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Naive question

Discontinuous groups for
homogeneous spaces

(e.g. symmetric spaces)

Riemannian =) non-Riemannian ?
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Representation theory

Reps of Lie groups/algebras
Non-commutative harmonic analysis

Great trends of developments through 20th cent.

compact =) non-compact
Riemannian =) non-Riemannian
finite dim’l rep =) 1 dim’l rep
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Naive question

Discontinuous groups for
homogeneous spaces

(e.g. symmetric spaces)

Riemannian =) non-Riemannian ?

A fruitful theory?
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Riemannian! pseudo-Riemannian

Isometry gp for pseudo-Riemannian mfd

discrete subgp ;( properly discont actions

X = R 2nf(0; 0)gds2 = d(x+ y)2 � d(x� y)2

Z y Xn (x; y)7!(2nx; 2�ny) ZnX
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Isometry gp for pseudo-Riemannian mfd

discrete subgp ;( properly discont actions

E.g. X = R 2nf(0; 0)g,ds2 = d(x+ y)2 � d(x� y)2 (Lorentz metric)

Z y Xn (x; y)7!(2nx; 2�ny) ZnX
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Isometry gp for pseudo-Riemannian mfd

discrete subgp ;( properly discont actions
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Riemannian! pseudo-Riemannian

Isometry gp for pseudo-Riemannian mfd

discrete subgp ;( properly discont actions

E.g. X = R 2nf(0; 0)g,ds2 = d(x+ y)2 � d(x� y)2 (Lorentz metric)
no accumulation points
all orbits are closedZ isometryy Xn (x; y)7!(2nx; 2�ny) ZnX is not Hausdorff
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Compact quotients forSL(n)=SL(m)
Problem: Does there exist compact Hausdorff quotients ofSL(n; F )=SL(m; F ) (n > m; F = R ; C ; H )
by discrete subgps of SL(n; F )?

n > m

n
n m

m
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Compact quotients forSL(n)=SL(m)
Problem: Does there exist compact Hausdorff quotients ofSL(n; F )=SL(m; F ) (n > m; F = R ; C ; H )
by discrete subgps of SL(n; F )?

Conjecture: No for any n > m.

n
n m

m
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SL(n)=SL(m) case

Cf. Space Form Conjecture (mentioned later)

Conjecture 1 SL(n)=SL(m) (n > m > 1)
has no uniform lattice.

K– criterion of proper actions n3 > [m+12 ℄
Zimmer orbit closure thm (Ratner) n > 2m
Labourier–Mozes–Zimmer

ergodic action n � 2m

Benoist criterion of proper actions n = m+ 1; m even

Margulis unitary rep (n � 5;m = 2)

Shalom unitary rep n � 4;m = 2
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Compact quotients forSL(n)=SL(m)
Conjecture: No for any n > m.
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-
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Non-Riemannian homo. spaces

Discrete subgp ;( Discontinuous gp

for non-Riemannian homo. spaces
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Non-Riemannian homo. spaces

Discrete subgp ;( Discontinuous gp

for non-Riemannian homo. spaces

How does a local geometric structure

affect the global nature of manifolds?

New phenomena & methods?
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Non-Riemannian homo. spaces

Discrete subgp ;( Discontinuous gp

for non-Riemannian homo. spaces

Fundamental problems

Are there many discont. gps?
(cf. Calabi–Markus phenomenon)
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(cf. Calabi–Markus phenomenon)

Existence problem of compact quotients
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Non-Riemannian homo. spaces

Discrete subgp ;( Discontinuous gp

for non-Riemannian homo. spaces

Fundamental problems

Are there many discont. gps?
(cf. Calabi–Markus phenomenon)

Existence problem of compact quotients
(unsolved even for space forms)

Rigidity and deformation
(rigidity may fail even for high dim.)
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1. Space form of signature(p; q)

(M; g) : pseudo-Riemannian mfd,
geodesically complete

Def. (M; g) is a space form() sectional curvature � is constant
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Space forms (examples)

Space form � � � (Signature (p; q) of pseudo-Riemannian metric g
Curvature � 2 f+; 0;�g

E.g. q = 0 (Riemannian mfd)
sphere Sn R n hyperbolic sp� > 0 � = 0 � < 0

q = 1
� > 0 � = 0 � < 0
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Space forms (examples)

Space form � � � (Signature (p; q) of pseudo-Riemannian metric g
Curvature � 2 f+; 0;�g

E.g. q = 0 (Riemannian mfd)
sphere Sn R n hyperbolic sp� > 0 � = 0 � < 0

E.g. q = 1 (Lorentz mfd)
de Sitter sp Minkowski sp anti-de Sitter sp� > 0 � = 0 � < 0
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Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p; q), curvature � 2 f+; 0;�g+

Global Results� Do compact quotients exist?

� What groups can arise as their fundamental groups?
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Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p; q), curvature � 2 f+; 0;�g+

Global Results� Do compact quotients exist?
Is the universe closed?� What groups can arise as their fundamental groups?
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2-dim’l compact space forms

Riemannian case (() signature (2; 0))Mg (g � 2)� � �
curvature � > 0 � = 0 � < 0

() (1; 1)
� > 0 � < 0
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2-dim’l compact space forms

Riemannian case (() signature (2; 0))Mg (g � 2)� � �
curvature � > 0 � = 0 � < 0

Lorentz case (() signature (1; 1))
no compact form for � > 0 or � < 0
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Compact space forms

(p; q): signature of metric, curvature � 2 f+; 0;�g
Assume p � q (without loss of generality).

� > 0
� = 0

� < 0
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Compact space forms

(p; q): signature of metric, curvature � 2 f+; 0;�g
Assume p � q (without loss of generality).

� > 0: Calabi–Markus phenomenon
(Calabi, Markus, Wolf, Wallach, Kulkarni, K–)

� = 0
� < 0
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Compact space forms

(p; q): signature of metric, curvature � 2 f+; 0;�g
Assume p � q (without loss of generality).

