={x ∈ g∗C : f(x) = 0 for any f ∈ AnnS(gC)(grX)}.

Then V(X) does not depend on the choice of F , and is called the associated variety of

X. If X is a Harish-Chandra module, that is, a (g, K)-module of finite length, then

the associated variety V(X) is a KC-stable closed subvariety of N (p∗C), see [30].

For two K-modules X1, X2, we use the notation from [11], and write X1 ≤K X2 if

dimHomK(τ,X1) ≤ dimHomK(τ,X2) for any τ ∈ K̂.
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Lemma 2.4 ([21, Prop. 3.3]). Let X be a (g, K)-module of finite length, and V(X) the

associated variety. We write V(X) = O1∪· · ·ON for the decomposition into irreducible

components. Then there exist finite-dimensional representations Fj (1 ≤ j ≤ N) of K

such that

X ≤K

N⊕
j=1

C[Oj]⊗ Fj, (2.5)

X ⊗ F ∗
j ≥K C[Oj] for any j (1 ≤ j ≤ N). (2.6)

2.5. Basic properties of asymptotic K-support

We recall some basic properties of asymptotic K-support defined in (1.3).

Lemma 2.5. Let X and Y be K-modules.

(1) If Y ≤K X then ASK(Y ) ⊂ ASK(X).

(2) ASK(X) = ASK(X ⊗ F ) for any finite-dimensional representation F of K.

(3) ASK(X ⊕ Y ) = ASK(X) ∪ ASK(Y ).

Proof. (1) Clear from SuppK(Y ) ⊂ SuppK(X).

(2) See [12, Lem. 3.1].

(3) Immediate from (S ∪ T )∞ = S∞∪ T∞ for any subsets S and T .

2.6. Asymptotic K-supports of Harish-Chandra modules

The asymptotic K-support ASK(X) of a Harish-Chandra module X is determined by

its associated variety V(X), and is a finite union of convex polyhedral cones. These

properties will be used in the proof of Theorem 1.1.

Suppose we are in the setting of Lemma 2.4. For each irreducible component

Oj of the associated variety V(X), we take a finite set Sj := {β1, . . . , βkj} so that

SuppK(C[Oj]) = Z≥0-spanSj as in Lemma 2.2. Taking the limit cone, we have:

ASK(C[Oj]) = R≥0-spanSj. (2.7)

Proposition 2.6. Let X be a (g, K)-module of finite length, and Sj (1 ≤ j ≤ N) finite

subsets of Λ+ as above. Then, ASK(X) = ASK(C[V(X)]) =
⋃N

j=1R≥0-spanSj.

Proof. By Lemmas 2.4 and 2.5, we have

ASK(X) ⊂
N⋃
j=1

ASK(C[Oj]⊗ Fj) =
N⋃
j=1

ASK(C[Oj]).
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Again, by Lemmas 2.4 and 2.5, we get the reverse inclusion:

ASK(X) = ASK(X ⊗ F ∗
j ) ⊃ ASK(C[Oj]).

By (2.7), we obtain Proposition 2.6.

We note that ASK(X) = {0} if and only if SuppK(X) is a finite set. When X is

a (g, K)-module of finite length, this is equivalent to the condition V(X) = {0}, or
equivalently, dimX < ∞.

2.7. Transversality of the K-supports of two K-modules

In this section we formulate the “stability of the transversality” of the K-supports of

two K-modules under taking the tensor product with finite-dimensional representa-

tions.

Lemma 2.7. Let X and Y be K-modules.

(1) For any finite-dimensional K-module F , we have

♯ (SuppK(X) ∩ SuppK(Y ⊗ F )) ≤ dimF ♯ (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) .

(2) The following two conditions are equivalent:

(i) ♯ (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) < ∞ for any finite-dimensional represen-

tation F of K.

(ii) ♯ (SuppK(X ⊗ F1) ∩ SuppK(Y ⊗ F2)) < ∞ for any finite-dimensional rep-

resentations F1 and F2 of K.

Proof. (1) Suppose µ ∈ SuppK(X) ∩ SuppK(Y ⊗ F ). Since Vµ occurs in Vν ⊗ F for

some ν ∈ SuppK(Y ), one finds a weight v of F such that

µ = ν + v. (2.8)

Then we have HomK(Vν , X ⊗ F ∗) = HomK(Vν ⊗ F,X) ⊃ HomK(Vµ, Vµ) 6= {0}. Hence
ν ∈ SuppK(X ⊗ F ∗). The above consideration yields to a (non-canonical) map

SuppK(X) ∩ SuppK(Y ⊗ F ) → SuppK(X ⊗ F ∗) ∩ SuppK(Y ), µ 7→ ν (2.9)

with constraints (2.8). The cardinality of each fiber of the map (2.9) bounded by

dimF . Hence (1) is proved.

