Harish-Chandra's Tempered Representations and Geometry IV
 Tempered homogeneous spaces - Interaction with topology and geometry

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo
http://www.ms.u-tokyo.ac.jp/~toshi/

18th Discussion Meeting in Harmonic Analysis
(In honour of centenary year of Harish Chandra)
Indian Institute of Technology Guwahati, India, 16 December 2023

Plan of Lectures

- Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs

- Talk 2: Tempered homogeneous spaces —Dynamical approach
- Talk 3: Classification theory of tempered G / H -Combinatorics of convex polyhedra

- Talk 4:

Plan

	Method	Topic
Lecture 1	PDEs	Multiplicity in $C^{\infty}(G / H)$
Lecture 2	Dynamical approach	L^{q}-estimate of $L^{2}(G / H)$
Lecture 3	Combinatorics	Classification of non-tempered G / H

- Plan for Today (Lecture 4)

0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces with other disciplines .

1. Topology: Deforming Lie algebras
2. Geometry: Geometric quantization

Plan of Lectures

- Talk 1: Is rep theory useful for global analysis? —Multiplicity: Approach from PDEs

- Talk 2: Tempered homogeneous spaces —Dynamical approach
- Talk 3: Classification theory of tempered G / H -Combinatorics of convex polyhedra
- Talk 4: Tempered homogeneous spaces
-Interaction with topology and geometry

Temperedness criterion (generalization)

Lecture 2

(Theorem E) $\underline{\text { Case 1 }} \underset{\text { semisimple }}{G} \curvearrowright \underset{\text { linear }}{V}$
(Theorem F') Case 2 $\underset{\text { semisimple }}{G} \stackrel{H}{\text { reductive }}$
Dynamical approach
Global geometry + Case 1
(Theorem H) Case 3 $\underset{\text { semisimple }}{G} \quad \underset{\text { any }}{H}$
Domination of G-spaces

Today
(Theorem 0) Case 4 $\underset{\text { any }}{G} \supset \underset{\text { any }}{H} \quad$ "Limit algebras"

Reminder from Lecture 2

\mathfrak{a} : max split abelian subspace of a Lie algebra \mathfrak{h}
p_{V} is defined for a linear action $\mathfrak{h}{ }^{\curvearrowright} V$ by

$$
p_{V}=\max _{Y \in \mathfrak{h} \backslash\{0\}} \frac{\rho_{\mathfrak{h}}(Y)}{\rho_{V}(Y)}=\max _{Y \in \mathfrak{a} \backslash\{0\}} \frac{\sum \text { |eigenvalues of } Y^{\curvearrowright} \mathfrak{b} \mid}{\sum \text { leigenvalues of } Y^{\curvearrowright} V \mid} .
$$

Levi decomposition

- (Hulanicki-Reiter) For solvable Lie groups, all unitary reps are tempered.
- Levi decomposition

$$
\begin{array}{r}
\mathfrak{g}=\underset{\text { semisimple }}{\mathfrak{g}_{s}} \underset{\text { solvable }}{\mathfrak{u}} \text { (Levi decomposition) } \\
G \supset G_{s}
\end{array}
$$

- For a unitary representation π of a Lie group G, we shall discuss temperedness of π as a representation of the semisimple part G_{s}.

Temperedness criterion in the general case

Setting $\quad H \subset G \quad$ real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H_{S} and $G_{\text {s }}$ of H and G, respectively, such that $H_{\mathrm{s}} \subset G_{\mathrm{s}}$. Consider

$$
G_{\mathrm{s}} \subset G^{\curvearrowright} L^{2}(G / H)
$$

[^0]
Temperedness criterion in the general case

Setting $\quad H \subset G \quad$ real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H_{S} and $G_{\text {s }}$ of H and G, respectively, such that $H_{\mathrm{s}} \subset G_{\mathrm{s}}$. Consider

$$
G_{\mathrm{s}} \subset G^{\curvearrowright} L^{2}(G / H)
$$

Theorem О ${ }^{*} L^{2}(G / H)$ is G_{s}-tempered

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

Temperedness criterion in the general case

Setting $\quad H \subset G \quad$ real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H_{s} and G_{s} of H and G, respectively, such that $H_{\mathrm{s}} \subset G_{\mathrm{s}}$. Consider

$$
G_{\mathrm{s}} \subset G^{\curvearrowright} L^{2}(G / H)
$$

We set $V:=\mathfrak{g} / \mathfrak{h}+\mathfrak{g} / \mathfrak{g}_{\mathrm{s}} \cdots H_{s}$-module
Theorem O* $L^{2}(G / H)$ is G_{s}-tempered $\Longleftrightarrow p_{V} \leq 1$.