� > 0: Calabi–Markus phenomenon
(Calabi, Markus, Wolf, Wallach, Kulkarni, K–)� = 0: Auslander conjecture
(Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer,
. . . )

� < 0

Existence Problem of Compact Locally Symmetric Spaces – p.16/53



Compact space forms

(p; q): signature of metric, curvature � 2 f+; 0;�g
Assume p � q (without loss of generality).

� > 0: Calabi–Markus phenomenon
(Calabi, Markus, Wolf, Wallach, Kulkarni, K–)� = 0: Auslander conjecture
(Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer,
. . . )� < 0: Space form conjecture

Existence Problem of Compact Locally Symmetric Spaces – p.16/53



Compact space forms (� < 0)
(Geometry) Compact space forms exist

for � < 0 and signature (p; q)

()

O(p; q + 1)=O(p; q)
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Compact space forms (� < 0)
(Geometry) Compact space forms exist

for � < 0 and signature (p; q)() (Group theoretic formulation)
Cocompact discontinuous gps exist

for symmetric space O(p; q + 1)=O(p; q)
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact hyperbolic spaces

() O(n; 1)

| {z } | {z } � � �
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact hyperbolic spaces() Cocompact discrete subgp of O(n; 1)

(uniform lattice)

| {z } | {z } � � �
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact hyperbolic spaces() Cocompact discrete subgp of O(n; 1)

(uniform lattice)

Exist by Siegel, Borel| {z }
arithmetic

, Vinberg, Gromov–Piateski-Shapiro| {z }

non-arithmetic

� � �
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Compact space forms of � < 0 exist(=


 q p = 0 $ � > 0
 q = 0 p
 q = 1 p � 0 mod 2
 q = 3 p � 0 mod 4 z}|{
 q = 7 p = 8(= 

 




=)q = 1 p � q pq
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Compact space forms of � < 0 exist(= 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)


 q = 1 p � 0 mod 2
 q = 3 p � 0 mod 4 z}|{
 q = 7 p = 8

(= True (Proved (1950–2005))
1
 2
 (Riemmanian)






=)q = 1 p � q pq
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Compact space forms of � < 0 exist(= 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)

3
 q = 1, p � 0 mod 2


 q = 3 p � 0 mod 4 z}|{
 q = 7 p = 8

(= True (Proved (1950–2005))
1
 2
 (Riemmanian)






=)q = 1 p � q pq
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Compact space forms of � < 0 exist(= 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)

3
 q = 1, p � 0 mod 2
4
 q = 3, p � 0 mod 4

z}|{
 q = 7 p = 8

(= True (Proved (1950–2005))
1
 2
 (Riemmanian)
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Compact space forms of � < 0 exist(= 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)

3
 q = 1, p � 0 mod 2
4
 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5
 q = 7, p = 8(= True (Proved (1950–2005))
( 1
 2
 (Riemmanian) ; 3
 4
 5
 (pseudo-Riemannian) Kulkarni, K– )

=)q = 1 p � q pq
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Conjecture 3 Compact space forms of � < 0 exist(==) 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)

3
 q = 1, p � 0 mod 2
4
 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5
 q = 7, p = 8(= True (Proved (1950–2005))
( 1
 2
 (Riemmanian) ; 3
 4
 5
 (pseudo-Riemannian) Kulkarni, K– )

=)q = 1 p � q pq
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Space form conjecture� < 0
Pseudo-Riemannian mfd of signature (p; q)

Thm 2 Conjecture 3 Compact space forms of � < 0 exist(==) 1
 q any, p = 0 ($ � > 0)

2
 q = 0, p any (hyperbolic sp)

3
 q = 1, p � 0 mod 2
4
 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5
 q = 7, p = 8(= True (Proved (1950–2005))
( 1
 2
 (Riemmanian) ; 3
 4
 5
 (pseudo-Riemannian) Kulkarni, K– )=) Partial answers:q = 1, p � q, or pq is odd
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Methods

Understanding of proper actions
as “coarse geometry” (t;�)) criterion for proper actions (§3)+

�yX () �yY
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Methods

Understanding of proper actions
as “coarse geometry” (t;�)) criterion for proper actions (§3)+

Construction of lattice

Solve “continuous analog”.

Use a lattice in a smaller group (and deform).

�yX () �yY
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Methods

Understanding of proper actions
as “coarse geometry” (t;�)) criterion for proper actions (§3)+

Construction of lattice

Solve “continuous analog”.

Use a lattice in a smaller group (and deform).

Obstruction of lattice

Topological obstructions

Comparison theorem: �yX () �yY
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2. Locally homogeneous spaces

� y X
discrete group manifold

�yX

X#�nX
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2. Locally homogeneous spaces

� y X
discrete group manifold

If �yX properly discontinuously and freely, then

X#�nX
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2. Locally homogeneous spaces

� y X
discrete group manifold

If �yX properly discontinuously and freely, then

X# covering�nX
Existence Problem of Compact Locally Symmetric Spaces – p.21/53



2. Locally homogeneous spaces

� y X
discrete group manifold

If �yX properly discontinuously and freely, then

X# covering�nX manifold (Hausdorff)
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Clifford–Klein forms

discrete subgp Lie gp closed subgp� � G � H

�yX = G=H� G=H() �yG=H

G=H ���������! �nG=H C!

�nG=H G=H
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Clifford–Klein forms

discrete subgp Lie gp closed subgp� � G � H

�yX = G=H (homogeneous sp)

� G=H() �yG=H

G=H ���������! �nG=H C!

�nG=H G=H
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Clifford–Klein forms

discrete subgp Lie gp closed subgp� � G � H

�yX = G=H (homogeneous sp)

Def. � is a discontinuous gp of G=H() Action �yG=H is properly discontinuous and free.

G=H ���������! �nG=H C!

�nG=H G=H
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Clifford–Klein forms

discrete subgp Lie gp closed subgp� � G � H

�yX = G=H (homogeneous sp)

Def. � is a discontinuous gp of G=H() Action �yG=H is properly discontinuous and free.

coveringG=H ���������! �nG=H (Hausdorff, C! mfd)

Clifford–Klein form

�nG=H G=H
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Clifford–Klein forms

discrete subgp Lie gp closed subgp� � G � H

�yX = G=H (homogeneous sp)

Def. � is a discontinuous gp of G=H() Action �yG=H is properly discontinuous and free.

coveringG=H ���������! �nG=H (Hausdorff, C! mfd)

Clifford–Klein form

(Local) geometric structures on �nG=H inherit from G=H.