(2) The second assertion is a direct consequence of (1) by setting F = F1⊗F ∗
2 .
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2.8. Admissible restriction and regular functions on KC/K
′
C

Let K ′ be a closed subgroup of a compact Lie group K, and K ′
C ⊂ KC be their

complexifications. In this section we relate K ′-admissibility of the restriction of a

K-module with the K-support of the space C[KC/K
′
C] of regular functions on KC/K

′
C.

Lemma 2.8. The following three conditions on a K-module X are equivalent:

(i) X is K ′-admissible.

(ii) X ⊗ F ′ is K ′-admissible for any finite-dimensional representation F ′ of K ′.

(iii) X is K-admissible, and for any finite-dimensional representation F of K,

♯ (SuppK(X ⊗ F ) ∩ SuppK(C[KC/K
′
C])) < ∞. (2.10)

Proof. The implication (i) ⇐ (ii) is obvious.

(i) ⇒ (ii): Suppose (i) holds. Then for any τ ∈ K̂ ′, we have

dimHomK′(τ,X ⊗ F ′) = dimHomK′(τ ⊗ (F ′)∗, X) < ∞

because τ ⊗ (F ′)∗ is a finite direct sum of irreducible K ′-modules. Hence (ii) is proved.

(ii) ⇒ (iii): The K-admissibility is obvious from the K ′-admissibility. Let us verify

(2.10). Let 1 denote the one-dimensional trivial representation of K. Then we have

♯{µ ∈ SuppK(X ⊗ F ) : HomK′(1, µ|K′) 6= {0}} ≤ dimHomK′(1, X ⊗ F ),

which is finite by the condition (ii). Hence (2.10) holds.

(iii) ⇒ (ii): Fix any τ ∈ K̂ ′, and any finite-dimensional representation F of K. Let

IndK
K′τ be an (algebraically) induced representation. We define a subset of K̂ by

P := SuppK(Ind
K
K′τ) ∩ SuppK(X ⊗ F ). (2.11)

We claim P is a finite set. To see this, we take a finite-dimensional K-module F1 such

that HomK′(τ, F1|K′) 6= {0}. Then, we have

IndK
K′τ ≤K IndK

K′(F1|K′) ' C[KC/K
′
C]⊗ F1

as K-modules. In particular, we have

P ⊂ SuppK(C[KC/K
′
C]⊗ F1) ∩ SuppK(X ⊗ F ) (2.12)

The right-hand side of (2.12) is a finite set by the assumption (iii) and Lemma 2.7 (2).

Therefore, P is a finite set.
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Next, let us consider the following equation:

dimHomK′(τ,X ⊗ F ) =
∑
µ∈K̂

dimHomK′(τ, µ) dimHomK(µ,X ⊗ F ) (2.13)

The summation in (2.13) is actually taken over the finite set P . Furthermore, each

summand is finite because X ⊗ F is K-admissible. Hence, (2.13) is finite. This means

that X ⊗F is K ′-admissible. Since F is an arbitrary finite-dimensional representation

of K, (ii) follows.

2.9. Proof of Theorem 1.1

We are ready to complete the proof of the main result of this article.

Proof of Theorem 1.1. Let V(X) be the associated variety of a (g, K)-module X, and

V(X) = O1∪ · · ·∪ON the decomposition into irreducible components. By Lemma 2.2,

there are finite subsets S1, · · · , SN and T such that

SuppK(C[Oj]) = Z≥0-spanSj (1 ≤ j ≤ N), SuppK(C[KC/K
′
C]) = Z≥0-spanT.

In place of the conditions (i) and (ii) in Theorem 1.1, we consider the following condi-

tions:

(i)′: ♯ (SuppK(X ⊗ F ) ∩ SuppK(C[KC/K
′
C])) < ∞ for any finite-dimensional represen-

tation F .

(ii)′: R≥0-spanSj ∩ R≥0-spanT = {0} for any j = 1, . . . , N .