$$
\Longleftrightarrow \rho_{\mathrm{g}_{s}} \leq 2 \rho_{\mathrm{g} / \mathfrak{h}} \text { on } \mathfrak{h}_{s}
$$

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

Temperedness criterion in the general case

Setting $\quad H \subset G \quad$ real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H_{s} and $G_{\text {s }}$ of H and G, respectively, such that $H_{\mathrm{s}} \subset G_{\mathrm{s}}$. Consider

$$
G_{\mathrm{s}} \subset G^{\curvearrowright} L^{2}(G / H)
$$

We set $V:=\mathfrak{g} / \mathfrak{h}+\mathfrak{g} / \mathfrak{g}_{\mathfrak{s}} \cdots \quad H_{S}$-module

$$
\text { Theorem O* } L^{2}(G / H) \text { is } G_{\mathrm{s}} \text {-tempered } \Longleftrightarrow p_{V} \leq 1
$$

When G is semisimple, i.e., $G=G_{\mathrm{s}}$, Theorem O implies:
Theorem H (Lecture 2: G semisimple, H reductive case) $L^{2}(G / H)$ is G-tempered $\Longleftrightarrow p_{\mathfrak{g} / \mathrm{h}} \leq 1$.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

Plan of Lecture 4

0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces with other disciplines .

1. Topology: Deforming Lie algebras
2. Geometry: Geometric quantization

Deformation of space forms S^{n}, \mathbb{R}^{n}, and H^{n}

$$
\begin{array}{cc}
K=S O(n+1)^{\curvearrowright} S^{n} & \mp=\mathfrak{s o}(n+1) \\
\downarrow & \downarrow \text { limit algebra in } g \\
M N=S O(n) \ltimes \mathbb{R}^{n} \curvearrowright \frac{\mathbb{R}^{n}}{} & \uparrow \\
H=S O(n, 1)^{\curvearrowright} \curvearrowright H^{n} & \downarrow \quad \text { limit algebra in } g \\
H=\mathfrak{s o}(n) \ltimes \mathbb{R}^{n} \\
& \emptyset=\mathfrak{s o}(n, 1)
\end{array}
$$

View point from transformation groups

$G=S O(n+1,1)$ contains $K, M N$, and H.

Deformation of space forms S^{n}, \mathbb{R}^{n}, and H^{n}

$$
\begin{gathered}
K=S O(n+1)^{\curvearrowright} \frac{S^{n}}{\downarrow} \\
M N=S O(n) \ltimes \mathbb{R}^{n} \curvearrowright \frac{\mathbb{R}^{n}}{\uparrow} \\
H=S O(n, 1)^{\curvearrowright} \stackrel{H^{n}}{H^{\prime}}
\end{gathered}
$$

$$
\mathfrak{f}=\mathfrak{s o}(n+1)
$$

$$
\downarrow \text { "limit algebrá" in } \mathfrak{g}
$$

$$
\mathfrak{m}+\mathfrak{n}=\mathfrak{s o}(n) \ltimes \mathbb{R}^{n}
$$

\downarrow "limit algebrá" in \mathfrak{g}
$\mathfrak{h}=\mathfrak{s o}(n, 1)$

View point from transformation groups
$G=S O(n+1,1)$ contains $K, M N$, and H.

