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ABsTRACT. This paper is mostly a survey paper, with few new results. The first
half is an exposition of the geometry of various homogeneous manifolds and the con-
struction of standard unitary representations Aq(\) attached to elliptic orbits. The
latter half discusses L2-harmonic analysis, in particular, discrete series representa-
tions for homogeneous manifolds and some applications of the criterion of “admissible
restriction” of Aq(A) to reductive subgroups.

A manifold with a transitive action of a Lie group is said to be a homogeneous
manifold. Global analysis on homogeneous manifolds has interacted with vari-
ous branches of mathematics, such as representation theory, differential geometry,

D-modules, functional analysis, algebraic geometry, automorphic forms, combina-
torics, integral geometry, and so on. A Lie group is an example of a homogeneous
manifold. First of all, we consider analysis on the simplest examples of Lie groups,
namely, the torus S' and the additive group of real numbers R. Classical harmonic
analysis (Fourier series [or Fourier transforms)]) is based on an expansion of a func-
tion (e.g. in L?(S') [or L%(R)]), into a series [or an integral, respectively] of the
form " agei® [or [ agei®*d¢]. Here we may regard = — €'® as a one dimensional
irreducible representation of the abelian Lie group S* [or R]. In this sense, Fourier
series [or Fourier transform] gives an irreducible decomposition of the unitary rep-
resentations L%(S!) of S! [or L?(R) of R]. This insight was realized first by H.
Weyl, who obtained the so-called Peter-Weyl theorem, which gives an explicit ir-
reducible decomposition of the Hilbert space of L2-functions on compact groups
(1927). Classification of irreducible (finite dimensional) unitary representations of
a connected compact Lie group is known as the highest weight theory of Cartan-
Weyl. With these examples as a prototype, unitary representation theory has been
developed in various directions maintaining strong links to harmonic analysis on
homogeneous manifolds.

A Lie group is said to be real reductive if its complexification is isomorphic to
that of a compact Lie group. For example, S! and R have an isomorphic complex-
ification C*. SU(n) and SL(n,R) have an isomorphic complexification SL(n,C).
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Thus, R, S, SL(n,R) and SU(n) are real reductive Lie groups. Our concern in
this article is with real reductive Lie groups. Here recent developments about the
interactive relations between

i) harmonic analysis on homogeneous manifolds of reductive type G/H
—

ii) unitary representation theory of a real reductive Lie group G

are explained from my point of view.

One of the basic problems in (i) is to obtain an explicit formula of the irreducible
decomposition of the unitary representation L?(G/H) of G. To solve this prob-
lem, it is important to determine discrete series representations for G/H, which
correspond to the discrete spectra in the abstract Plancherel formula. We write
Disc(G/H) for the set of discrete series representations. On the other hand, one of
the basic problems in (ii) is to classify the equivalence classes of irreducible unitary

representations of GG, namely, the unitary dual G. Obviously, Disc(G/H) is a (pos-

sibly, empty) subset of G. In this sense, the study of (ii) serves as a basic “tool” for
problem (i) for each subgroup H. Conversely, (ii) sometimes gives a better under-
standing for (i). For instance, “new” irreducible unitary representations of G were
sometimes found as elements of Disc(G/H) for certain subgroups H (e.g. [89]; see
remarks after Theorem 4.3). The current status of the above basic problems for (i)
and (ii) is briefly as follows:
i) There are known three methods for the classification of irreducible admissible
representation of G (precisely speaking, the classification of irreducible (g, K)-

modules)*!) However, the classification of the unitary dual G is not yet solved

completely except for some special Lie groups®?)

ii) Discrete series representations for reductive symmetric spaces have been un-
derstood fairly well. However, it is an open problem to find a criterion that a
homogeneous manifold G/H has a non-empty set of discrete series representa-
tions and to classify them, except for reductive symmetric spaces and some few
other cases (see §4 and §6).

This article is organized as follows: in the first half, we explain geometry of
homogeneous manifolds and construction of irreducible unitary representations at-
tached to elliptic orbits; in the latter half a review of recent results due to the
author is given. To be more precise, we explain in §1 the geometry of various
homogeneous manifolds of reductive type. This part is particularly expository,
and is presented as comprehensively as possible without special knowledge. We
shall discuss representations associated to a homogeneous manifold with various
kinds of invariant geometric structure, namely, complex structure in §2, (pseudo-
JRiemannian structure in §3, symmetric structure in §4 and para-Hermitian struc-
ture in §5, respectively. First, we give an exposition on recent results by Schmid,
Wong that construct (almost irreducible) representations in the space of Dolbeault
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cohomology groups over a homogeneous manifolds of reductive type with complex
structure as a vast generalization of the Borel-Weil-Bott theorem in §2. Here, we
adopt notation with emphasis on the orbit method, and explain its connection with
the strategy of Vogan on the study of the unitary dual and derived functor modules
defined by Zuckerman. The representations constructed here are often isolated in
the unitary dual in the Fell topology and are supposed to be ‘useful’ for the de-
scription of discrete series representations for homogeneous manifolds of reductive
type. In §3, we discuss harmonic analysis on Riemannian homogeneous manifolds
and the Blattner formula of discrete series representations and then give examples
of Sunada’s problem on discrete spectra of the Laplacian on a non-compact Rie-
mannian manifold. In §4, we construct discrete series representations for a certain
class of homogeneous manifolds of reductive type, which are principal bundles over
symmetric spaces with compact fiber. This construction covers all discrete series
representations obtained by Harish-Chandra (a group manifold), Flensted-Jensen
(a symmetric space), Oshima-Matsuki (a symmetric space), and Schlichtkrull (a
principal bundle over a symmetric space with compact fiber). In §6, we introduce a
notion (we shall say admissible) for branching rules of unitary representations. This
gives an algebraic framework to study a basic problem: “Find the irreducible decom-
position of a unitary representation when restricted to a subgroup.” Furthermore,
we discuss the existence problem of the discrete series representations for some
spherical non-symmetric homogeneous manifolds as an application of the criterion
of “admissible restrictions”.

The author expresses his sincere gratitude to Professor Toshio Oshima, Hisayosi
Matumoto, Kyo Nishiyama, Masatoshi lida, Hideko Sekiguchi for reading this ar-
ticle carefully and providing comments.

1. Homogeneous manifolds of reductive type

In this article, we shall assume that a Lie group is linear, that is, it is realized as
a closed subgroup of the general linear group GL(n,R) and sometimes abbreviate
an adjective ‘linear’ . Let g be the Lie algebra of the Lie group G and gc ~ g®C its
complexification. Analogous notation is used for other groups denoted by uppercase
Roman letters.

A connected closed subgroup G of GL(n,R) is said to be a real reductive Lie
group if it is stable under the standard Cartan involution g — %g~!. Moreover, G is
said to be a semisimple Lie group if the center Z(G) :={g € G : gr = xzg(Vz € G)}
of G is discrete. Next, suppose that H and G have at most finitely many con-
nected components. The coset space G/H is said to be a homogeneous manifold of
reductive type if H and G are realized as closed subgroups of GL(n,R) such that

GL(n,R) D G D H are stable under the Cartan involution g — g1 (cf. [74]). We
have adopted a definition of a real reductive (linear) Lie group by using a realization
in GL(n,R) because of its simplicity, but we could also give an intrinsic definition,
namely, by the condition that the adjoint representation Ad: G — GL(g) is com-
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pletely reducible. We also note that our assumption that G is connected can be
relaxed to the one that GG is contained in a connected complex Lie group G¢ with
the Lie algebra gc.

Example 1.1. The following Lie groups G are real reductive linear Lie groups.

G = GL(n,R), SU*(2n), U(p,q), SO*(2n), SO(p,q), Sp(n,R), Sp(p,q).

In view of the natural embedding GL(n,C) C GL(2n,R), we see that complex
semisimple Lie groups such as G = SL(n,C), SO(n,C), Sp(n,C) are also real
reductive Lie groups.

Next, here are examples of homogeneous manifolds of reductive type:

GL(2n,R)/GL(n,C) = the space of complex structures on R*",

U(p,q;F)/U(p — m, q;F) = the indefinite Stiefel manifold where F = R, C, H,

Sp(n,R)/U(n) = the upper half space.
Here H denotes the quaternionic number field and U(p, ¢; H) ~ Sp(p, q).
An involutive automorphism 6 of a real reductive (linear) Lie group G' (namely,

6 € Aut(G),0% = id) is said to be a Cartan involution if K := G? = {y € G :
0g = g} is a maximal compact subgroup of G. (If there is no compact factor in G,

then GY is automatically maximal provided G? is compact.) Conversely, given a
maximal compact subgroup K of GG, there exists a unique involution # of GG such that
K = G?. From now on, a maximal compact group K C G is always supposed to be
defined by a Cartan involution 6 € Aut(G). Moreover, if G/H is a homogeneous
manifold of reductive type, we can and do take a Cartan involution # of G such
that 6H = H. In particular, 0|y is also a Cartan involution of H, and K N H is
a maximal compact subgroup of H. Next, the differential of a Cartan involution
6 € Aut(G) will be denoted by the same symbol § € Aut(g). As 6% = id, the possible
eigenvalues of § € Aut(g) are both 1 and —1. Correspondingly, we write g = €+ p
for the eigenspace decomposition of A, which is called a Cartan decomposition of
the Lie algebra g. There is a G-invariant non-degenerate symmetric R-bilinear form
B on g, such that

Bg:gxg—R, X,Y — —B(X,0Y)

is symmetric and positive-definite. If G is a simple Lie group, B coincides with the
Killing form of g up to positive multiples.