We already know the equivalence (i) ⇔ (i)′ from Lemma 2.8, and the equivalence

(ii) ⇔ (ii)′′ from Propositions 2.3 and 2.6. Thus, the proof of Theorem 1.1 will be

completed if we show the equivalence (i)′ ⇔ (ii)′.

(i)′ ⇒ (ii)′: If (i)′ holds, then Lemma 2.4 implies

♯
(
SuppK(C[Oj]) ∩ SuppK(C[KC/K

′
C])

)
< ∞,

or equivalently, ♯ (Z≥0-spanSj ∩ Z≥0-spanT ) < ∞, whence the condition (ii)′ follows

from Lemma 2.1.

(ii)′ ⇒ (i)′: Let Fj be as in Lemma 2.4. It follows from (2.5) that

SuppK(X ⊗ F ) ⊂
N⋃
j=1

SuppK(C[Oj]⊗ Fj ⊗ F ).
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Take δ := max{‖ν‖ : ν is a weight of Fj ⊗ F for some j}. Then,

⊂
N⋃
j=1

δ-neighborhood of SuppK(C[Oj])

⊂
N⋃
j=1

δ-neighborhood of R≥0-spanSj.

Since the condition (i)′ implies that the intersection of R≥0-spanT with any δ-neighborhood

of R≥0-spanSj is relatively compact (Lemma 2.1), we get

♯ (SuppK(X ⊗ F ) ∩ Z≥0-spanT ) < ∞.

This shows the implication (ii)′ ⇒ (i)′. Hence Theorem 1.1 is proved.

2.10. Proof of Corollary 1.4

Proof of Corollary 1.4. The implication (i)′ ⇒ (i) is obvious, and the reverse implica-

tion (i) ⇒ (i)′ follows from the fact that any discrete summand in the restriction π|G′

for π ∈ Disc(G) belongs to Disc(G′), see [14, Cor. 8.7]. Then the implication (i)′ ⇒ (ii)

follows from the fact that for every µ ∈ K̂ ′ there are at most finitely many elements

in Disc(G′) having µ as a K ′-type, whereas the implication (ii) ⇒ (i) is proved in [11,

Thm. 1.2]. Since the equivalence (ii) ⇔ (iii) holds by Theorem 1.1, Corollary 1.4 is

proved.

§3 (g, K)-modules with finite weight multiplicities

In this section, we relate weight multiplicities for (g, K)-modules with Kostant’s con-

vexity theorem [23].

3.1. Simple Lie groups of (non)Hermitian type

Let G be a real reductive linear Lie group, K a maximal compact subgroup, ZK

the center of K, and T s a maximal torus of the derived group Ks := [K,K]. Then

T := T sZK is a maximal torus of K. When G is a simple Lie group, ZK is at most

one-dimensional.

A simple Lie group G (or its Lie algebra g) is called of Hermitian type, if ZK is

one-dimensional, or equivalently, if the associated Riemannian symmetric space G/K
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is a Hermitian symmetric space. It is the case when the Lie algebra g is su(p, q), so(2n),

so∗(2n), sp(n,R), e6(−14), or e7(−25), whereas g = sl(n,R) (n 6= 2), so(p, q) (p, q 6= 2),

su∗(2n), sp(p, q), sl(n,C), so(n,C), or sp(n,C) are not of Hermitian type.

3.2. Admissibility for the restriction to toral subgroups

In contrast to g-modules in the BGG category O, there are not many (g, K)-modules

with finite weight multiplicities. We formulate this feature as follows.

Theorem 3.1. Suppose that X is (g, K)-module of finite length. If dimX = ∞ then

dimHomT s(χ,X) = ∞ for some χ ∈ T̂ s.

We shall see that Theorem 3.1 is derived from Kostant’s convexity theorem (Fact

3.6) and from Theorem 1.1. The following two corollaries for simple Lie groups G are

immediate consequence of Theorem 3.1 and its proof (Section 3.3).

Corollary 3.2. Suppose G is not of Hermitian type. Then for any infinite-dimensional

irreducible (g, K)-module X, there exists χ ∈ T̂ such that dimHomT (χ,X) = ∞.

Corollary 3.3. Suppose G is of Hermitian type, and X a (g, K)-module of finite length.

Then X is T -admissible if and only if X is ZK-admissible.

