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The Fourier transform of D-modules inter-

changes algebraic D-modules on complex vec-
tor spaces X = CV with those on their du-
als. It always preserves the holonomicity, how-
ever does not preserve the regularity in gen-
eral. In 1986, Brylinski proved that if a reg-
ular holonomic D-module is monodromic then
its Fourier transform is again monodromic and
regular holonomic. Namely the monodromicity
is a sufficient condition for preserving the reg-
ularity. So that I consider the following prob-

lems.

I What is a necessary and sufficient condi-

tion for preserving the regularity.

II How the irregularities of the Fourier trans-
form of regular holonomic D-modules are
described.

I proved the following results about these prob-
lems (this is a joint work with K. Takeuchi, [2],
3))-

Problem (I)

First, we proved that the Fourier transform
M of a regular holomomic D-module M is
monodromic in general. As a corollary of the
first result, we proved that if M” is again reg-
ular holonomic then M is monodromic. This
result is the converse of Brylinski’s theorem.
Therefore this result and Brylinski’s theorem
mean that the monodromicity is a necessary
and sufficient condition for preserving the reg-
ularity. Moreover we reproved the Brylin-
ski’s theorem by using the irregular Riemann-
Hilbert theorem of D’Agnolo-Kashiwara.
Problem (IT)

We showed that the enhanced solution complex
of the Fourier transform M” of a regular holo-
nomic D-module M is isomorphic to the di-
rect sum of some basic enhanced ind-sheaves.
Thanks to this formula, we obtained the fol-
lowing results. (i)The restriction of M” to C*-
conic Zariski open subset Q2 of the dual space Y,
which depends on the characteristic variety of
M, is an integrable connection. Namely, M"
does not have singularities in Q. (ii)M” has
a regular singularity (resp. an irregular singu-
larity) at 0 (resp. oo) along any complex line
passing through a nonzero point of . (iii)M"



has irregular singularities along generic normal
slice of Y \ Q. Moreover, we obtained the ex-
ponential factors appearing in the Hukuhara-
Levelt-Turrittin decomposition of M” at the

irregular points.
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