Existence Problem of Compact Locally Symmetric Spaces – p.22/53



Locally symmetric sp.

G=H covering�����! � nG=H

|{z}" |{z}"

M
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Locally symmetric sp.

G=H covering�����! � nG=H|{z}" |{z}"
local geometric str. global

M
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Locally symmetric sp.

G=H covering�����! � nG=H|{z}" |{z}"
local geometric str. global

Ex. M : complete, locally symmetric sp.
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Locally symmetric sp.

G=H covering�����! � nG=H|{z}" |{z}"
local geometric str. global

Ex. M : complete, locally symmetric sp.
i.e. M : C1 manifold with affine connection

s.t. � M is geodesically complete� geodesic symmetry at every point is affine
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Locally symmetric sp.

G=H covering�����! � nG=H|{z}" |{z}"
local geometric str. global

Ex. M : complete, locally symmetric sp.=) M ' �nG=H for some triple �; G;H s.t.� ' �1(M)\G: Lie group[H: an open subgp of G� (� 2 Aut(G); �2 = id)

Existence Problem of Compact Locally Symmetric Spaces – p.23/53



Locally symmetric sp.

G=H covering�����! � nG=H|{z}" |{z}"
local geometric str. global

Ex. M : complete, locally symmetric sp.=) M ' �nG=H for some triple �; G;H s.t.� ' �1(M)\G: Lie group[H: an open subgp of G� (� 2 Aut(G); �2 = id)
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Examples of Clifford–Klein forms

(G;�; H) �nG=H(R n;Zn; f0g) Tn (n-torus)

(SL(2; R ); SL(2;Z); feg)
8 sj<^syAuVNT"32@

kh&JTs4NNJ9j<2r G H9k%G O1"kJQmj<2G"
k%GNt,2H;�H7FH = feg� = f(aij) 2 G :9YFN iH j KP7F aij 2Zg
HjA5lkbNrM(h&%9kH �OGN%6t,2G"j$H = feg
JNG@i+K G=H XNnQO?-T"3+D+3G"k%@il?/j
U)<I&/i$sA �nG=H O3sQ/H?MNG"k%3) (G;�;H) = (SL(n;R); SL(n;Z); feg) H9k%3NH-$/jU)<
I&/i$sA �nG=H Os3sQ/H?MNHJk%n = 2NH-$3!
5?MN �nG=H ' SL(2;Z)nSL(2;R)
O$<^Nh&K R3bN0DUkS\Nd8gH1jKJk (3N3HNb
@O$c(P_kJ<Nxq [44℄84{85Z<8K"k/#lsNZ@r2H
5l?$)%PSfrag repla
ementsS
2 � S
1 � S(
2 62 �S)(
1 2 �S) SL(2;Z)nSL(2;R)'R3nf0DUkS\ g4) (G;H) = (SL(2;R); SO(2))H9kH$yAuV G=H O$e>?LH := fz 2 C : Im z > 0g
HP5'1?G"k%5iK �rM8l5,J/$GNfG>3sQ/HJ
%6t,2H9kH$/jU)<I&/i$sA �nG=H O$ot g � 2N
Dj<^sL Mg KJk (c 2.52H)%5) G = SL(2;R)$H rGN$UNs3sQ/HJDt,2H9k%3N
H-$G=H NT"32O-B2KBk (3lO$2.6adc 3.5GeR9k
+iS&^k/9=]N 1cG"k)%1:5 t,2 H ,3sQ/HJiP$GN%6t,2N G=H XNnQO+

(non-compact, finite volume)

(PSL(2; R ); PSO(2); �1(Mg)) Mg ' � � � (g � 2)

(O(p; q + 1); O(p; q);�) Space form
(signature (p; q), � < 0)(GL(n; R ) n R n; GL(n; R );�) affinely flat
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Discrete) Continuous

� actiony X

top. gp top. sp (locally compact)

X �
subset [  [S �S := f
 2 � : 
S \ S 6= �gS = fpg =) �S = stabilizer of p

�yX () �S8S�yX () #�fpg = 1 (8p 2 X)
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Discrete) Continuous

� actiony X

top. gp top. sp (locally compact)

X �
subset [  [S �S := f
 2 � : 
S \ S 6= ?gS = fpg =) �S = stabilizer of p

�yX () �S8S�yX () #�fpg = 1 (8p 2 X)
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Discrete) Continuous

� actiony X

top. gp top. sp (locally compact)

X �
subset [  [S �S := f
 2 � : 
S \ S 6= ?gS = fpg =) �S = stabilizer of p

�yX () �S8S�yX () #�fpg = 1 (8p 2 X)
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Discrete) Continuous

� actiony X

top. gp top. sp (locally compact)

X �
subset [  [S �S := f
 2 � : 
S \ S 6= ?g

γ1

γ1

γ
γ

2

2 S

S

Γ

=) 
1
2 622 �S

�yX () �S8S�yX () #�fpg = 1 (8p 2 X)
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Discrete) Continuous

� actiony X

top. gp top. sp (locally compact)

X �
subset [  [S �S := f
 2 � : 
S \ S 6= ?g

Def. �yX is proper () �S is compact
(8S: compact)�yX is free () #�fpg = 1 (8p 2 X)
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proper + discrete= properly discont.

properly discont. actionk

proper action+
group is discrete
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proper + discrete= properly discont.

action properly discont. actionk

action proper action+
group is discrete
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3. Criterion for proper discontinuity

Setting � � G � H
discrete subgp closed subgp

Problem A Find effective methods to
determine whether�yG=H is properly discont.

� H
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3. Criterion for proper discontinuity

Setting � � G � H
discrete subgp closed subgp

Problem A Find effective methods to
determine whether�yG=H is properly discont.