Remark 3.4. An irreducible (g, K)-module X is called a highest weight module if X is

b-finite for some Borel subalgebra b of gC = g ⊗R C. There exist infinite-dimensional

irreducible highest weight (g, K)-modules if and only if G is of Hermitian type. In this

case any such X is ZK-admissible (see [12, Rem. 3.5 (3)]), hence X is also T -admissible.

Corollary 3.3 fits well into the Kirillov–Kostant–Duflo orbit philosophy (see [3, 10,

22] for instance):

Proposition 3.5 ([19]). Suppose G is a simple Lie group of Hermitian type, and O a

coadjoint orbit in g∗. Then the following two conditions are equivalent:

(i) The momentum map O → t∗ is proper.

(ii) The momentum map O → z∗k is proper.

3.3. An application of Kostant convexity theorem

Suppose K is a connected compact Lie group, and T is a maximal torus of K. Let WK

be the Weyl group for the root system ∆(kC, tC). By a K-invariant inner product 〈 , 〉
on k, we identify t⊥ (⊂ k∗) with the orthogonal complementary subspace of k, and write

prk→t : k → t for the projection with respect to the direct sum decomposition k = t⊕ t⊥.
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For a finite subset S = {s1, · · · , sk} of t, the convex hull of S is the smallest convex

set containing S, which is expressed as:

Conv(S) :=

{
k∑

i=1

aisi : a1, · · · , ak ≥ 0, a1 + · · ·+ ak = 1

}
.

We recall Kostant’s convexity theorem:

Fact 3.6 ([23, Thm. 8.2]). For any Y ∈ t, we have prk→t(Ad(K)Y ) = Conv(WKY ).

Fact 3.6 determines the momentum set ∆(T ∗(K/T )) of the cotangent bundle of the

flag manifold K/T as follows:

Proposition 3.7. Suppose that K is a connected semisimple compact Lie group. Then

∆(T ∗(K/T )) = CK(T ) = t∗+.

Proof. Fix a nonzero element Y ∈ t. Then Kostant’s convexity theorem shows that

prk→t(Ad(K)Y ) contains the origin 0. In particular, there exists k ∈ K such that

Y ′ := Ad(k)Y ∈ t⊥. This means that Y ∈ Ad(K)t⊥, hence prk→t(Ad(K)t⊥) = t. By

(2.4), we get Proposition 3.7.

Proof of Theorem 3.1. Applying Proposition 3.7 to Ks/T s, we obtain CK(T
s) = t∗+

because K = KsZK . In turn, Theorem 1.1 tells that X is T s-admissible if and only if

ASK(X) = {0}, or equivalently, dimX < ∞.

Proof of Corollary 3.2. Immediate from Theorem 3.1 because T = T s.

Proof of Corollary 3.3. We regard (ts)∗ as a subspace of t∗ via the direct sum decom-

position t = ts⊕zk. By Proposition 3.7, we have CK(T ) = t∗+∩(ts)∗ = CK(ZK), whence

Corollary 3.3.

§4 Admissible restriction of degenerate principal se-

ries representations

In the orbit philosophy due to Kirillov–Kostant, the Zuckerman derived functor mod-

ulesAq(λ) are supposed to be attached to elliptic coadjoint orbits, whereas parabolically

induced representations IndG
Q(Cλ) are to hyperbolic coadjoint orbits. Classification the-

ory of admissible restrictions has been developed mainly for Aq(λ), see [2, 11, 13, 16, 20]

for example. In this section we apply Theorem 1.1 to induced representations from a

parabolic subgroup Q of G and to their subquotient modules (Q-series).
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4.1. Irreducible representations in the Q-series

Suppose that Q is a parabolic subgroup of a reductive Lie group G.

Definition 4.1. An irreducible admissible representation π of G is said to be in the

Q-series if π occurs as a subquotient of the induced representation IndG
Q τ from a

finite-dimensional representation τ of Q.

Example 4.2. When Q = G, π is in the Q-series if and only if dim π < ∞.

Example 4.3. When Q is a minimal parabolic subgroup P , any irreducible admissible

representation of G belongs to the Q-series by Harish-Chandra’s subquotient theorem.

The next example is a generalization of Example 4.3.

Example 4.4. LetG/H be a reductive symmetric space, that is,H is an open subgroup

of Gσ = {g ∈ G : σg = g} for some involutive automorphism σ of a real reductive Lie

group G. Take a Cartan involution θ of G commuting with σ, and a maximal abelian

subspace a in g−σ,−θ = {X ∈ g : σX = θX = −X}. Let Q be a parabolic subgroup of

G defined by a generic element X ∈ a, that is, Q is the normalizer of the real parabolic

subalgebra:

q = the sum of the eigenspaces of ad(X) with nonnegative eigenvalues.

