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In the series of lectures, I plan to discuss recent progress on branching problems for

representations of real reductive Lie groups.

Branching problems ask how irreducible representations π of groups G “decompose”

when restricted to subgroups G′. Branching problems include various important spe-

cial cases such as decomposition of tesor products, theta correspondences, Blattner

formulæ, etc. however, it is notorious that wild features such as “infinite multiplici-

ties” and “continuous spectra” may well happen for real reductive groups even if G′ is

a maximal subgroup in G.

In the first lecture, I plan to give a necessary and sufficient condition on the pair of

reductive groups (G,G′) for the multiplicities of the restriction G ↓ G′ to be always

finite (and also to be of uniformly bounded) by using analysis on real spherical varieties

[4, 6, 8]. Further, we discuss “discretely decomposable restrictions” which allow us to

apply algebraic tools in branching problems [2, 9].

In the second lecture, I plan to focus on a construction of symmetry breaking operators

(SBO in short), which are intertwining operators from irreducible representations of G

to irreducible representations of the subgroup G′. Some of SBOs are given by integral

operators, and some others are by differential operators such as Rankin–Cohen brackets

[10, 12] and Juhl’s conformal differential operators [1]. We present a new method called

F-method [4, 7, 10] to construct differential SBOs. If time permits, some classification

results [11] will be also presented.

Survey article and textbooks for the lectures

A. Knapp, Lie Groups beyond an Introduction, Progr. Math. 140, Birkhäuser, 2002.

T. Kobayashi, Restriction of unitary representations of real reductive groups, (Lecture notes in Euro-

pean School on Group Theory), Progr. Math. 229, pp. 139–207. Birkhäuser, 2005.

T. Kobayashi, A program for branching problems in the representation theory of real reductive groups.

In: Representations of Lie Groups (In honor of David A. Vogan, Jr. on his 60th birthday), Progr.

Math. 312, pp. 277–322. Birkhäuser, 2015.
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N. Wallach, Real Reductive Groups vol. I, and vol. II, Academic Press 1990, 1992.
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