Idea: Forget that � and H are group
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t and� (definition)L � G � H
Forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHSSHS
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t and� (definition)L � G � H
Forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

H

HSSHS

Existence Problem of Compact Locally Symmetric Spaces – p.28/53



t and� (definition)L � G � H
Forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHS

SHS
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t and� (definition)L � G � H
Forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHSSHS
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t and� (definition)L � G � H
Forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

E.g. G = R n; L, H subspacesL t H () L \H = f0g.L � H () L = H.
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t and�L � G � H
Forget even that L and H are group

1) L t H () generalization of proper actions
2) L � H () economy in consideringt means in special case thatL is discrete subgp & H is closed subgpL t H () LyG=H properly discont.� provides economies in considering tH � H 0 =) H t L() H 0 t L
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t and�L � G � H
Forget even that L and H are group

1) L t H () generalization of proper actions
2) L � H () economy in consideringt means in special case thatL is discrete subgp & H is closed subgpL t H () LyG=H properly discont.� provides economies in considering tH � H 0 =) H t L() H 0 t L
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t and�L � G � H
Forget even that L and H are group

1) L t H () generalization of proper actions
2) L � H () economy in consideringt means in special case thatL is discrete subgp & H is closed subgpL t H () LyG=H properly discont.� provides economies in considering tH � H 0 =) H t L() H 0 t L
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Discontinuous duality theorem

G � H subset =) Ht := fL : L t Hg discont. dual

GHH � Ht

G =) bG
GG bG

Existence Problem of Compact Locally Symmetric Spaces – p.30/53



Discontinuous duality theorem

G � H subset =) Ht := fL : L t Hg discont. dual

Thm 4 (Discontinuous duality; K– , Yoshino)G: loc. compact top. gp, separableH: subset
Then, H is recovered up to � from Ht.

G =) bG
GG bG
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Discontinuous duality theorem

G � H subset =) Ht := fL : L t Hg discont. dual

Thm 4 (Discontinuous duality; K– , Yoshino)G: loc. compact top. gp, separableH: subset
Then, H is recovered up to � from Ht.

cf. G =) bG (unitary dual)

Fact 5 (Pontrjagin–Tannaka–Tatsuuma duality theorem)G: loc. compact top. gp
Then, G is recovered from the unitary dual bG.
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Criterion for t and�

G: real reductive Lie groupG = K exp(a+)K: Cartan decomposition�: G! a+: Cartan projection

L � H G () �(L) � �(H) aL t H G () �(L) t �(H) a

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a+)K: Cartan decomposition�: G! a+: Cartan projection

E.g. � : GL(n; R )! R ng 7! 12(log �1; � � � ; log �n)
Here, �1 � � � � � �n (> 0) are the eigenvalues of tgg.

L � H G () �(L) � �(H) aL t H G () �(L) t �(H) a

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a+)K: Cartan decomposition�: G! a+: Cartan projection

Thm 6 (K– , Benoist)
1) L � H in G () �(L) � �(H) in a.
2) L t H in G () �(L) t �(H) in a.

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a+)K: Cartan decomposition�: G! a+: Cartan projection

Thm 6 (K– , Benoist)
1) L � H in G () �(L) � �(H) in a.
2) L t H in G () �(L) t �(H) in a.

Special cases include

(1)’s ) : Uniform bounds on errors in eigenvalues when a
matrix is perturbed.

(2)’s , : Criterion for properly discont. actions.
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Calabi–Markus phenomenon (criterion)

G � H reductive Lie groups=) G=H pseudo-Riemannian homo. sp

G=H 
() rankR G = rankR H 

(p; q) � < 0M j�1(M)j =1() p > q (p; q) = (1; 1)

p > q + 1=) 9M �1(M)
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Calabi–Markus phenomenon (criterion)

G � H reductive Lie groups=) G=H pseudo-Riemannian homo. sp

Cor 7 Any discont. gp for G=H is finite 1
() rankR G = rankR H 2


(p; q) � < 0M j�1(M)j =1() p > q (p; q) = (1; 1)

p > q + 1=) 9M �1(M)
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Calabi–Markus phenomenon (criterion)

G � H reductive Lie groups=) G=H pseudo-Riemannian homo. sp

Cor 7 Any discont. gp for G=H is finite 1
() rankR G = rankR H 2


Application (space form of signature (p; q), � < 0)
Exists a space form M s.t. j�1(M)j =1() p > q or (p; q) = (1; 1)

(Calabi, Markus, Wolf, Kulkarni, Wallach)

p > q + 1=) 9M �1(M)
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Calabi–Markus phenomenon (criterion)

G � H reductive Lie groups=) G=H pseudo-Riemannian homo. sp

Cor 7 Any discont. gp for G=H is finite 1
() rankR G = rankR H 2


Application (space form of signature (p; q), � < 0)
Exists a space form M s.t. j�1(M)j =1() p > q or (p; q) = (1; 1)

(Calabi, Markus, Wolf, Kulkarni, Wallach)p > q + 1=) 9M with free non-commutative �1(M)

Existence Problem of Compact Locally Symmetric Spaces – p.32/53



Criterion of t and� (general case)

E.g. G: reductive Lie group =) Solved

G: general Lie gp =) Unsolved

Not known an effective criterion for t even in the case(G;H) = (GL(n; R ) n R n; GL(n; R ))
cf. Auslander conjecture (unsolved)

Goldman–Kamishima, Tomanov, Milnor, Margulis,
Abels, Soifer, � � �
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Criterion of t and� (nilpotent case)

G : nilpotent Lie group

Criterion for t for connected H;L (Lipsman conjecture)
Does criterion analogous to reductive case hold for
nilpotent case?

?

20012005 20072005
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Criterion of t and� (nilpotent case)

G : nilpotent Lie group

Criterion for t for connected H;L (Lipsman conjecture)
Does criterion analogous to reductive case hold for
nilpotent case?

?