Example 1.2. Suppose G is a real reductive linear Lie group. We realize GG
as a subgroup of GL(n,R) such that G is stable under g — ‘~1. We define
6 € Aut(G) by 6(g) :== 9! (g € G). Then the differential § € Aut(g) is given by
6(X):=—'X (X € g C gl(n,R)). We set
K =0(n)NaG,
t = g N {real skew symmetric matrices},
p = g N {real symmetric matrices},

B(X,Y) := Trace(XY) (X,Y €g9),

Bg(X,Y) := Trace(XY) (X,Y €g).
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It is easy to see that By is positive definite.

The Cartan decomposition g = € + p of a real reductive Lie algebra g can be
lifted to a decomposition of a real reductive Lie group GG, namely, we have a diffeo-
morphism:

Kxp—>G, (,X)— kexp(X).

For example, if G = GL(n,R), then this decomposition coincides with the polar
decomposition

GL(n,R) ~ O(n) x {positive definite symmetric matrices},

as is well-known in linear algebra. This decomposition theorem for a group manifold
is generalized to the case of a homogeneous manifold in the following lemma (e.g.
[90], [49]).

Lemma 1.3. A homogeneous manifold of reductive type G/H is diffeomorphic to
the K-homogeneous vector bundle over the compact homogeneous manifold
K/H N K with typical fiber p/b N p.

We enumerate typical examples of homogeneous manifolds of reductive type.

Example 1.4. Let G be a real reductive Lie group and ¢ an automorphism
of G of finite order. Suppose that H is the fixed point subgroup of o; namely,
G° = {g€ G : 0g=g} or its open subgroup. Then a homogeneous manifold
G/H is of reductive type. In particular, if the order of o is 2, G/H is called
a reductive symmetric space. Moreover, if GG is a real semisimple Lie group, it is
called a semisimple symmetric space.

Here are examples of semisimple symmetric spaces defined by an automorphism
o of order 2:

G x G/diag(G) (group manifold), SL(p+¢,R)/SO(p.q), SL(n,C)/SL(n,R).

Here are examples of homogeneous manifolds of reductive type defined by an auto-
morphism o of order 3:

G x G x G/diag(G), GL(3,R)/(RX)3, G2(C)/SL(3,C).

Example 1.5. For an element X of the Lie algebra g, we define a subgroup of a
Lie group G by
L=G(X):={geG:Ad(g)X = X}.

The adjoint orbit of G through X is denoted by Ad(G)X (C g), which is a homoge-
neous manifold G/G(X). Suppose G is a real reductive Lie group. Then the adjoint
representation Ad: G — GL(g) is isomorphic to the contragredient representation
Ad*: G — GL(g*) through the bijection g ~ g* given by an Ad(G)-invariant non-
degenerate bilinear form B on g. Therefore, we can identify the adjoint orbit with
the co-adjoint orbit provided G is real reductive. In particular, any adjoint orbit
of a real reductive Lie group carries a G-invariant symplectic structure induced
from that on the coadjoint orbit. If X is semisimple (namely, if ad(X) € End(g)
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is a semisimple linear transformation), then Ad(G)X ~ G/G(X) is said to be
a semisimple orbit, which is a homogeneous manifold of reductive type. Moreover,
if all the eigenvalues of ad(X) € End(g) are purely imaginary (resp. real), then
the semisimple orbit Ad(G)X is called an elliptic orbit (a hyperbolic orbit, respec-
tively).

As a special case of Example (1.5), we review how complex structure is defined
on the elliptic orbit Ad(G)X ~ G/G(X). Let

[ =g(X):={Y €g:[X.Y] =0}, le=ge(X)=18C,

u=u(X) := the direct sum of eigenspaces (C gc) with positive eigenvalues

of v—1ad(X) € End(gc),
q = q(X) = gc(X) +u(X) (C gc).

As X is an elliptic element, there exists a Cartan involution 6 satisfying X = X.
In particular, we have #q = ¢. The parabolic subalgebra q is said to be a 6-
stable parabolic subalgebra of gc, with emphasis on this property (e.g. [101]). Let
Q@ be a connected complex subgroup of G¢ with the Lie algebra q. Then we have
GNQ =G(X) and g+ q = gc, so that an elliptic orbit Ad(G)X is embedded into
an open subset of the flag manifold G¢/Q:

Ad(G)X ~G/G(X) C Ge¢/Q (generalized Borel embedding).

Hence, a G-invariant complex structure on the elliptic orbit Ad(G)X ~ G/G(X) is
defined as an open subset of the complex homogeneous manifold G¢/Q. We note
that if we replace X by —X, we have G(X) = G(—X) (= L) so that G/G(X) is
diffeomorphic to G/G(—X). Note that the complex structure on G/L ~ G/G(X)
is complex conjugate to that on G/L ~ G/G(—X). In general, there are finitely
many G-invariant complex structures on the elliptic orbit G/L. Each G-invariant
complex structure is given by a choice of a #-stable parabolic subalgebra with fixed
real Levi subgroup L (= G(X)). Geometric quantizations corresponding to different
polarizations which are not K-conjugate to one another yield different ‘series’ of
unitary representations of G (§2).

Example 1.6 (indefinite complex projective space). The natural representation of
the general linear group G¢ = GL(n,C) induces a transitive action on the space
of complex lines in C™. This means that the projective space P*"~1C is realized as
a homogeneous manifold of G¢. Let () be a maximal parabolic subgroup of G,
consisting of matrices whose (7, 1)-components (2 < j < n) are 0. Then @ is the
isotropy subgroup at [1:0: -+ : 0] € P* C and we have a biholomorphic map
Gc/Q ~ P"~1C. We fix p,q with p+¢q = n (p,q > 1), and define an indefinite
Hermitian metric on C™ with the signature (p, ¢) by

(z,w) == 24W1 + +++ + 2pWp — Zp41Wpt1 — *** — 2nWy, (2, w € C™).

Let PP~19C be the set of complex lines contained in the positive cone {z € C" :
(2,2) > 0} U{0}. Clearly, PP~ 14C is an open set of P" 1C. The indefinite unitary
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group G := U(p,q) (C Gc = GL(n,C)) acts on PP~ 1L4C transitively with isotropy
subgroup L ~ U(1) x U(p — 1,q). Thus we obtain an open embedding

G/L=U(p,q)JUL)xU(p—1,q) ~PP~1HC c P"'C ~ G¢/Q.

The case p = ¢ = 1 corresponds to a well-known example that “the Poincaré plane
is embedded in the upper half plane of P*C”. Among all elliptic orbits of U(p, q),
PP~1:4 has the lowest dimension. We shall deal with the unitary representations of
G realized on PP~14 in Example 2.5 in §2.

A homogeneous manifold of reductive type always carries a G-invariant pseudo-
Riemannian metric induced from the bilinear form B. Furthermore, some of them
carry some other geometric structures such as G-invariant complex structure, G-
invariant symplectic structure, G-invariant Riemannian metric and so on. Here are
subclasses of homogeneous manifolds of reductive type, which we shall need later.

3 G-invariant 3 G-invariant 3 G-invariant
Riemannian metric symplectic structure complex structure
SSS SO
RSS HO EO
SGM PHSS

HSS
Figure 1.7

SSS : semisimple symmetric spaces,
RSS : Riemannian symmetric spaces,
SO : semisimple orbits,
EO : elliptic orbits,
HO : hyperbolic orbits,
SGM : semisimple group manifolds,
PHSS : para-Hermitian symmetric spaces,

HSS : Hermitian symmetric spaces.

2. Unitary representations of a real reductive Lie group
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The classification of irreducible unitary representations of a real reductive Lie
group is still an open problem, but some of important series of unitary representa-
tions have been constructed in a systematic way.

From the view point of representation theory, a good insight into the unitary
dual was given by Vogan’s strategy ([104],[106]), which is based on functors in-
ducing from representations of smaller groups to those of larger groups (preserving
irreducibility and unitarity) playing the role of a weaver’s warp and which enables
us to concentrate on the end of the warp (‘small unitary representations’ ~ unipo-
tent representations of smaller groups). One extremal case of the functors (= “the
weaver’s warp” ) is classical parabolic induction which constructs principal series

representations. The opposite extrem is cohomological parabolic induction, which
is a generalization of the Borel-Weil-Bott theorem. Main properties of cohomo-
logical parabolic induction have been investigated since the late 70’s ([101], [104],
[45], [113]). Translation functors ([120]) and coherent continuation of representa-
tions are also important in Vogan’s strategy which play the role of “woof” of the
unitary dual. In this section, we explain the family of standard unitary representa-
tions which are obtained by taking the Zuckerman’s derived functor as ‘a weaver’s
warp’, and by taking one dimensional representations as ‘the edge of the warp’.
Our exposition here follows the geometric construction due to Schmid and Wong
([117]), which was the original model of Zuckerman’s algebraic construction. This
construction is regarded as the geometric quantization of an elliptic orbit equipped
with a complex structure as explained in §1.

