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Let G be a real simple Lie group not of type
A with g := Lie(G), and K the invariant part
of a Cartan involution of G. An irreducible
K-admissible representation of G on a Hilbert
space is called minimal if the annihilator of the
associated (g, K)-module is some special ideal
called the Joseph ideal.

of the Kostant—Kirillov orbit method, minimal

From the viewpoint

representations are supposed to be attached
to the minimal nilpotent coadjoint orbits, and
have been constructed in several ways mainly
by Torasso and Brylinski-Kostant.

I studied whether any minimal representation
is infinitesimally equivalent to one already con-
structed. For quaternionic groups of type E

it was shown to hold by Gan—Savin, and uni-

tary minimal representations are exhausted by
the result of Salmasian and Huang-Li. Based
on the idea by Gan—Savin, it is proven that
minimal representations which are already con-
structed exhaust all not necessarily unitary
minimal representations. Consequently, mini-
mal representations are infinitesimally equiva-
lent to unitary one and any simple Lie group
G not of type A admits at most four mini-
mal representations, and the constructions by
Torasso and Brylinski—-Kostant exhaust all pos-

sible minimal representations.
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