1-step (abelian) OK
2-step OK (Nasrin2001 )

3-step OK (Baklouti–Khlif2005 , Yoshino2007 , A. Püttemann
2008

)

4-step No (Yoshino2005 )

more non-commutative
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

� G=H() �nG=H
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

Def. Discont. gp � is a uniform lattice for G=H() �nG=H is compact
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

Def. Discont. gp � is a uniform lattice for G=H() �nG=H is compact

Remark � � G uniform lattice, torsion freeH: compact=) � is uniform lattice for G=H�nG=H: compact
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

Def. Discont. gp � is a uniform lattice for G=H() �nG=H is compact

Remark � � G uniform lattice, torsion freeH: non-compact=) � is not uniform lattice for G=H�nG=H: compact
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

Def. Discont. gp � is a uniform lattice for G=H() �nG=H is compact

Remark � � G uniform lattice, torsion freeH: non-compact=) � is not uniform lattice for G=H�nG=H: compact but non-Hausdorff
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4. Existence problem of compact quotients

� � G � H� y G=H
discont. gp

Def. Discont. gp � is a uniform lattice for G=H() �nG=H is compact

Remark � � G uniform lattice, torsion freeH: non-compact=) � is not uniform lattice for G=H�nG=H: compact but non-Hausdorff

Problem B Does there exist a uniform lattice for G=H?
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H
=) 9 G G=HG=H =)

G=H = SL(n; R )=SO(n) SL(n; C )=SU(n)
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H is compact

=) 9 G G=HG=H =)

G=H = SL(n; R )=SO(n) SL(n; C )=SU(n)
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H is compact

=) 9 G G=HG=H =)

e.g. G=H = SL(n; R )=SO(n), SL(n; C )=SU(n), . . .
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H is compact

=) 9 G-invariant Riemannian structure on G=H

G=H =)

e.g. G=H = SL(n; R )=SO(n), SL(n; C )=SU(n), . . .
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H is compact

=) 9 G-invariant Riemannian structure on G=H
Fact 8 (Borel 1963)G=H is a Riemannian symmetric sp. =) Yes

i.e. Compact forms exist for 8 Riemannian symmetric sp.

e.g. G=H = SL(n; R )=SO(n), SL(n; C )=SU(n), . . .
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

H is non-compact=) ?

Ex. G=H = SL(n; R )=SL(m; R ); SL(n; R )=SO(p; n � p)
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

M = G=H is para-Hermitian symmetric spTM = TM+ + TM� (Whitney direct sum)TM�: completely integrable, equi-dimensionalTxM�: maximally totally isotropic subspaces
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

M = G=H is para-Hermitian symmetric spTM = TM+ + TM� (Whitney direct sum)TM�: completely integrable, equi-dimensionalTxM�: maximally totally isotropic subspaces

Hermitian symmetric sp
para-Hermitian
symmetric sp
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

M = G=H is para-Hermitian symmetric spTM = TM+ + TM� (Whitney direct sum)TM�: completely integrable, equi-dimensionalTxM�: maximally totally isotropic subspaces

Thm 9 G=H is a para-Hermitian symmetric sp. =) No

Ex. M = GL(p+ q; R )=GL(p; R ) �GL(q; R ),GL(n; C )=GL(n; R ), Sp(n; R )=GL(n; R ), . . .
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

M = G=H is para-Hermitian symmetric spTM = TM+ + TM� (Whitney direct sum)TM�: completely integrable, equi-dimensionalTxM�: maximally totally isotropic subspaces

Thm 9 G=H is a para-Hermitian symmetric sp. =) No

Ex. M = GL(p+ q; R )=GL(p; R ) �GL(q; R ),GL(n; C )=GL(n; R ), Sp(n; R )=GL(n; R ), . . .

Proof: use Cor 7 (criterion for Calabi–Markus phenomenon)
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere SnC , i.e.G=H := SO(n+ 1; C )=SO(n; C )= f(z1; : : : ; zn+1) 2 C n+1 : z21 + � � � + z2n+1 = 1g
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere SnC , i.e.G=H := SO(n+ 1; C )=SO(n; C )= f(z1; : : : ; zn+1) 2 C n+1 : z21 + � � � + z2n+1 = 1g

Thm 10 (2005)G=H = SO(n+ 1; C )=SO(n; C )n = 1; 3; 7 =) Yes

There exist closed complex manifolds that are locally
isomorphic to complex spheres if its dimension = 1; 3 or 7.
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere, i.e.SnC ' SO(n+ 1; C )=SO(n; C )
Thm 10 Conjecture 11G=H = SO(n+ 1; C )=SO(n; C )n = 1; 3; 7 =)(= Yes
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere, i.e.SnC ' SO(n+ 1; C )=SO(n; C )
Thm 10 Conjecture 11G=H = SO(n+ 1; C )=SO(n; C )n = 1; 3; 7 =)(= Yes

Evidence: n: odd (Yes (K– )
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere, i.e.SnC ' SO(n+ 1; C )=SO(n; C )
Thm 10 Conjecture 11G=H = SO(n+ 1; C )=SO(n; C )n = 1; 3; 7 =)(= Yes

Evidence: n: odd ( Yes (K– )n = 4k + 3 (or n = 1) ( Yes (Benoist)
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Existence problem of compact quotients

Problem B Does there exist a uniform lattice for G=H?

G=H is complex sphere, i.e.SnC ' SO(n+ 1; C )=SO(n; C )
Thm 10 Conjecture 11G=H = SO(n+ 1; C )=SO(n; C )n = 1; 3; 7 =)(= Yes

Evidence: n: odd ( Yes (K– )n = 4k + 3 (or n = 1) ( Yes (Benoist)
Infinitesimal version: n = 1; 3; 7 , Yes
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Complex symmetric spaces

Problem A Does there exist a uniform lattice for G=H?

M = G=H is irreducible complex symmetric sp

=) M � S4k+3C
(= M � S7C
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Complex symmetric spaces

Problem A Does there exist a uniform lattice for G=H?

M = G=H is irreducible complex symmetric sp

Thm 12 (K– , Benoist)
Yes =) M � S4k+3C or complex group mfd

(= M � S7C
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Complex symmetric spaces

Problem A Does there exist a uniform lattice for G=H?