Deforming Lie algebras (1) - Example

Consider two equi-dimensional subalgebras of $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$:

$$
\underset{\text { reductive }}{\mathfrak{f}=\mathfrak{s v}(n), \quad \mathfrak{n}=\left\{\left(\begin{array}{lll}
0 & & * \\
& \ddots & \\
0 & & 0
\end{array}\right)\right\}} \begin{gathered}
\text { nilpotent }
\end{gathered}
$$

Observation ${ }^{\exists}$ sequence $g_{j} \in S L(n, \mathbb{R})$ such that $\lim _{j \rightarrow \infty} \operatorname{Ad}\left(g_{j}\right) \mathfrak{f}=\mathfrak{n}$
Proof. $\quad(n=2)$ Take $g_{j}=\left(\begin{array}{cc}2^{j} & 0 \\ 0 & 2^{-j}\end{array}\right)$. Then
$\operatorname{Ad}\left(g_{j}\right) \mathbb{£}=\operatorname{Ad}\left(g_{j}\right) \mathbb{R}\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\mathbb{R}\left(\begin{array}{cc}0 & -2^{2 j} \\ 2^{-2 j} & 0\end{array}\right) \xrightarrow{j \rightarrow \infty} \mathbb{R}\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)=\mathfrak{H}$.

Remark ${ }^{\nexists}$ sequence $g_{j} \in S L(n, \mathbb{R})$ such that $\lim _{j \rightarrow \infty} \operatorname{Ad}\left(g_{j}\right) \mathfrak{n}=\mathbb{f}$.

Limit algebras (2) - Formulation

By forgetting the Lie algebra structure of \mathfrak{g}, one considers

$$
G \stackrel{\mathrm{Ad}}{\curvearrowright} \operatorname{Gr}(\mathrm{~g}):=\coprod_{m=0}^{\text {dimg }} \operatorname{Gr}_{m}(\mathfrak{g}), \quad \text { (Grassmann variety). }
$$

\mathfrak{h} : a subalgebra of \mathfrak{g}, with dimension m.
$\leadsto \mathfrak{b}$ may be regarded as a point of $\operatorname{Gr}_{m}(\mathfrak{g})$.

$\operatorname{Gr}(\mathfrak{g}) \underset{\text { submanifold }}{\supset} \operatorname{Ad}(G) \mathfrak{h}$, which may or may not be closed.

$$
\operatorname{Gr}(\mathfrak{g}) \supset \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni \mathfrak{h}_{\infty} \quad \text { (limit algebra) }
$$

Definition (limit algebra) $\mathfrak{h}_{\infty}(\subset \mathfrak{g})$ is a limit algebra of \mathfrak{h} in \mathfrak{g} if ${ }^{\exists}$ sequence $g_{j} \in G$ such that $\lim _{j \rightarrow \infty} \operatorname{Ad}\left(g_{j}\right) \mathfrak{h}=\mathfrak{h}_{\infty}$ in $\operatorname{Gr}(\mathfrak{g})$.

Limit algebras (3) — Properties

$\mathfrak{g} \supset \mathfrak{h}$ subalgebra $\leadsto \Rightarrow \quad \operatorname{Gr}(\mathfrak{g}) \supset \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni \mathfrak{h}_{\infty} \quad$ (limit algebra)
Remark Limit algebra is not unique.

Basic properties
0) \mathfrak{b} itself is a limit algebra of \mathfrak{b}.

1) Any limit algebra \mathfrak{h}_{∞} is an equi-dimensional Lie algebra.
2) If \mathfrak{h} is $\left\{\begin{array}{l}\text { abelian } \\ \text { nilpotent } \\ \text { solvable }\end{array}\right.$ then any limit algebra \mathfrak{h}_{∞} is also $\left\{\begin{array}{l}\text { abelian } \\ \text { nilpotent } \\ \text { solvable } .\end{array}\right.$
"Semisimple" $\mathfrak{\emptyset}$ may collapse to " solvable " \mathfrak{h}_{∞}, but not vice versa.

Limit algebras (4) — Example

$\mathfrak{g} \supset \mathfrak{h} \quad$ subalgebra $\rightsquigarrow \quad \operatorname{Gr}(\mathrm{g}) \supset \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni \mathfrak{h}_{\infty} \quad$ (limit algebra)
Remark \mathfrak{h}_{∞} is determined not only by \mathfrak{b} itself but by how \mathfrak{b} is embedded in \mathfrak{g}.