Before entering rigorous arguments, we look over both the more general frame-
work and very special examples. First, we recall the orbit method in the unitary
representation theory of Lie groups. Let us consider the contragredient representa-
tion Ad*: G — GL(g*) of the adjoint representation of G, Ad: G — GL(g). This
non-unitary finite dimensional representation often has a surprising intimate rela-
tion with the unitary dual é, the equivalence classes of irreducible representations
of G (which are infinite dimensional in general). We define an equivalent relation
in g* by

A g e G, Ad* (9)N = p.

The set of equivalence classes is denoted by g*/G, the set of coadjoint orbits.
For example, if G = R", then g*/G ~ R™, and we have a natural bijective

correspondence between the unitary dual G and /—1 g*/G ~ /—1R™. This abelian
example is generalized to the case of nilpotent Lie groups by Kirillov. The following
theorem played an initial role in the orbit method by Kirillov-Kostant in the '60 s

([58]).

Theorem 2.1 ([44]). Let G be a connected and simply connected nilpotent Lie
group. Then there is a natural bijection between the coadjoint orbit g*/G and the
unitary dual G.

There is known a generalization of Theorem (2.1) for a solvable group G of the
exponential type. On the other hand, known examples suggest that if G is a real
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reductive Lie group (an opposite extremal to a solvable Lie group), then the set of
coadjoint orbits g*/G (more precisely its subset with some integral conditions) still

gives a fairly good approximation of the unitary dual G. In particular, the series of
unitary representations II(G, A) that we shall define in this section are interpreted
as representations attached to an integral elliptic orbit Ad*(G)\ € g*/G. For
this reason, our formulation uses the notation II(G, \) with emphasis on the orbit
method. An advantage in this formulation is that we have an overview of the set
of (irreducible) unitary representations constructed in this section as a subset of

the unitary dual é, in terms of g*/G. A disadvantage is that we leave aside a
precise description of unitary representations with singular parameter (cf. Problem
(2.10)).

Next, we consider a very special example. The space of holomorphic functions
O(P'C) on PIC consists of constant functions by Liouville’s theorem. Because
P1C is a homogeneous manifold of SU(2), this gives the trivial one dimensional
representation of SU(2) on the representation space on O(PC). On the other
hand, the space of holomorphic functions O(#H) on the Poincaré plane # is infinite
dimensional. Because  is a homogeneous manifold of SL(2,R), this gives an in-
finite dimensional representation of SL(2,R) on O(#), which is almost irreducible
(in fact, there are two irreducible subquotients). Furthermore, the Hardy space,
which is a subspace of O(#H), gives rise to an irreducible unitary representation
of SL(2,R). Though there is an apparent difference between O(P'C) and O(H)
(or Hardy space), namely dimension, they play essentially the same role in con-
structing (almost) irreducible representations of SU(2) and SL(2,R), respectively.
More generally, if we consider holomorphic sections of equivariant holomorphic line
bundles over P'C or H, we obtain a family of representations with line bundle pa-
rameters. This is a prototype of a standard construction of unitary representations,
of which we will give an exposition in the following. We note that H is an elliptic
orbit of SL(2,R) and % C P!C is the Borel embedding. However, these examples
are too special in the sense that all representations obtained have highest weight
vectors. For more general construction of irreducible unitary representations, we
need to take cohomology groups in higher dimensions into account. We introduce
a rigorous definition as follows:

Suppose that G is a real reductive Lie group. Since there is an Ad(G)-invariant
non-degenerate bilinear form B on g, we identify g* with g as G-modules via the
G-invariant R-linear bijection g* > A +— X € g (here B(X,,Y) = A(Y), VY € g).
Through this identification, the notions defined for g in §1 are translated into those
for g*. For example, we say v/—1\ € g* is elliptic if X_ /=1x € g is elliptic. As in
§1, an elliptic element X _ ,—, gives rise to a reductive subgroup L = G(X_, ,—,)
and a @-stable parabolic subalgebra ¢ = q(X_ —,) = lc + u = ge(X_ /=3,) +
u(X_ /=,), for which we also write L = G'(\) and q(A) = gc + u(A), respectively.

Then the coadjoint orbit Ad*(G)\ ~ G/G()) carries a G-invariant complex
structure by the parabolic subalgebra q()\). We define p(u) € /—1g(\)" by

(20(u), Y) = Trace(ad(Y ) (¥ € g().
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We say v/—1XA € g* is integral, or the orbit Ad*(G)A is integral, if the one di-
mensional representation of Lie algebra A + p(u): g(A) — C lifts to the character
Xatp(u): G(A) = C*. The character x4 ,() will be simply denoted by Cy4 (). Let

G x Cyyp) be the G-equivariant holomorphic line bundle over G /G()) associated
G\

to the character Cy ). Then we have a natural G-action on the Dolbeault coho-

mology group H%(G/G()\),C)\_,_p(u)) (7 € N) with coefficients in the G-equivariant
holomorphic line bundle G x Cyy,u) — G/G(A). This module is finite dimen-
G(A)

sional by the theorem due to Kodaira and Serre if G/G()) is compact. On the
other hand, it is in general infinite dimensional (possibly zero) if G/G()\) is non-
compact. If G/G()\) is non-compact, there arise analytic difficulties, concerning
the closed range property of the d operator in the Dolbeault complex and conse-
quently it is not clear whether the cohomology group is Hausdorff or not. As was
given in Lemma (1.3), the homogeneous manifold G/G(\) carries the fiber bundle
structure p/g(A) Np — G/G(A) = K/G(A) N K. In extremal cases, we have

(i) The fiber is one point <> the complex manifold G/G(\) is compact.

(ii) The base space is one point <the complex manifold G/G(A) is a Stein manifold.
There are no analytic difficulties concerning the closed range property of 0 in these
special (opposite extremal) cases. In fact, the resulting representations of G are
finite dimensional representations of a compact Lie group, which coincide with
the construction of the Borel-Weil-Bott theorem in the case (i); holomorphic dis-
crete series representations which coincide with the Harish-Chandra construction
in the case (ii) (Example (2.7); note that cohomology appears only in the degree
j = 0). Taking the above special cases (i),(ii) as a prototype, many people have
tried to overcome the analytic difficulties in a general case, and also studied al-
gebraic analogue of the corresponding representations. Geometric construction of
discrete series representation for a group manifold (see Example 2.8; also see §3
for the definition of discrete series representations) was first carried out by Schmid
in the 70’s under the assumption that G()) is compact and later by Wong in the
general case where G(\) is not necessarily compact.

Theorem 2.2 ([13],[93],[94],[34],[77],[29],[101],[117]). Suppose that G is a real re-
ductive Lie group and G/G(X) ~ Ad*(G)X C v/—1g* is an integral elliptic orbit.
Let S be the complex dimension of the flag manifold K/G(\) N K.

1) The Dolbeault cohomology group Hg(G/G()\), Cxtp(u)) is naturally equipped
with a Fréchet topology as a quotient space of the Dolbeault complex with
C coefficients. Thus a continuous representation of G is naturally defined
on H(‘%(G/G()\), C)\+p(u))-

2) HL(G/G(N),Crppuy) =0if j # 8.

3) The underlying (g, K)-module of HS(G/G(X),Cxipw)) Is isomorphic to the
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Zuckerman derived functor module Rg()\)((CA) as (g, K)-modules.

4) (generalized Blattner formula)
H3 (G/G(A), Caypu) ¢

NZ )STHL(K/G(A) N K, S™ (M) /u(A) N8) ® Cyp)-

Let us explain briefly the terminologies used in Theorem (2.2). We say that
(p, V) is a (continuous) representation of G if V' is a complete locally convex linear

topological space over C and if p: G — GL(V) is a homomorphism such that
GxV =V, (9,X)— p(g)X is continuous. One might expect an intimate relation
between a continuous representation of Lie group and its “differential representation
dp: g — End(V)” , as an analogue of finite dimensional cases. For its justification,
we encounter the following two problems:

(i) Is “the differential representation” well-defined if dim V' = oo?

(ii) Conversely, does a given differential representation of the Lie algebra lift to

a representation of a Lie group in an appropriate sense ?