Such Q is uniquely determined up to conjugation by an element of G. We say that Q

is a minimal parabolic subgroup for G/H.

Then any irreducible representation that can be realized as a subquotient in the

regular representation on C∞(G/H) belongs to the Q-series.

4.2. Restriction of representations in the Q-series

We give a necessary and sufficient condition for all irreducible representations in the Q-

series to be K ′-admissible where K ′ is a (not necessarily, maximal) compact subgroup.

Theorem 4.5. Let G be a real reductive linear Lie group, K a maximal compact

subgroup, K ′ a closed subgroup of K, and Q a parabolic subgroup of G. Then the

following two conditions are equivalent:

(i) for any irreducible representation π of G in the Q-series, π|K′ is K ′-admissible;

(ii) CK(Q ∩K) ∩ CK(K
′) = {0}.

15



Proof. Since the induced representation IndG
Q(τ) is of finite length as a G-module, the

condition (i) is equivalent to the following condition:

(i)′ IndG
Q(τ) is K

′-admissible for any finite-dimensional representation τ of Q.

By Proposition 2.3 and Lemma 2.5, the asymptotic K-support of IndG
Q(τ) is given by

ASK(Ind
G
Q(τ)) = ASK(Ind

K
Q∩K(τ |Q∩K)) = ASK(Ind

K
Q∩K(1)) = CK(Q ∩K). (4.1)

Hence Theorem 4.5 is derived from Theorem 1.1.

Let P = MAN be a minimal parabolic subgroup of G. Applying Theorem 4.5 to

the case Q = P , we obtain from Example 4.3 the following:

Corollary 4.6. Let K ′ be a closed subgroup of K. Then the following two conditions

are equivalent:

(i) any irreducible admissible representation of G is K ′-admissible;

(ii) CK(M) ∩ CK(K
′) = {0}.

Remark 4.7. When G is of real rank one, then K/M is isomorphic to a sphere. In this

case, Vargas [28] classified all subgroups K ′ satisfying the condition in Corollary 4.6.

Example 4.8. Let G = SO(2p, 2q), and K ′ = U(p)× U(q). Suppose Q is a parabolic

subgroup of G with Levi subgroup L ' SO(2p− 1, 2q− 1)×GL(1,R). Then Q∩K =

L ∩K, and via the standard basis of t∗ ' Rp+q,

CK(Q ∩K) ={(a, 0, · · · , 0; b, 0, · · · , 0) : a, b ≥ 0},
CK(K

′) ={(x1, x1, · · · , x[ p
2
], x[ p

2
], (0); y1, y1, · · · ) : x1 ≥ x2 ≥ · · · , y1 ≥ y2 ≥ · · · },

hence CK(Q ∩K) ∩ CK(K
′) = {0}. Thus the criterion (ii) in Theorem 4.5 is fulfilled.

Let G′ = U(p, q) be the natural subgroup of G containing K ′. Then for any irreducible

unitary representation π of G in the Q-series is G′-admissible when restricted to the

subgroup G′ because it is K ′-admissible. See [6] and [11] for branching laws of repre-

sentations π in the Q-series with respect to the pair (G,G′) = (SO(2p, 2q), U(p, q)).

In Example 4.8, the two polyhedral cones CK(Q ∩ K) and CK(K
′) are easy to

compute because both (K,Q ∩ K) and (K,K ′) are symmetric pairs. In the next

section, we recall some useful general facts for this.

4.3. Momentum set ∆(T ∗(K/K ′)) for symmetric pair

Suppose that σ is an involutive automorphism of K. We use the same letter σ to

denote its differential, and write k = kσ + k−σ for the eigenspace decomposition of σ
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with eigenvalues +1 and −1. We take a σ-stable Cartan subalgebra j of k such that

j−σ is a maximal abelian subspace of k−σ, and fix a positive system Σ+(kC, j
−σ
C ) of the

restricted root system Σ(kC, j
−σ
C ). Choose a positive system ∆+(kC, jC) compatible with

Σ+(kC, j
−σ
C ) in the following sense:

{α|j−σ
C

: α ∈ ∆+(gC, jC)} \ {0} = Σ+(gC, j
−σ
C ).