M = G=H is irreducible complex symmetric sp

Thm 12 (K– , Benoist)
Yes =) M � S4k+3C or complex group mfd

Thm 10
Yes (= M � S7C or complex group mfd
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Complex symmetric spaces

Problem A Does there exist a uniform lattice for G=H?

M = G=H is irreducible complex symmetric sp

Thm 12 (K– , Benoist)
Yes =) M � S4k+3C or complex group mfd

Thm 10
Yes (= M � S7C or complex group mfd

M � S11C ; S15C , . . . not known
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Complex symmetric spaces

Problem A Does there exist a uniform lattice for G=H?

M = G=H is irreducible complex symmetric sp

Thm 12 (K– , Benoist)
Yes =) M � S4k+3C or complex group mfd

Thm 10
Yes (= M � S7C or complex group mfd

Methods: criterion of t, F2 action, comparison thm
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Real form of complex spheresSnC

n = p+ qO(p; q + 1)=O(p; q) two viewpoints� � � “real form” of O(n+ 1; C )=O(n; C ) ' SnC� � � space form: pseudo-Riemannian mfd of
signature (p; q) with negative constant sec-
tional curvature

Hermitian symmetric sp (p; q) = (2; 0)

para-Hermitian
symmetric sp(p; q) = (1; 1)
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Real form of complex spheresSnC

n = p+ qO(p; q + 1)=O(p; q) two viewpoints� � � “real form” of O(n+ 1; C )=O(n; C ) ' SnC� � � space form: pseudo-Riemannian mfd of
signature (p; q) with negative constant sec-
tional curvature

Hermitian symmetric sp (p; q) = (2; 0)

para-Hermitian
symmetric sp(p; q) = (1; 1)
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Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:

G=H

G=H

L

1 SU(2; 2n)=Sp(1; n)

U(1; 2n)

2 SU(2; 2n)=U(1; 2n)

Sp(1; n)

3 SO(2; 2n)=U(1; n)

SO(1; 2n)

4 SO(2; 2n)=SO(1; 2n)

U(1; n)

5 SO(4; 4n)=SO(3; 4n)

Sp(1; n)

6 SO(4; 4)=SO(4; 1) � SO(3)

Spin(4; 3)

7 SO(4; 3)=SO(4; 1) � SO(2)

G2(2)

8 SO(8; 8)=SO(7; 8)

Spin(1; 8)

9 SO(8; C )=SO(7; C )

Spin(1; 7)

10 SO(8; C )=SO(7; 1)

Spin(7; C )

11 SO�(8)=U(3; 1)

Spin(1; 6)

12 SO�(8)=SO�(6)� SO�(2)

Spin(1; 6)
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Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

G=H

L

1 SU(2; 2n)=Sp(1; n)

U(1; 2n)

2 SU(2; 2n)=U(1; 2n)

Sp(1; n)

3 SO(2; 2n)=U(1; n)

SO(1; 2n)

4 SO(2; 2n)=SO(1; 2n)

U(1; n)

5 SO(4; 4n)=SO(3; 4n)

Sp(1; n)

6 SO(4; 4)=SO(4; 1) � SO(3)

Spin(4; 3)

7 SO(4; 3)=SO(4; 1) � SO(2)

G2(2)

8 SO(8; 8)=SO(7; 8)

Spin(1; 8)

9 SO(8; C )=SO(7; C )

Spin(1; 7)

10 SO(8; C )=SO(7; 1)

Spin(7; C )

11 SO�(8)=U(3; 1)

Spin(1; 6)

12 SO�(8)=SO�(6)� SO�(2)

Spin(1; 6)

Existence Problem of Compact Locally Symmetric Spaces – p.39/53



Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

space form G=H

L

1 SU(2; 2n)=Sp(1; n)

U(1; 2n)

2 SU(2; 2n)=U(1; 2n)

Sp(1; n)

3 SO(2; 2n)=U(1; n)

SO(1; 2n)

4 SO(2; 2n)=SO(1; 2n)

U(1; n)

5 SO(4; 4n)=SO(3; 4n)

Sp(1; n)

6 SO(4; 4)=SO(4; 1) � SO(3)

Spin(4; 3)

7 SO(4; 3)=SO(4; 1) � SO(2)

G2(2)

8 SO(8; 8)=SO(7; 8)

Spin(1; 8)

9 SO(8; C )=SO(7; C )

Spin(1; 7)

10 SO(8; C )=SO(7; 1)

Spin(7; C )

11 SO�(8)=U(3; 1)

Spin(1; 6)

12 SO�(8)=SO�(6)� SO�(2)

Spin(1; 6)
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Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

space form pseudo-KählerG=H

L

1 SU(2; 2n)=Sp(1; n)

U(1; 2n)

2 SU(2; 2n)=U(1; 2n)

Sp(1; n)

3 SO(2; 2n)=U(1; n)

SO(1; 2n)

4 SO(2; 2n)=SO(1; 2n)

U(1; n)

5 SO(4; 4n)=SO(3; 4n)

Sp(1; n)

6 SO(4; 4)=SO(4; 1) � SO(3)

Spin(4; 3)

7 SO(4; 3)=SO(4; 1) � SO(2)

G2(2)

8 SO(8; 8)=SO(7; 8)

Spin(1; 8)

9 SO(8; C )=SO(7; C )

Spin(1; 7)

10 SO(8; C )=SO(7; 1)

Spin(7; C )

11 SO�(8)=U(3; 1)

Spin(1; 6)

12 SO�(8)=SO�(6)� SO�(2)

Spin(1; 6)
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Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

space form pseudo-Kähler complex symmetricG=H

L

1 SU(2; 2n)=Sp(1; n)

U(1; 2n)

2 SU(2; 2n)=U(1; 2n)

Sp(1; n)

3 SO(2; 2n)=U(1; n)

SO(1; 2n)

4 SO(2; 2n)=SO(1; 2n)

U(1; n)

5 SO(4; 4n)=SO(3; 4n)

Sp(1; n)

6 SO(4; 4)=SO(4; 1) � SO(3)

Spin(4; 3)

7 SO(4; 3)=SO(4; 1) � SO(2)

G2(2)

8 SO(8; 8)=SO(7; 8)

Spin(1; 8)