If G is a real reductive Lie group, these two problems are settled simultaneously,
with the help of representations of a maximal compact subgroup K of G ([26]). To
be more precise, suppose a continuous admissible representation (p, V') of G is given;
we decompose V' as a representation of K into irreducible components and define a
subspace Vi by the algebraic direct sum of irreducible components. V' is said to be
admissible (K-admissible in the sense of §6; cf. Example (6.4) (1)) if each K-type
occurs with finite multiplicity. Then Vi is a dense subspace of V. Moreover, the
differential of p, dp: g — End(Vk), and its restriction to K, pjx: K — GL(Vk),
are well-defined on Vi. Thus Vg is endowed with both g-module and K-module
structures with some compatibility conditions. The (g, K)-module Vi is said to
be the underlying (g, K) -module of V (or the Harish-Chandra module of V). Let

us illustrate Vx C V in a simple example where G = K = S, V = L2(S1) (see
also Introduction). In this case, each element of Vi is a function which is a finite
linear combination of trigonometric functions on S!. Consequently, each element
of Vi is differentiable in a usual sense and also differentiable in the sense of the
Fréchet differential in L?(S'). Vi is a dense subspace of V by the theory of Fourier
series. Conversely, if a (g, K)-module W is admissible then there exists a topology
on W such that a continuous representation of G' on the completion W of W is
defined with W ~ W. The representation of G on W is called a globalization of
the (g, K)-module W. The point is that representation theoretic properties such as
composition series and unitarizability of continuous admissible representations of a
real reductive Lie group G can be investigated at the level of (g, K)-modules and
that the latter object can be studied by purely algebraic methods. We note that a
globalization of a (g, K )-module is not unique; however, there exists the “maximal”
one, known as the maximal globalization, due to Schmid ([95]).
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The functor RZ, (7 € N) in Theorem (2.2) (3) is the so-called Zuckerman’s derived
functor, which is a covariant functor from the category of (I, LNK)-modules (strictly

speaking, the category of metaplectic ([, (L N K)~)-modules) to the category of
(g, K)-modules ([101], [104], [45], [113]). We do not go into details of the functor

R{,, which gives “an induced representation” from a representation of the subgroup
L to that of G on the level of Harish-Chandra modules, and is an algebraic analogue
of geometric quantization of a semisimple orbit G/L (see Figure 1.7), which is
equipped with a polarization by a particular choice of a parabolic subalgebra gq.
Let @ be a parabolic subgroup of G¢ corresponding to q. Although our concern
here is with a totally complex polarization corresponding to a 6-stable parabolic
subalgebra ¢, we should mention that Zuckerman’s derived functor modules are
defined also for more general polarization; in particular, in the opposite extremal
case (a totally real polarization) where QNG is a real parabolic subgroup of G, the

Zuckerman’s derived functor R{, with 7 = 0 gives an ordinary parabolic induced
representation (e.g. [101]).
Returning to our setting where the polarization is totally complex (imaginary),

the definition of Rg due to Zuckerman is modeled on an algebraic analogue (a
sort of Taylor series expansion) of Dolbeault cohomology groups. Theorem 2.2 (1)

and (3) show that Rg is the right object for geometric quantization. Furthermore,
it is known that Hg(G/G()\),(C,\+p(u)) is a maximal globalization of Rg(A)(CA)7

which is a stronger form of (1) of Theorem 2.2 (Wong [117], Kashiwara-Schmid).
In (4), S™ denotes the m-th homogeneous symmetric tensor space. The right
side of (4) is computed by the Borel-Weil-Bott-Kostant theorem of a compact Lie
group. The formula (4) is a generalization of the Blattner conjecture (formula) for
discrete series representations. The proof of the generalized Blattner formula is also
known for other constructions of representations which are isomorphic at the level
of underlying (g, K)-modules by using Zuckerman’s derived functor modules [101]
or by using D-modules [10].

One of the most important developments in unitary representation theory in
the 80’s was that the Zuckerman conjecture was proved by Vogan and Wallach
independently. In our formulation it is stated as follows:

Theorem 2.3 ([102],[111]). Suppose that A € /—1g* is integral and elliptic. Let
q = q(\) be the corresponding 0-stable parabolic subalgebra. Then there exists a
Hermitian inner product on the (g, K)-module R (Cy), such that the action of g
is skew-symmetric.

We note that the assumption of the parameter here is “fair” in the sense of Vogan
([105]). By Theorem (2.2) and Theorem (2.3), if v/—1\ € g* is integral and elliptic,
there exists a unitary representation II(G, A) of G whose underlying (g, K')-module
is isomorphic to Hg(G/L, Crip)) K-
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Replacing A with Ad*(g)A, we have a unitary representation TI(G,Ad*(g)\)
which is unitarily equivalent to II(G, A) by an inner automorphism. Consequently,
we obtain the map which fits into the philosophy of the orbit method:

(2.4)  {integral elliptic orbits}—{equivalence classes of unitary representations

Ad*(G)A — TI(G, \).

If the parameter A is sufficiently regular then TI(G, A) is an irreducible unitary
representation (cf. Problem 2.10). Furthermore, a recent result due to Vogan ([107])
asserts that most of the representations II(G, \) are isolated in the Fell topology of

G
Here is an example of II(G, \) attached to an elliptic orbit as in Example 1.6 in

§1.

Example 2.5. Let PP~14C = U(p,q)/U(1) x U(p — 1,q) be the indefinite com-
plex projective space in Example 1.6. Then PP~14C carries the structure of a
holomorphic vector bundle over the complex projective space PP~1C,

CY — PP~14C — PPIC.

In particular, the complex dimension of the base space is p — 1. Let  be the
canonical line bundle of PP~14C. Then Hg_l(IF’pfl’q(C,Q@") (n € Ny) is an ir-
reducible Fréchet representation of U(p,q) and its unitarization is isomorphic to
(U (p, q), (2n — 1)h) in our notation. Here h € y/—1g* is an elliptic element de-
fined by (h, E;j) = dij (nd1; — 1) for each matrix unit £;; € gc ~ gl(n,C). If ¢ = 0,
then II(U(p, q), (2n — 1)h) is a polynomial representation of U(p) on the symmetric
tensor S™(CP), by the Borel-Weil-Bott theorem. If p = 1, then II(U (p, ¢), (2n — 1)h)
is a holomorphic discrete series representation (Example (2.7)). If p > 1 and ¢ > 0,
then II(U (p, q), (2n — 1)h) is a non-tempered unitary representation of U(p, q) (see
[113] for definition). We note that examples introduced at the beginning of this
section correspond to the case with (p,q) = (2,0), (1,1) and n = 0.

In the following Example (2.6) ~ (2.9), we assume G is a real reductive linear
Lie group.

Example 2.6 (contribution to the de Rham cohomology groups of locally sym-
metric spaces). Let Q be the canonical line bundle of the complex manifold G/L
whose complex structure is defined by a f-stable parabolic subalgebra q = I¢ + u.
Then HZ(G/L,Q) is an irreducible Fréchet representation of G and its unitariza-
tion is unitarily equivalent to II(G, p(u)). The underlying (g, K )-module is isomor-
phic to the (g, K)-module A, (see [109] for notation), which has non-zero (g, K)-
cohomology groups due to a result of Vogan-Zuckerman ([109]). Moreover, by using
the Matsushima-Murakami isomorphism ([12], [71]), all the unitary representation
that contribute to the de Rham cohomology groups of a compact locally Riemann-
ian symmetric space, is one of the following:

of G},
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{II(G, p(u)) : g = lc + u is a #-stable parabolic subalgebra of gc}.
For example, if G = SL(2,R), then there are three f-stable parabolic subalgebras
of g up to conjugation by Ad(G). Corresponding to them, there are three unitary
representations (the one dimensional trivial representation, holomorphic discrete
series, and anti-holomorphic discrete series) that contribute to the de Rham coho-
mology groups of a closed Riemannian surface with genus > 2.

Example 2.7 (holomorphic discrete series, [26]). Suppose that A € \/—1g* is in-
tegral and elliptic. Assume that G(\) coincides with a maximal compact subgroup
K of G. We note that this occurs only if € has a nontrivial center. Then G/G(\) is
a non-compact Hermitian symmetric space and in particular a Stein manifold. Dol-
beault cohomology groups are non-zero only if S = 0 and the resulting cohomology
is the space of global holomorphic sections. If A is sufficiently regular, K-finite vec-
tors of HY(G/G (), Cx4p(u)) are square-integrable. The completion with respect to
the L2-norm is a unitary representation II(G, \). Such representations are called
holomorphic discrete representations of G.

Example 2.8 (discrete series for group manifolds (Harish-Chandra); cf. Langlands
conjecture; [27], [93], [94], [34], [77]). Let G be a real reductive Lie group. Then
we have

Disc(G) = {II(G, A) : X is integral and elliptic, G()) is a compact torus}.

We note that there exists an integral and elliptic element A such that G(X) is
a compact torus if and only if rank G = rank K. That is, Disc(G) # 0 if and
only if rank G = rank K. Geometric construction in the L?-cohomology group was
predicted by Langlands and was proved by Schmid in ’76.

Example 2.9 (discrete series for symmetric spaces, [69], [21], [105]).  Any dis-
crete series representation 7 for a semisimple symmetric space G/H is of the form
7 ~ II(G, \), with a suitable choice of an elliptic element A\ € /—1(¢/h N €)* (C
v/—18*) such that G(\)/G(A)NH is a compact torus. We note that the existence for
such A is assured if and only if rank G/H = rank K/HNK. That is, Disc(G/H) # ()
if and only if rankG/H =rank K/H N K.

The set of unitary representations treated in Examples (2.7), (2.8) and (2.9) has

an inclusive relation in G as
Example (2.7) C Example (2.8) C Example (2.9).

In §4, we shall construct discrete series representations in a more general framework
so that it contains Example (2.9) as a special case, building on the method of
Flensted-Jensen ([20]) and on vector bundle valued Poisson transforms. We end
this section with some open problems related to the unitary representation II(G, \).

Problem 2.10. (1) Find a criterion on A such that H(G/G(X), Cxtpw)) # 0.

2 ind a criterion on A such that Hz , Cripy) 18 Irreducible. so fin
Find iteri A h th HgGG)\(C_,_p()"d'bl Also find
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a criterion such that two representations are equivalent to one another.
(3) Construct an explicit inner product in the underlying (g, K)-module of the
Dolbeault cohomology group H5 (G/G(X), Cyy ) Which is infinitesimally unitary.