Exercise Fix p, and consider $\mathfrak{h}=\mathfrak{s l}_{p} \hookrightarrow \mathfrak{g}=\mathfrak{s i}_{p+q}$ Find a necessary and sufficient condition on (p, q) such that $\overline{\operatorname{Ad}(G) \mathfrak{h}} \ni^{\exists}$ solvable \mathfrak{h}_{∞}.

Deforming Lie algebras to solvable ones

$$
\begin{aligned}
& \text { Example } \mathfrak{h}=\mathfrak{s l}_{p} \hookrightarrow \mathfrak{g}=\mathfrak{s l}_{p+q} \\
& q \leq p \\
& \text { does not have a solvable limit. } \\
& q \geq p+1 \\
& \text { has a solvable limit. }
\end{aligned}
$$

Definition (solvable limit algebra) $\mathfrak{h} \subset \mathfrak{g}$ Lie algebras
We say \mathfrak{b} has a solvable limit in \mathfrak{g} if
${ }^{\exists}\left\{g_{j}\right\} \in G$ such that $\lim _{j \rightarrow \infty} \operatorname{Ad}\left(g_{j}\right) \mathfrak{h}$ is a solvable Lie algebra.

Variety of all Lie algebras \mathcal{L} and its subset \mathcal{S}

Formulation: Consider the variety of all subalgebras in \mathfrak{g}.

$$
\begin{array}{ll}
\operatorname{Gr}(\mathfrak{g}) \equiv \int_{N=0}^{\operatorname{dim} g} \operatorname{Gr}_{N}(\mathfrak{g}) & \cdots \\
\cup & \text { algebraic variety } \\
\mathcal{L}:=\{\text { subalgebras of } \mathfrak{g}\} & \ldots \\
\cup & \\
\mathcal{S}:=\left\{\mathfrak{h} \in \mathcal{L}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni{ }^{\exists} \mathfrak{h}_{\infty}\right. \text { algebraic variety } \\
\cup & \\
\{\text { solvable }\} & \\
\text { \{solvable subalgs }\} & \cdots \\
& \text { algebraic variety }
\end{array}
$$

Question What does \mathcal{S} look like in \mathcal{L} ?

Variety of all Lie algebras \mathcal{L} and its subset \mathcal{S}

 g: Lie algebra.$$
\begin{aligned}
& \mathcal{L}:=\{\text { subalgebras of } \mathfrak{g}\} \\
& \cup \\
& \mathcal{S}:=\left\{\mathfrak{h} \in \mathcal{L}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni^{\exists} \mathfrak{h}_{\infty} \text { solvable }\right\}
\end{aligned}
$$

Question What does \mathcal{S} look like in \mathcal{L} ?

$p \geq q$

$p \leq q-1$

Topology of $\mathcal{S}=\left\{\mathfrak{h}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni^{\exists} \mathfrak{h}_{\infty}\right.$ solvable $\}$

Suppose \mathfrak{g} is an algebraic Lie algebra/C.
Open Problem P Is \mathcal{S} open in \mathcal{L} ?

Topology of $\mathcal{S}=\left\{\mathfrak{h}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni^{\exists} \mathrm{h}_{\infty}\right.$ solvable $\}$
Suppose g is an algebraic Lie algebra/ \mathbb{C}.

Open Problem P Is \mathcal{S} open in \mathcal{L} ?

Theorem Q*

(1) \mathcal{S} is closed in \mathcal{L}.
(2) \mathcal{S} is open and closed in \mathcal{L} if \mathfrak{g} is semisimple.

Recall

$$
\begin{aligned}
& \mathcal{L}:=\{\text { subalgebras of } \mathfrak{g}\} \\
& \cup \\
& \mathcal{S}:=\left\{\mathfrak{h} \in \mathcal{L}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni{ }^{\boldsymbol{\xi}} \mathfrak{h}_{\infty} \text { solvable }\right\}
\end{aligned}
$$

Our proof for Theorem Q uses unitary representation theory.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

\mathcal{S} and temperedness of $L^{2}(G / H)$

G : complex algebraic Lie group, H : algebraic subgroup.