9 SO(8; C )=SO(7; C )

Spin(1; 7)

10 SO(8; C )=SO(7; 1)

Spin(7; C )

11 SO�(8)=U(3; 1)

Spin(1; 6)

12 SO�(8)=SO�(6)� SO�(2)

Spin(1; 6)
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Existence of compact locally symm. sp

Thm 13 Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

space form pseudo-Kähler complex symmetricG=H L1 SU(2; 2n)=Sp(1; n) U(1; 2n)2 SU(2; 2n)=U(1; 2n) Sp(1; n)3 SO(2; 2n)=U(1; n) SO(1; 2n)4 SO(2; 2n)=SO(1; 2n) U(1; n)5 SO(4; 4n)=SO(3; 4n) Sp(1; n)6 SO(4; 4)=SO(4; 1) � SO(3) Spin(4; 3)7 SO(4; 3)=SO(4; 1) � SO(2) G2(2)8 SO(8; 8)=SO(7; 8) Spin(1; 8)9 SO(8; C )=SO(7; C ) Spin(1; 7)10 SO(8; C )=SO(7; 1) Spin(7; C )11 SO�(8)=U(3; 1) Spin(1; 6)12 SO�(8)=SO�(6)� SO�(2) Spin(1; 6)
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Compact quotients forSL(n)=SL(m)
There is no compact quotients if n > m satisfies:

-

6
1 2 3 4 5 6 7 8 9 10 n1

2

3

4

5

6

7

8

m
� � � � � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � �� � � � � �� � � � �

h
K– (’90)

��� h h h h h h h h h h hh h h h h h h hh h h h h h h hh h h h hh h h h hh hh h

h K– (Duke Math ’92)
� � � � � � � � �� � � � � � �� � � � �� � ��

� Zimmer (JAMS ’94)
4

4
4

4 Labourie–Mozes–Zimmer (GAFA ’95)

4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 44 4 4 4 4 44 4 4 4 44 4 4 44 4 44 Labourie–Zimmer (IMRN ’95)

e
e

e
ee Benoist (Ann Math ’96)

4Margulis ’98AAU
Shalom (Ann Math 2000)6
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� � L
- \G y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L

- \G y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L
deform - \G

y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L
deform - \G isometryy pseudo-RiemannianX
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L
deform - \G isometryy pseudo-RiemannianX

proper discontinuity
may break down
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5. Rigidity, stability, and deformation

��

G yX

��0�0 � �0 = g�g�1 (9g 2 G)�0yX

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX

��0�0 � �0 = g�g�1 (9g 2 G)�0yX

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

�0 = g�g�1 (9g 2 G)�0yX

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

�0 = g�g�1 (9g 2 G)�0yX

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

�0yX

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

)
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

(R) ) (S).
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5. Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

(R) ) (S).

(S) may fail (so does (R)).
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Local rigidity and deformation

� � GyX = G=H uniform lattice

Problem C
1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

H �
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Local rigidity and deformation

� � GyX = G=H uniform lattice

Problem C
1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

Point: for non-compact H
1. There may be large room for deformation of � itself.
2. Properly discontinuity may fail under deformation.
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Local rigidity (formulation)

� : finitely generated; G

yXAut(�) y

Hom(�; G)

x G[R(�; G;X) = fu 2 Hom(�; G) : gu : �! G u(�)yX

T (�; G;X) := R(�; G;X)=GM(�; G;X) := Aut(�)nR(�; G;X)=G

u 2 R(�; G;X) X f[u℄g Hom(�; G)=G
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Local rigidity (formulation)

� : finitely generated; GyX

Aut(�) y

Hom(�; G)

x G

[R(�; G;X) = fu 2 Hom(�; G) : (1) and (2)g

u : �! G u(�)yX

T (�; G;X) := R(�; G;X)=GM(�; G;X) := Aut(�)nR(�; G;X)=G

u 2 R(�; G;X) X f[u℄g Hom(�; G)=G
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Local rigidity (formulation)

� : finitely generated; GyX

Aut(�) y

Hom(�; G)

x G

[R(�; G;X) = fu 2 Hom(�; G) : (1) and (2)g

(1) u : �! G is injective (2) u(�)yX properly discont.

T (�; G;X) := R(�; G;X)=GM(�; G;X) := Aut(�)nR(�; G;X)=G

u 2 R(�; G;X) X f[u℄g Hom(�; G)=G
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Local rigidity (formulation)

� : finitely generated; GyX

Aut(�) y

Hom(�; G) Intx G[R(�; G;X) = fu 2 Hom(�; G) : (1) and (2)g

(1) u : �! G is injective (2) u(�)yX properly discont.

T (�; G;X) := R(�; G;X)=G (deformation space)

T (�; G;X) := R(�; G;X)=GM(�; G;X) := Aut(�)nR(�; G;X)=G

u 2 R(�; G;X) X f[u℄g Hom(�; G)=G
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Local rigidity (formulation)

� : finitely generated; GyXAut(�) y Hom(�; G) Intx G[R(�; G;X) = fu 2 Hom(�; G) : (1) and (2)g

(1) u : �! G is injective (2) u(�)yX properly discont.

T (�; G;X) := R(�; G;X)=G (deformation space)M(�; G;X) := Aut(�)nR(�; G;X)=G (moduli space)

u 2 R(�; G;X) X f[u℄g Hom(�; G)=G
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Local rigidity (formulation)

� : finitely generated; GyXAut(�) y Hom(�; G) Intx G[R(�; G;X) = fu 2 Hom(�; G) : (1) and (2)g

(1) u : �! G is injective (2) u(�)yX properly discont.