Here are some comments in order. If the parameter A is sufficiently regular,
then Hg(G/G(A),C)\_,_p(u)) is a non-zero irreducible module and is unique up to
equivalence. Therefore Problem (2.10)(1) and (2) are interesting only in the case
where the parameter is singular (we should note that representations with singular
parameter are important and mysterious in the current status of the classification
problem of the unitary dual). In order to study Problem (2.10)(2), the theory of
D-modules is helpful to some extent (e.g. G is of type A), but general theory still
does not give a final answer. Problem(2.10)(1) is also important in the classification
of discrete series representations for semisimple symmetric spaces (more generally,
for vector bundles over them (§4)). So far, several approaches for Problem 2.10 (1)
have been taken by Vogan, Oshima, Matsuki, the author and so on ([100], [101],
[48], [68], [70], [105], [51|chapter 4 ,5) in special settings. But the final answer in
the general case remains open. Here are some approaches for Problem 2.10 (the
following methods 1,2,3 are based on translation principle together with some other
ideas). We note that we are interested in the case where A + p(u) — 2p(un €) is
not A (€)-dominant and where X is outside the weakly good range in the sense of
Vogan [105](the former corresponds to the Blattner parameter and the latter to the
Harish-Chandra parameter in the case of discrete series representations for a group
manifold).

1. Jantzen-Duflo’s 7 invariants and wall crossing (Vogan’s U, calculus) (e.g.
100, [101]),

2. explicit description of leading exponents of the asymptotic behavior of spher-
ical functions combined with translation principle ([48]),

3. axiomatic description of the vanishing of Rf (Cy) in the coherent continua-
tion between singular parameters which are not equisingular ([51] Chapter 5),

4. a method of an explicit calculation of the Blattner formula ([51] Chapter 4,
[70]),

5. analysis on symmetric spaces ([68]).

3. Noncommutative harmonic analysis on Riemannian homogeneous
manifolds

Suppose that G/H is a homogeneous manifold of reductive type. A G-invariant
pseudo-Riemannian metric on G/H (see §1) induces a G-invariant volume element
dz. Let L?(G/H) be the Hilbert space of square integrable functions on G/H with
respect to the measure dr. Then the left translation G x L2(G/H) > (g, f(x)) —
f(g~1z) € L2(G/H) defines a unitary representation G on the representation space
L?(G/H). This representation is called a (quasi) regular representation of G' on

G/H. In general, quasi-regular representations are not irreducible. We say that =
is a discrete series representation of G/H if an irreducible representation 7 of G is
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realized in the closed subspace of L2(G/H). Let Disc(G/H) (C G) be the set of
discrete series representations for G/H. Suppose a unitary representation (7, V;)
of H is given. Similarly, we define the Hilbert space L?(G/H,V,), consisting of L2-

sections for the associated vector bundle G x V; and denote by Disc(G/H,7) C G
H

the set of discrete series representations for L?(G/H,V,). “The Plancherel theorem
for G/H” means a formula decomposing the quasi-regular representation L*(G/H)
into irreducible representations of G, and is a fundamental problem in L2-harmonic
analysis on a homogeneous manifold G/H. In the case of a semisimple symmetric
space (as a generalization of a group manifold), it is solved by Peter-Weyl (com-
pact group manifolds), Gel’fand-Naimark (classical complex semisimple group man-
ifolds), Harish-Chandra (real semisimple group manifolds), Helgason (Riemannian
symmetric spaces), and Oshima (announcement for semisimple symmetric spaces)
([84], [24], [27], [33], [82]). The determination of discrete series plays a very impor-
tant role in the Plancherel formula in the above cases.

First of all, we consider the case that H is a compact subgroup. Then there is
a G-invariant Riemannian metric on G/H induced from the bilinear form By (§1).
Because H is compact, we have L?(G/H) C L?(G); so we can reduce:

Plancherel theorem for L*(G/H)

— Plancherel theorem for L*(G)

+ an explicit computation of finite dimensional representations.

Namely, let K be a maximal compact subgroup of G containing H. Then we have

L’(G/H) ~ P L*G/K.7)
T€Disc(K/H)

by induction by stages on induced representations. In particular, discrete series
representations are given by

Disc(G/H) = U Disc(G/K, 1) (C Disc(Q)).
T€Disc(K/H)

On the other hand, in view of the description of (generic) tempered representa-
tions in terms of cuspidal parabolic induction (see [113] for example) which are
the support of the Plancherel measure on a group manifold G ([27]), the con-
tinuous spectrum on L?(G/H) is also determined by studying a similar problem
about discrete spectrum for smaller groups (Levi subgroups). Therefore, based on
the Plancherel theorem of L?(G) due to Harish-Chandra, we can obtain an abstract
Plancherel theorem of L2(G/H) if we determine Disc(K/H) and Disc(G/K, ) (and
similar problems for smaller groups). From Frobenius reciprocity, Disc(K/H) is ob-
tained by computation of finite dimensional representations, and Disc(G/K, 1) is
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also reduced to computations of finite dimensional representations by the Blattner
formula (Theorem (2.2)(4)) and the Borel-Weil-Bott-Kostant theorem ([57]). Ac-
tual calculation of such finite dimensional representations is complicated in general,
(the reader might compare a direct proof by this approach and that in §6 of the
fact Disc(SO(1,2q)/U(q)) # 0 < q € 2N, which is a special case of Example 6.8)
but even simple examples sometimes give nice models of the spectral geometry of
a Riemannian manifold.
Here are some general facts about Disc(G/K, 1) (C Disc(Q)):

Theorem 3.1. Suppose that K is a maximal compact subgroup of a real reductive
Lie group G, and (1, V;) is a finite dimensional representation of K.
(1) Disc(G/K, ) is a finite set. Moreover, | J, .z Disc(G/K, ) = Disc(G).
(2) If dimV; = 1, then Disc(G/K, T) consists of (anti-) holomorphic discrete
series representations of GG.
(3) Ifr is the trivial one dimensional representation of K, then Disc(G/K, 1) =

0.

Here are some comments on Theorem 3.1. We can give an upper estimate of
#Disc(G/K,7) by using the Dirac inequality for unitary representations due to
Parthasarathy (this inequality reflects non-negativity of the Laplacian; [12],[83]).
(3) follows from the Blattner formula (see Theorem (2.2)(4)). We shall also mention
another approach of (3) in the next section.

According to the condition on 7 such that (1) 7 € K is arbitrary; (2) dimV;, = 1
([97]); or (3) 7 = 1, the set of discrete series representations Disc(()G/K,T) is
remarkably different. There is another interpretation of (2) with emphasis on the
uniquely embedded property into principal series, but we do not go into details
here.

Example 3.2. Let G = Sp(1,n) D K = Sp(1) x Sp(n) D T = (S')"*1. Choose
a base {f1,..., fax1} of /—1t* such that the root system is represented as

Ao, te) ={+fi+ fj.£2f1:2<i<j<n+1,1<1<n+1}.

Let o; € K (I € N) be the [ + 1 dimensional irreducible representation of Sp(1) ~
SU(2) which is extended trivially on Sp(n). Then we have

DiSC(G/K, 0'1) = {H(G, )\1f1 + )\gfz) : ()\1,)\2) € Zz,)\l > )\2 >n, )\1 + )\2 =1+ 1}

From the view point of global analysis on manifolds, harmonic analysis on a
homogeneous manifold deals with very special cases indeed, but it sometimes gives
a nice model from an explicit result obtained by representation theory. For example,
Theorem (3.1)(1),(3) can be translated into a well-known result: “The Laplacian for
a non-compact Riemannian symmetric space does not admit a discrete spectrum,
but the Laplacian acting on sections of the associated vector bundle (for example,
the space of differential forms) admit possibly finite discrete spectra” (the proof
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requires some argument in representation theory in the case of R-rank G > 1). On
the other hand, the following problem was posed in a series of research by T.Sunada
([76]):

“Does there exist a simply connected non-compact Riemannian manifold M with
the following property 7 7

i) M is a universal covering of a compact Riemannian manifold.

ii) There exist point spectra for the Laplacian A .

The positive answer is given by an interpretation of Example (3.2) ([56]). Sup-
pose G/H is a homogeneous manifold of reductive type. If H is compact, it is
known by Borel, Harish-Chandra and Mostow-Tamagawa ([11], [75]) that there is
a discrete subgroup T of G such that the action of T' on G/H is properly discontin-
uous and free so that T'\G/H is a compact manifold*®) Consequently, the manifold
G/H equipped with the G-invariant Riemannian metric by By (see §1 for defini-
tion) gives an example of a covering manifold of a compact Riemannian manifold.
In particular, Example (3.2) gives rise to an answer to the problem of Sunada:

Example 3.3. We equip a manifold S? x R* with a Riemannian structure by
a diffeomorphism Sp(1,1)/T x Sp(1) ~ S? x R* and by By of Sp(1,1) (twisting
the Killing form B). Then the continuous spectrum of the Laplacian of the non-
compact Riemannian manifold S2 x R?* is given by [%, 00), while the set of point

spectra is given by {5(n? + 4mn+m? +3) :n >m > 0,n,m € N}.