Let (j−σ)∗+ and j∗+ be the dominant chamber for Σ+(gC, j
−σ
C ) and ∆+(gC, jC), respec-

tively. We may regard (j−σ)∗+ ⊂ j∗+ according to the direct decomposition j = jσ ⊕ j−σ.

When a positive system ∆+(kC, tC) is given independently of σ, we choose an inner

automorphism of k which induces bijections ι : t
∼→ j and ι∗ : ∆+(gC, jC)

∼→ ∆+(gC, tC),

and set

(t−σ)∗+ := ι∗((j−σ)∗+) ⊂
√
−1t∗.

Proposition 4.9. Suppose (K,K ′) is a symmetric pair defined by an involutive auto-

morphism σ. Then ∆(T ∗(K/K ′)) = CK(K
′) = (t−σ)∗+.

Remark 4.10. When the unipotent radical of Q is abelian, then (K,Q ∩ K) forms a

symmetric pair, and therefore we can apply also Proposition 4.9 to the computation of

CK(Q ∩K) in Theorem 4.5.

4.4. Boundaries of spherical varieties with hidden symmetries

As typical examples of Theorem 4.5, we formulate the following theorem motivated by

analysis on standard pseudo-Riemannian locally symmetric spaces Γ\G/H ([9]):

Theorem 4.11. Let G/H be a symmetric space with G simple Lie group, and Q

a minimal parabolic subgroup for G/H. Let G′ be a reductive subgroup of G acting

properly on G/H, such that GC/HC is G′
C-spherical. Then any irreducible admissible

representation π of G in the Q-series is K ′-admissible. In particular, the restriction

π|G′ is infinitesimally discretely decomposable in the sense of [16, Def. 4.2.3].

Such triples (G,H,G′) are classified (cf. [17]). In the setting of Theorem 4.11, the

symmetric space G/H admits a compact Clifford–Klein form Γ\G/H as the quotient

by a torsion-free cocompact subgroup Γ in G′. Applications of Theorem 4.11 will be

discussed in subsequent papers. In this article, we illustrate Theorem 4.11 only by

some examples:

Example 4.12. The triple (G,H,G′) = (SO(2p, 2q), SO(2p− 1, 2q), U(p, q)) satisfies

the assumptions of Theorem 4.5. In this case, Example 4.8 is recovered.
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Example 4.13. The triple (G,H,G′) = (SO(8, 8), SO(7, 8), Spin(1, 8)) satisfies the

assumption of Theorem 4.5. Via the standard basis of t∗ ' R8, we may write as

CK(Q ∩K) = {(a, 0, 0, 0; b, 0, 0, 0) : a, b ≥ 0},
CK(K

′) = {((x1, x2, x3, x4); ζ(x1, x2, x3,−x4)) : x1 ≥ x2 ≥ x3 ≥ |x4|},

where ζ is an outer automorphism of order 3 for the root system D4. Thus the criterion

(ii) in Theorem 4.5 is fulfilled, and Theorem 4.11 is verified in this case. Explicit

branching laws of irreducible square-integrable representations in the Q-series with

respect to (G,G′) = (SO(8, 8), Spin(1, 8)) are obtained in [17, Thm. 5.5] and in [26].
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Ann. Sci. École Norm. Sup. 6 (1973), 413–455.

[24] B. Kostant, S. Rallis, Orbits and representations associated with symmetric

spaces, Amer. J. Math. 93, (1971), 753–809.

[25] F. I. Mautner, Unitary representations of locally compact groups. I. Ann. of Math.

(2) 51, (1950), 1–25; II, ibid, 52, (1950), 528–556.

[26] H. Schlichtkrull, P. Trapa, D. A. Vogan, Jr., Laplacians on spheres, São Paulo

J. Math. Sci. 12, (2018), 295–358.

[27] R. Sjamaar, Convexity properties of the moment mapping re-examined,

Adv. Math. 138, (1998), 46–91.

[28] J. A. Vargas, Harish-Chandra modules of rank one Lie groups with admissible

restriction to some reductive subgroup, J. Lie Theory 20 (2010), 643–663.

[29] J. A. Vargas, Associated symmetric pair and multiplicities of admissible restriction

of discrete series, Internat. J. Math. 27, (2016), no. 12, 1650100, 29 pp.

[30] D. A. Vogan, Jr., Associated varieties and unipotent representations, Progr. Math.

101, (1991), 315–388, Birkhäuser.
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