T (�; G;X) := R(�; G;X)=G (deformation space)M(�; G;X) := Aut(�)nR(�; G;X)=G (moduli space)

Def. u 2 R(�; G;X) is locally rigid as a
discontinuous gp for X if f[u℄g is open in Hom(�; G)=G.
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Group manifold case

1
 G=feg ' (G�G)=�G
Riemannian pseudo-Riemannian
left action left-right action

2


� � G�yG () (�� 1)y (G�G)=�G
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Group manifold case

1
 G=feg ' (G�G)=�G
Riemannian pseudo-Riemannian
left action left-right action

2


� � G simple Lie gp�yG () (�� 1)y (G�G)=�G
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

9 � 
() G � SL(2; R )

9 � 
() G � SO(n+ 1; 1) SU(n; 1) (n = 1; 2; 3; :::)
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

9 � 
() G � SO(n+ 1; 1) SU(n; 1) (n = 1; 2; 3; :::)
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1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

Thm 15 (K– )9uniform lattice � admitting continuous deformations for 2
() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

Thm 15 (K– )9uniform lattice � admitting continuous deformations for 2
() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Kazhdan’s property (T) fails() trivial representation is not isolated in the unitary dual
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

Thm 15 (K– )9uniform lattice � admitting continuous deformations for 2
() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail.
for pseudo-Riemannian symmetric space
even for high and irreducible case!
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

Thm 15 (K– )9uniform lattice � admitting continuous deformations for 2
() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail. Stability (S) still holds.
for pseudo-Riemannian symmetric space
even for high and irreducible case!
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Rigidity Theorem for pseudo-Riem. case

1
 G=feg ' (G�G)=�G 2
� � G simple Lie gp

Fact 14 (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1
() G � SL(2; R ) (loc. isom).

Thm 15 (K– )9uniform lattice � admitting continuous deformations for 2
() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Method: use the criterion of t

() criterion for properly discontinuous actions)
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Local rigidity and stability

�0;� � GyX�yX properly discont. & �0 is ‘close to’ �
(R) (local rigidity) �0 = g�g�1 (9g 2 G)
(S) (stability) �0yX properly discont.

In general,

(R) ) (S).

(S) may fail (so does (R)).

Goldman’s theorem and conjecture (1985)X = 3-dim’l Lorentz space form
(R) fails. It is likely that (S) holds.
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G=) �� := f(
; �(
)) : 
 2 �g � G�G� = =) �� = �� feg�
G = SL(2; R ) G rankR G = 1=)() G = (G�G)=�G�� � �
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism

=) �� := f(
; �(
)) : 
 2 �g � G�G� = =) �� = �� feg�
G = SL(2; R ) G rankR G = 1=)() G = (G�G)=�G�� � �
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism=) �� := f(
; �(
)) : 
 2 �g � G�G

� = =) �� = �� feg

�: ‘deformation’ parameter

G = SL(2; R ) G rankR G = 1=)() G = (G�G)=�G�� � �
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism=) �� := f(
; �(
)) : 
 2 �g � G�G
E.g. � = 1 =) �� = �� feg�: ‘deformation’ parameter

G = SL(2; R ) G rankR G = 1=)() G = (G�G)=�G�� � �
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism=) �� := f(
; �(
)) : 
 2 �g � G�G
E.g. � = 1 =) �� = �� feg�: ‘deformation’ parameter

Thm 16 (Kulkarni–Raymond )G = SL(2; R )

G rankR G = 1

=)

()

Any discontinuous gp for G = (G�G)=�G is
virtually of the form �� for some � and �

up to switch of factors.
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism=) �� := f(
; �(
)) : 
 2 �g � G�G
E.g. � = 1 =) �� = �� feg�: ‘deformation’ parameter

Thm 16 (Kulkarni–Raymond, K– )G = SL(2; R ) G: semisimple Lie gp, rankR G = 1=)

()

Any discontinuous gp for G = (G�G)=�G is
virtually of the form �� for some � and �

up to switch of factors.
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Discontinuous gps forG ' (G�G)=�G

( � � G� : �! G homomorphism=) �� := f(
; �(
)) : 
 2 �g � G�G
E.g. � = 1 =) �� = �� feg�: ‘deformation’ parameter

Thm 16 (Kulkarni–Raymond, K– )G = SL(2; R ) G: semisimple Lie gp, rankR G = 1=)() Any discontinuous gp for G = (G�G)=�G is
virtually of the form �� for some � and �

up to switch of factors.
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Low dimensional case

G = SL(2; R ) (� SO(2; 1) � SU(1; 1))
Deformations for 1
� � � deformation of complex structure of Riemann surface

Deformations for 2
� � � negatively curved 3-dim’l Lorentz space forms
(Goldman, K– , Salein, . . . )G = SL(2; C ) (� SO(3; 1))

Deformation for 2
� � � 3-dimensional complex mfd
(Ghys, . . . )
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Criterion for proper action

Discrete properly
discontinuous

Benoist, K–
(Thm 6)

Continuous
analog

proper action K–

?

Representations discretely
decomposable
restriction

K–

0� Invent Math 94
Ann Math 98
Invent Math 98

1A
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Discontinuous gps — Unitary reps

M : topological space�: discontinuous gp yM� � � � behaves nicely in Homeo(M)
as if it were a finite group

HLyH� � � L U(H)
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Discontinuous gps — Unitary reps

M : topological space�: discontinuous gp yM� � � � behaves nicely in Homeo(M)
as if it were a finite group

H : Hilbert spaceLyH “nice” unitary representations� � � L behaves nicely in U(H)
as if it were a compact group
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Discontinuous gps — Unitary reps

M= G=� : topological space�: discontinuous gp yM� � � � behaves nicely in Homeo(M)
as if it were a finite group

H : Hilbert spaceLyH “nice” unitary representations� � � L behaves nicely in U(H)
as if it were a compact group
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Discontinuous gps — Unitary reps

M= G=� : topological space�: discontinuous gp yM� � � � behaves nicely in Homeo(M)
as if it were a finite group

H= L2(G=H), L2(G=�) : Hilbert spaceLyH “nice” unitary representations� � � L behaves nicely in U(H)
as if it were a compact group

decay of matrix coefficients (Margulis, Oh)
discretely decomposable restrictions (K– )
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For more references:

http://www.math.harvard.edu/e toshi
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Existence problem of compact quotients

Various approaches including

criterion for proper actions

Hirzebruch’s proportionality principle

cohomology of discrete groups

symplectic geometry

ergodic actions

unitary representation theory

. . .
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