4. Discrete series representations for vector bundles over symmetric
spaces

As a generalization of discrete series representations for group manifolds (Harish-
Chandra) in the previous section, Flensted-Jensen and Oshima-Matsuki constructed
discrete series representations for symmetric spaces. As a further generalization,
Schlichtkrull and Kobayashi constructed discrete series representations for vector
bundles over symmetric space ([20], [69], [21], [79], [91],[48],[51]) (see Figure 4.1).

[vector bundles on

ifol .
[group manifolds] [symmetric spaces] symmetric spaces]
Oshima-Matsuki type C &
U U
Harish-Chandra type C Flensted-Jensen type C Schlichtkrull type
Figure 4.1

In this section, we review the construction of discrete series representations corre-
sponding to & of Figure 4.1 based on Chapter 0 in [51]. Let 7 be a finite dimensional
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unitary representation of a real reductive Lie group H. First, we note that H is
locally isomorphic to a direct product H =~ H; x Hs, where H; is a direct product
of a compact group and an abelian group R¢ and T, 18 trivial. We have treated
the special case with H; compact and Hy = 1 in the previous section, and will treat
another special case with H; = R? in the next section. In this section, we suppose
that H = Hy x Hy (H; is compact) and that rank G/H = rank K/HN K. A typical
example of this setting is given by the following indefinite Stiefel manifold G /H,.

Example 4.2. G/Hy =U(p,q;F)/U(p—m,q;F), H =U(m;F), F=R,C, or H.
Here the rank condition amounts to p > 2m.

In the setting as above, the homogeneous manifold G/Hj is of reductive type,
which has a structure of G-equivariant Hq-principal bundle:

Because H; is compact, we have an inclusion of unitary representations of GG

L*(G/H) = L*(G/H;1) < L*(G/H,) ~ €P dimr - L*(G/Hy x Hy;7® 1)
TEI'/I\l

as in §3. The principal object of this section is a homogeneous manifold of re-
ductive type G/Hy (non-symmetric if Hy # 1) and our goal is to construct dis-
crete series representation for G/Hj. Note that Disc(G/Hj) contains Disc(G/H) =
Disc(G/H,1), the set of discrete series for a symmetric space. In the following

construction of discrete series representations for G/Hso, we do not specify 7 € H;

in Disc(G/H2) = U_Disc(G/Hy x Ha, ), or equivalently, the right action of Hy
TEH,

on L2(G/H,) for simplicity of the exposition. Let Hc C G¢ D K¢ be a complexifi-
cation of H C G D K and take other real forms H" C G" D K" of Hc C G¢ D K¢
such that H" is a maximal compact subgroup of G". G"/H" is said to be the
Riemannian dual of G/H (see Example (5.2)). If H is isomorphic to the direct prod-
uct H = Hy x Hy, H" is (locally) isomorphic to the direct product H™ = H] x HJ.
Moreover if H; is compact, then H; = H7.

Let P" = M" A" N" be a minimal parabolic subgroup of G" and p € (a")* half
the sum of the roots for n". Denote by A the sheaf of analytic functions and by B

that of hyperfunctions. For (4,V) € M" and v € ﬁ, we define F to be the A or B
valued principal series by

F(G"/P"; 6 @v) :={F € F(G";V) : F(gman) = (m) " "a™""PF(g)
for g € G,man € M"A"N"}.
Then

U: B(G"/P"6* @ (—v)) x A(G"/P";6@v) 3 (F,v) — | (F(k),v(k))dk € C,
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is a non-degenerate G"-invariant bilinear map. Fix v € A(G"/P";d ® v) such that
Hj acts on v trivially, and define P, (F)(g) := ¥(F(g-),v) = U(F,g-v). Then we
have a G"-map

Py: B(G"/P";6* @ (—v)) = A(G"/Hy),

which is a natural generalization of the Poisson transform. If v is cyclic, P, is
injective. There are finitely many closed orbits of K™ on G"/P", which we write as
X; (1<j<l). For1<j<I, we set

Bﬁ(r(d Qv):={F € B(G"/P";6@v) :supp F' C X; , F is a K"-finite vector}.

Theorem 4.3 ([48], [51]). Assume that
(a) A(G"/P";6 ®v) contains an Hj-fixed cyclic vector v and
b)) w,a)>0 (YaeX(n",a")).

Then the image of P, (Bg(r(é* ® (—1/))) (1 < j <1) by the Flensted-Jensen

duality gives discrete series for G /Hj.

Here the Flensted-Jensen duality is a kind of Weyl’s unitary trick based on the
holomorphic continuation of (vector valued) functions on symmetric spaces (cf.
[21]). Because of our assumption that H; is compact, we can prove Theorem 4.3 by

the L%-estimate of P, (B‘}}, (0*® (—1/))) similar to the method in [69] (see [48]).

First of all, we consider special cases:

Example 4.4 ([20], [21], [69], [46]; cf. Example (2.8), Example (2.9)).

1) (discrete series representations for group manifolds) Let G’ be a real reductive
linear group such that rank G’ = rank K'. We put G = G'xG’, Hy, = H = diag(G’),
and Hy, = 1. Then the discrete series representations constructed in Theorem (4.3)
exhausts (Harish-Chandra’s) discrete series representations for a group manifold
G/H ~ G'. This construction is a special case of a theorem due to Flensted-Jensen,
which is quite different from the construction in Example (2.8) (the Langlands
conjecture).

2) (discrete series representations for symmetric spaces) Let G/H be a semisimple
symmetric space with rank G/H = rank K/H N K. We put H; = 1 and Hy = H.
Then the construction in Theorem (4.3) coincides with that of Oshima-Matsuki,
which exhaust all discrete series representations for symmetric spaces ([69]).

The rest of this section is devoted to some comments and related topics of The-
orem (4.3).

First, as we saw in Example 4.4, the representations constructed in Theorem 4.3
exhaust all discrete series representations for G/H if H; = 1. However, this is not

always the case if Hy # 1, where G/H> is a non-symmetric homogeneous manifold
([63], [54]). The classification of Disc(G/Hs) with Hy # 1 is an open problem in
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higher ranks. (If H; is an abelian group, the method in [69] would be effective in
the study of Disc(G/Hs). )

Next, discrete series representations constructed in Theorem (4.3) can be zero
for some parameters ¢ and v. Because P, is injective by the assumption (4.3) (a),

it suffices to determine the condition on 8, v assuring B, (§* @ (—v)) # 0. This can
be done by representation theoretic method described in Problem (2.10) in §2. In

fact, there is a duality between B, (6* ® (—v)) and a certain Zuckerman’s derived
functor module, whose vanishing condition can be studied by algebraic methods (see
[51] Chapter 4, 5). Moreover, by a standard technique of representation theory, the
assumption (a) of Theorem (4.3) (the condition for the injectivity of the vector-
valued Poisson transform) is also determined explicitly as inequalities and integral
conditions of 4 and v (cf. [51] Chapter 0).

Third, Theorem (4.3) also gives a new result in representation theory. That
is, in an opposite way in the second remark as above, L2-harmonic analysis over
homogeneous manifolds also contributes to representation theory. Here we take
unitarizability problem as an example (see the method 2 in Problem2.10 for an-
other example): Suppose we are given a representation which is not known to be
unitarizable. If it is realized as discrete series representations for a homogeneous
manifold with G-invariant measure (like Theorem (4.3)) then it turns out to be
unitarizable by the L2-inner product on G/H. For example, discrete series repre-
sentations for semisimple symmetric spaces lead to a discovery of “new” irreducible
unitary representation as a by-product in the early 80’s and gave affirmative support
to the Zuckerman conjecture ([89], cf. [1]). Now that the Zuckerman conjecture
has been solved (Theorem (2.3)), the unitarizability of representations which are
realized as discrete series representations for symmetric spaces (namely, H; = 1
in Theorem 4.3) also follows from a special case of Theorem 2.3 by an identifica-
tion with representations associated to elliptic orbits (see Example (2.9)). On the
other hand, if Hy # 1, discrete series representations constructed in Theorem (4.3)
contain singular parameters which are out of the weakly fair range in the sense of
Vogan (see [105] for definition) and do not necessarily satisfy the assumptions of
the Zuckerman conjecture (Theorem (2.3)). This means that Theorem 4.3 assures
the existence of the so-called Wallach set for some series of Zuckerman’s derived
functor modules which are not highest weight modules ([51] Chapter 2). Here the
Wallach set is defined by the set of singular parameters which give unitarizability
of standard representations attached to elliptic orbits out of the canonical cham-
bers. Wallach, Rossi, Vergne, Enright, Parthasarathy and Wolf have studied the
“Wallach set” by quite different methods for some special family of representations,
such as highest weight modules (e.g. coherent continuation of holomorphic discrete
series (Example (2.7))) or coherent continuations of discrete series representations
([110], [36], [18], [19]).

Fourth, we recall that there is a distinguishing feature in the existence problem
of discrete series representations for Riemannian symmetric spaces between scalar
valued ones and vector valued ones (Theorem 3.1). Namely, we have Disc(G/K) = ()
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for any non-compact semisimple Lie group G, while Disc(G/K,T) can be a non

empty set for some 7 € K if rank G = rank K. In the assumption of Theorem
(4.3), this difference is reflected in the following way: if Hy = 1, then J must be
the trivial representation of M" and (b) = (a) (Helgason, Kostant [31], [59])**); on
the other hand, if H; # 1 then the condition (a) and (b) are independent (i.e. do
not imply each other) in general. We note that there is known an alternate proof
of Theorem (3.1) (3) without using the Blattner formula but based on the study of
an asymptotic behavior of spherical functions and on the implication (b) = (a) (in
this case Hy; = 1).