We recall

$$
\begin{aligned}
& \mathcal{L}:=\{\text { subalgebras of } \mathfrak{g}\} \\
& \cup \\
& \mathcal{S}:=\left\{\mathfrak{h} \in \mathcal{L}: \overline{\operatorname{Ad}(G) \mathfrak{h}} \ni \exists^{\exists} \mathfrak{h}_{\infty} \text { solvable }\right\}
\end{aligned}
$$

Theorem R*
 $L^{2}(G / H)$ is G_{s}-tempered $\Longleftrightarrow \mathfrak{h} \in \mathcal{S}$.

Since temperedness criterion $\rho_{\mathfrak{g}_{s}} \leq 2 \rho_{\mathrm{g} / \mathfrak{h}}$ in Theorem O is a closed condition, \mathcal{S} is closed in \mathcal{L}, showing Theorem Q (1).

Sketch of Proof of Theorem R (easier part)

We explain an easier part of the inplication in Theorem R.

$$
L^{2}(G / H) \text { is } G_{s} \text {-tempered } \Longrightarrow \mathfrak{h} \in \mathcal{S} .
$$

Take $\mathfrak{h}_{\infty} \in \overline{\operatorname{Ad}(G)} \mathfrak{y}$ such that $\operatorname{Ad}(G) \mathfrak{h}_{\infty}$ is closed. We show

$$
\rho_{\rho_{\mathrm{s}}} \leq 2 \rho_{\mathrm{g} / \mathfrak{b}} \text { on } \mathfrak{h}_{s} \Longrightarrow \mathfrak{h}_{\infty} \text { is solvable. }
$$

- Can assume $\underline{\mathfrak{b}=\mathfrak{b}_{\infty}}$.
- Can find a parabolic \mathfrak{q} of \mathfrak{g} such that \mathfrak{h} is an ideal of \mathfrak{q}
$\rho_{\mathfrak{g}_{s}} \leq 2 \rho_{\mathfrak{g} / \mathfrak{h}}$ on \mathfrak{h}_{s} implies $\mathfrak{h}_{s}=0$ after some elementary computation. Hence, \mathfrak{h} is solvable.

Plan of Lecture 4

0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces with other disciplines .

1. Topology: Deforming Lie algebras
2. Geometry: Geometric quantization

Geometric quantization and temperedness

> Ad: $G \rightarrow G L_{\mathbb{R}}(\mathfrak{g}) \quad$ adjoint representation. Ad$^{*}: G \rightarrow G L_{\mathbb{R}}\left(\mathrm{g}^{*}\right)$ coadjoint representation.

Coadjoint orbit $\quad O_{\lambda}:=\operatorname{Ad}^{*}(G) \lambda$ for $\lambda \in \mathfrak{g}^{*}$.
Lemma (Kostant-Kirillov-Souriau)
Every coadjoint orbit O_{λ} carries a natural symplectic structure.
"Geometric quantization":

Expect

$$
\mathfrak{g}^{*} / \operatorname{Ad}^{*}(G) \fallingdotseq \quad \widehat{G}
$$

From orbit philosophy by Kirillov-Kostant

We assume now G is a complex reductive Lie group.

$$
\begin{aligned}
& \mathfrak{g}^{*} \supset \mathfrak{g}_{\text {reg }}^{*}:=\left\{\lambda \in \mathfrak{g}^{*}: \operatorname{Ad}^{*}(G) \lambda \text { is of maximal dimension }\right\}, \\
& \mathfrak{g}^{*} \supset \mathfrak{h}^{\perp}:=\left\{\lambda \in \mathfrak{g}^{*}: \lambda \mathfrak{h}_{\mathfrak{h}} \equiv 0\right\} .
\end{aligned}
$$

Orbit philosophy by Kirillov-Kostant

$$
\begin{array}{ccc}
\operatorname{Ad}^{*}(G) \mathfrak{h}^{\perp} / \operatorname{Ad}^{*}(G) & \fallingdotseq & \operatorname{Supp}\left(L^{2}(G / H)\right) \\
\cap & & \cap \\
\mathfrak{g}^{*} / \operatorname{Ad}^{*}(G) & \fallingdotseq & \widehat{G} \\
\cup & & \cup \\
\mathfrak{g}_{\text {reg }}^{*} / \operatorname{Ad}^{*}(G) & \fallingdotseq & \widehat{G}_{\text {temp }}
\end{array}
$$