Fifth, discrete series representations of the Flensted-Jensen type (scalar valued
ones) and the Schlichtkrull type (vector valued ones) in the lower row of Figure (4.1)
are characterized as a subset of the upper row of Figure (4.1) with the algebraic
property that “there exists a unique K-type associated to the symmetric tensor
with m = 0 in the right side of the Blattner formula (Theorem (2.2)(4))” (it is
the minimal K-type ([101]) in most cases), or equivalently, characterized by the

analytic property that “B.., (§ ® v) contains distributions of measure class”.

Finally we remark that there exists a pair (G, H) = (G, Hy x Hs) such that the
upper row and the lower one coincide for scalar valued cases and that the lower row
is a proper subset of the upper one for vector valued cases in Figure (4.1). This
means that it can happen that discrete series representations of the Flensted-Jensen
type exhaust Disc(G/H), while discrete series representations of the Schlichtkrull
type do not exhaust Disc(G/Hz).

5. Harmonic analysis on para-Hermitian symmetric spaces

In the previous section, we have discussed L2-harmonic analysis on a homoge-
neous space of reductive type which is a principal bundle over a reductive symmetric
space with compact structure group as a generalization of symmetric spaces. In this
section, we shall discuss L2-harmonic analysis on a homogeneous manifold which is
a principal bundle over a reductive symmetric space with abelian structure group.

We say a manifold M?" of even dimension has a paracomplex structure if the

tangent bundle 7'M splits into a Whitney direct sum T+ M @®T~ M with equidimen-
sional fibers and if T M are completely integrable (see [64]). A pseudo-Riemannian
metric g over a paracomplex manifold M is said to be a para-Hermitian metric if

TEM C T,M are maximally totally isotropic subspaces with respect to g for every
point z in M. Kaneyuki-Kozai proved that a semisimple symmetric space G/H
carries a G-invariant para-Hermitian structure if and only if H has a non-compact
center C' ([39] Theorem 3.7) and classified irreducible ones based on the latter prop-
erty. A semisimple symmetric space equipped with G-invariant para-Hermitian
structure is said to be a para-Hermitian symmetric space.
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For example,
SL(p+q,R)/S(GL(p,R) x GL(q,R)), Sp(n,R)/GL(n,R), SO*(4n)/SU*(2n) x R

are para-Hermitian symmetric spaces.

Because the group homomorphism 1 — C — H — H/C — 1 splits, the character
x of C' can be extended to H with trivial action on the remaining factor. We shall
write y also for the character extended to H.

Theorem 5.1. Suppose that G/H is a semisimple para-Hermitian symmetric
space. With the notation as above, the following conditions on (G, H) are equiva-
lent.

(1) The Riemannian symmetric space G" /H" dual to G/H is a Hermitian sym-
metric space of the tube type.
(2) There is an isomorphism of unitary representations of G

L2(G/H,T ® x) =~ L2(G/H, T),

for any unitary representation (7,V,) of H and for any unitary character x
of C (extended to H).

Example 5.2. Let G/H = GL(p+ q,R)/GL(p,R) x GL(¢q,R). Then G/H is a
para-Hermitian symmetric space and the Riemannian symmetric space G" /H" dual
to G/H is isomorphic to U(p, q)/U(p) x U(q). Therefore, the condition of Theorem
(5.1) is equivalent to p = q.

Sketch of the proof. (1) = (2) is proved by generalizing the idea of Lipsman,
Martin for a similar problem ([65], [67]) where H is a direct product of a compact
group and R7 and by the idea of prehomogeneous vector spaces. We shall explain
the proof with emphasis on a geometric idea and avoid representation theoretic
terminology. By our assumption, the homogeneous manifold M = G/H has a
paracomplex structure with the Whitney sum TM = TTM & T~ M. Let W, be
the maximal integral manifold along T M containing the origin o = eH. Let P,
be the subgroup of G consisting of elements which preserve W, under the left
action of G on M = G/H. Then P, contains H as a subgroup and we have
Wy ~ P,/H C G/H ~ M. Considering the induced representation from H
to G, we first define a unitary representation of P, in the Hilbert space of V-
valued L2-functions on the integral manifold W,. Similarly, we define a unitary
representation Py in the space of Vg, ~ V;-valued L?-functions on W,. If the
condition (1) is satisfied, then the isotropic linear representation of H on T,W
turns out to be a regular prehomogeneous vector space in the sense of M. Sato
([87]). Then we can construct a unitarily equivalent intertwining map between the
two unitary representations of P, by using the relative invariants. This proves (1)
= (2). Conversely, if (1) is not satisfied, then we can show that (2) is not satisfied
by comparing the most continuous part in the Plancherel formula for symmetric
spaces in the case of 7 =1 ([79],[81],[5]). O
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6. Branching rule of unitary representations and its application to
discrete series representations

The subject of this section is taken from [54]. It is a basic problem in L>-
harmonic analysis over a homogeneous manifold G/H to obtain the irreducible
decomposition of the induced representation from the trivial representation of H
to G, Ind(H 1 G;1) ~ L?>(G/H). Similarly, it is one of basic problems in unitary
representation theory to obtain the irreducible decomposition of an irreducible rep-
resentation of G when restricted to H (branching rule of unitary representations;
“breaking symmetry” in physics), as is suggested by the Frobenius duality theorem
for compact groups.

Suppose that H C G are real reductive Lie groups. We compare the status of
these problems as follows:

G/H L*(G/H) T H

(induced representation from H to G) restriction from G to H

branching rule of
finite dimensional representations

G is compact Peter-Weyl, Cartan-Helgason theorem

group manifold || Harish-Chandra’s Plancherel theorem |decomposition of tensor product

Riemannian
symmetric space

only discrete spectra

On]y continuous spectra (e.g. Blattner conjecture)

semisimple

: Oshima-Sekiguchi’s Plancherel theorem ?
symmetric space

L2-harmonic analysis over homogeneous manifolds sometimes arises as a special
case of restriction problems. These problems can be equivalent in very special cases.
In the following two propositions, we present examples where the decomposition
of the tensor product of two irreducible representations (i.e. the restriction of a
representation with respect to the symmetric pair G x G D diag(G)) is equivalent
to non-commutative harmonic analysis for sections of line bundle over a certain
symmetric space.

Proposition 6.1. Assume that a real reductive Lie group G is the group of
automorphisms of a para-Hermitian symmetric space. We write this para-Hermitian
symmetric space as a homogeneous manifold G/H. We define subgroups Py, P_ of
G as in §5. Let x1, x2 be unitary characters of H which are extended from those
of the non-compact center of H. Then the tensor product of degenerate principal
series representations, Ind(Py T G; x1) ® Ind(P- 1 G; x2) is unitarily equivalent to
L*(G/H,x1® x2).
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Proposition 6.2 ([85]). Assume that a real reductive Lie group G is the group
of automorphisms of a non-compact Hermitian symmetric space. We write this
Hermitian symmetric space as a homogeneous manifold G/K. Let \; € V—1g*
(j = 1,2) be integral elliptic element which are sufficiently regular and satisfying
g(A;) =€ If q(A1) # q(A2), then the tensor product of holomorphic discrete series
and anti-holomorphic discrete series II(G, A1) ® I1(G, A2) is unitarily equivalent to
L2(G/K7 (C)\1+>\2)'

The Plancherel theorem for L?(G/H,x1 ® x2) in Proposition 6.1 reduces to
the Plancherel theorem announced by Oshima-Sekiguchi (unpublished; [79],[82]), if
X1+ X2 = 0 (or for general x1,x2 provided the assumption on (G, H) in Theorem
(5.1) is satisfied). The Plancherel theorem for L?(G/K,Cy,4»,) in Proposition 6.2
was obtained by Harish-Chandra, Helgason, Gangolli and so on if Ay + Ao = 0 in
the 60’s ([33]), and was obtained by Shimeno, Heckman for general i, Ay ([97],
[30]) (cf. Theorem (3.1)(3)). As one can see in these two examples, it involves a
lot of material to obtain an explicit decomposition of the restriction of a unitary
representation 7 € G to a subgroup G’ of G into irreducible representations of G’
even if both 7 € G and (G,G") are quite special cases. Furthermore, there occur

various phenomena in the irreducible decomposition of m g even if 7 € G is an
irreducible unitary representation of G attached to an elliptic orbit and (G,G’) is
a symmetric pair ([22], [54]). In view of this, we think that it is important to find
a nice framework in which the branching rule of unitary representations behaves
nicely. We introduce the following definition with emphasis on the possibility of
algebraic approaches in the restriction problem.

Definition 6.3 ([54]). A unitary representation 7 of G is said to be G-admissible
if 7 is decomposed into a direct Hilbert sum of irreducible representations of G with
finite multiplicities.

Example 6.4. 1) (Harish-Chandra) Let K be a maximal compact subgroup of
a real reductive Lie group G. Then 7 is K-admissible for any 7 € G ([26]).

2) (Gelfand, Piatecki-Sapiro) Let I' be a co-compact discrete subgroup of G. Then
L?(G/T) is G-admissible ([23]).

3) (Martens) Let 7 € G be holomorphic discrete series. Let Z(K) be the center
of K and suppose H D Z(K). Then the restriction 7z is H-admissible ([66]).

4) (Howe) Let 7 be the Weil representation of G = Sp and (G, H) a dual reductive
pair with H containing a compact factor. Then 7z is H-admissible ([35]).

In the above examples, the advantage of “admissible restriction” is that we can
treat the irreducible decomposition by purely algebraic methods. There has been
quite a lot of research, e.g., [29], [101], [66], [37], [38], [41], [1]. We can see allusions
to compactness in the assumptions of each setting of Example 6.4. Namely, the
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subgroup G’ is compact in (1), a homogeneous manifold G/I' is compact in (2),
and the unitary representations have a highest weight vector (just like irreducible
representations of a compact Lie group) in (3),(4) *» . The main theme of the
first half of this section is to find examples of an admissible restriction | _, in a
more general setting, where m does not have a highest weight and where G’ is not
compact.

Suppose (G, G") is a reductive symmetric pair defined by an involutive automor-
phism o € Aut(G) (see Example 1.4). Take a Cartan involution 6 of G, which
commutes with o. We define subspaces of Lie algebra £ of K = GY by

b= {Xet: o(X)==+X}.

We take a maximal abelian subspace t_ of £_ and extend t_ to a Cartan subalgebra
t of €. Fix positive roots of the restricted root system 3(fc,t ¢) and choose the
set of positive roots AT (€, tc) of the root system A(tc,tc), which is compatible
with ¥+ (kc,t_¢). We fix an elliptic orbit (C +/—1g*). It intersects at a single
point with the dominant Weyl chamber associated to AT (fc, tc). We write it for
A € /—1t*. We define a f-stable parabolic subalgebra by q(\) = I¢c +u()), and we

define a closed cone of \/—1t* by C,(A) = { ngf: ng > 0}. Now

BEA(u(A)Np,t)

we consider the restriction of the unitary representation II(G, ) of G with respect
to a subgroup G'.

Theorem 6.5 [54]. In the above setting, if C(A) N /=1t * = {0}, then
(G, ), is G'-admissible.

Similarly, we have the following theorem, which was originally used in a method
that manages to control many cancellations occurring in the Blattner formula to find
the criterion of the non-vanishing of TI(G, \) for singular parameter A in Proposition
4.1.3 [51] (see the method (4) of Problem 2.10). Also a special case with K; ~ SU(2)
is also studied by Gross-Wallach (e-mail communication; not published yet) in the
study of the Gross-Prasad conjecture [25].

Theorem 6.6 ([51], [54]). Suppose that a maximal compact subgroup K of a
real reductive Lie group G is (locally) isomorphic to the direct product Ki x Ko. If
a reductive subgroup G’ of G contains K1 and if an integral elliptic orbit Ad(G)A
intersects with /—18%, then the restriction I1(G, A)gr is G'-admissible.

The proof of these two theorems is not hard; it is based on algebraic properties
of II(G, A) (Theorem (2.2)) and upper estimates of K-types. An alternate proof is
also given based on algebraic analysis by estimating singularity spectrum ([43]) of
distribution characters ([55]). Furthermore, explicit formulas of branching rules are
obtained in some cases in the framework of “admissible restrictions” ([50],[54],[55]).

Now we mention some applications of these Theorems. Suppose G’ is a subgroup
of a Lie group G. In the setting that G acts on a manifold X and G’ acts on a
manifold X’, the representation theoretic counterpart of the G’-equivariant map
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f: X" — X is the pull-back of function spaces f*: I'(X) — T'(X’), where there
arises naturally the problem of the restriction of representations of G to a subgroup
G’ through f*. In particular, the unitary representation II(G, A) attached to elliptic
orbits is related intimately to the topology of locally Riemannian symmetric spaces
(Example (2.6)) and discrete series representations for symmetric space (Example
(2.9), §4). So we may expect that the restriction of II(G, ) to subgroups will give
various applications in many settings. Here, we explain one of the simplest appli-
cations. The following theorem gives an abstract framework which bridges between
harmonic analysis on two homogeneous manifolds through branching rules. In par-
ticular, some special cases of branching rules of admissible restriction of irreducible
unitary representations (see [50], [99], [36]) clarify the interrelation between discrete
spectra of the Laplacian on a Riemannian homogeneous manifold in §3 (Example
(3.3)) and discrete series representations for an indefinite Stiefel manifold in §4
(Example (4.2), Theorem (4.3)).

Theorem 6.7 ([55]). Suppose that G is a real reductive Lie group and that
H.G" and H' := HN G’ are closed subgroups which are reductive in G. Let P’ be
a minimal parabolic subgroup of G'. If dimG/H = dimG'/H' = dimP'/H'n P’,
then there is a bijection

U Disc(mjq/) ~ Disc(G'/H')
w€Disc(G/H)

counting with multiplicities.

In the setting of the above theorem, we note that we can construct and clas-
sify discrete series representations for a homogeneous manifold G'/H' if we know
discrete series representations for G/H and if we know the branching rule of m ¢

for = € Disc(G/H)(C G). Previous to this, very little has been known about the
condition on (G, H) that Disc(G/H) # () except for symmetric spaces. Theorem 6.7
combined with Theorem 6.5 and Theorem 6.6 yields a partial answer for the exis-
tence of discrete series representation for real forms of some spherical homogeneous
manifolds*®), which were not known by other methods ([54]).

Example 6.8 (discrete series for non-symmetric spherical homogeneous mani-
folds).

Disc(SU(2p — 1,2q)/Sp(p — 1,9)) #0  (Vp. q),

Disc(SO(4, 3) /G2 (R)) # 0.
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We end this article with a conjecture on discrete series representations for (gen-
eral) homogeneous manifolds of reductive type. It is in sharp contrast with vector
bundle valued discrete series representations (e.g. Theorem 3.1 (1)). New discrete
series representations obtained in §4 and §6 together with well-known cases (Ex-
ample 2.8, Example 2.9, Example 3.1 (3)) give some evidence for this conjecture.

Conjecture 6.9. Suppose G/H is a homogeneous manifold of reductive type. If
Disc(G/H) # (), then there are infinite many discrete series which are not unitarily
equivalent (i.e. #Disc(G/H) = o).

Remark 1) (Classification of irreducible (g, K)-modules.) Three methods are known: i) based
on asymptotic behaviors of matrix coefficients due to Langlands, ii) based on minimal K-types
due to Vogan and based on Zuckerman’s derived functor modules, iii) based on D-module over
flag manifold due to Beilinson-Bernstein (for regular parameters) ([62], [47], [101], [8]).

One might separate (ii) into two methods so that one might say there are four methods of
classification (cf. [96]).

Remark 2) (Classification of irreducible unitary representations.) The unitary dual G is known
if Gis GL(n,R), SU*(2n), or classical complex Lie groups, or if the R-rank is small. On the other

hand, G is not classified yet if G = SO(p,q), SU(p,q), Sp(p,q), Sp(n,R), SO*(2n) (p,q,n are
large) (cf. [4], [103], [6], [108] and the references therein).

Remark 3) Many basic questions (e.g. Calabi-Markus phenomenon [15], [116] or criterion of
existence of uniform lattice) about discontinuous groups for G/H have not yet found a final
answer if H is non-compact for a general Lie group. See ([61], [112], [49], [52], [53], [9], [119]) for
recent developments in discontinuous groups for G/H of reductive type.

Remark 4) Tt leads to the Helgason conjecture (theorem) by means of the Poisson transform at
the level of the maximal globalization ([31],[40],[96]).

Remark 5) We remark that not all irreducible (g, K)-modules have highest weight vectors, if G is
a non-compact real reductive Lie group. Classification of irreducible unitary representations with
highest weight vectors is known.

Remark 6) Spherical homogeneous spaces are somewhat wider class than symmetric spaces.
Compact spherical homogeneous spaces are classified ([60], [14]).

Finally we collect some references in this area, most of which are closely related
to the viewpoint in this article. We apologize to the many people whose works are
not mentioned here because of the author’s ignorance.

Notes in English Version, January, 1996

The English translation of the original manuscript (Sugaku, 46 (1994) 124-143, Math. Soc.
Japan) was achieved while the author was a guest at the Institut Mittag-Leffler of the Royal
Swedish Academy of Sciences. I am grateful to the staff of the Institute and to the organizers
of the special year “Analysis on Lie Groups”. Thanks are also due to my friends A.Nilsson and
R.Donley for reading the translation carefully.

We mention that P.Delorme announced the Plancherel formula for semisimple symmetric spaces
November 1995 (cf. Figure in §6) at Institut Mittag-Leffler. His proof, based on generalized Maass-
Selberg relations, gives a different approach from Oshima’s announcement. Also the Paley-Wiener
theorem for semisimple symmetric spaces was announced by Ban and Schlichtkrull.

The reader will also benefit from the recent textbook of Knapp-Vogan “Cohomological Induction
and Unitary Representations”, Princeton University Press (1995) and its references for related
topics in §2.

T.Knapp kindly informed that he has found the Wallach set in a different setting (cf. remarks in
§4) (A.M.S. lectures, August, 1995).
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