Remark $\mathfrak{h}^{\perp} \cap \mathfrak{g}_{\text {reg }}^{*} \neq \emptyset \Longleftrightarrow \mathfrak{h}^{\perp} \cap \mathfrak{g}_{\text {reg }}^{*} \underset{\text { dense }}{\subset} \mathfrak{h}^{\perp}$

Geometric quantization and temperedness

"Geometric quantization": $\mathfrak{g}^{*} \supset \underset{\text { symplectic mfd }}{O_{\lambda}}=\operatorname{Ad}^{*}(G) \lambda \stackrel{?}{\leadsto} \underset{\text { unitary rep }}{\pi_{\lambda} \in \widehat{G}}$

```
Ad*
    \cap 
```

Theorem S*
Suppose G is a complex reductive Lie group, and H a connected closed subgroup. Then (i) \Leftrightarrow (ii). (i) $G^{\curvearrowright} L^{2}(G / H)$ is tempered.
(ii) $\mathfrak{g}_{\text {reg }}^{*} \cap \mathfrak{h}^{\perp} \neq \emptyset$.
$\mathfrak{g}_{\text {reg }}^{*}:=\left\{\lambda \in \mathfrak{g}^{*}: \operatorname{Ad}^{*}(G) \cdot \lambda\right.$ is of maximal dimension $\}$
$\mathfrak{h}^{\perp}:=\left\{\lambda \in \mathfrak{g}^{*}: \lambda \mathfrak{l}_{\mathfrak{h}} \equiv 0\right\}$

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

Further interactions for "tempered spaces"

Theorem T Let \mathfrak{g} be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra $\mathfrak{\varsigma}$ are equivalent.
(i) (Analysis)
(ii) (combinatorics)
(iii) (Geometric quantization)
(iv) (Topology) $L^{2}(G / H)$ is tempered.
$2 \rho_{\text {万 }} \leq \rho_{\mathrm{g}}$.
$\mathfrak{h}^{\perp} \cap \mathrm{g}_{\text {reg }}^{*} \neq \emptyset$ in g^{*}.
\mathfrak{h} has a solvable limit in g .

Application Representation theory \Longrightarrow Topology

Corollary U (Topology) The property "having solvable limit" is an open and closed condition for subalgebras in a complex reductive Lie algebra \mathfrak{g}, namely, \mathcal{S} is open and closed in \mathcal{L}.

[^1]
Sketch of Proof for Theorem S: Tempered homogeneous spaces

Thm T eet \mathfrak{g} be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra \mathfrak{h} are equivalent.
(i) (unitary rep) $L^{2}(G / H)$ is tempered.
(ii) (combinatorics) $2 \rho_{\mathrm{h}} \leq \rho_{\mathrm{g}}$.
(iii) (orbit method) $\mathfrak{b}^{\perp} \cap \mathrm{g}_{\text {reg }}^{*} \neq \emptyset$ in g^{*}.
(iv) (limit algebra) \mathfrak{h} has a solvable limit in \mathfrak{g}.

Analysis (i)

Lecture 2 dynamical system

Algebra (ii)

Topology (iv)

Reductive homogeneous space G / H

G: real reductive groups
H : reductive subgroup

We shall also discuss when G and H are not nesssarily reductive.

Basic Questions in Group-Theoretic Analysis on Manifolds

$$
\begin{gathered}
G^{\curvearrowright} X \\
\text { Geometry }
\end{gathered} \leadsto \leadsto G^{\curvearrowright} C^{\infty}(X), L^{2}(X), \cdots
$$

Basic Question 1 (Lecture 1)

Does the group G "control well" $C^{\infty}(X)$? Use a system of PDEs.

Formulation Consider the dimension of

$$
\operatorname{Hom}_{G}\left(\pi, C^{\infty}(X)\right) \quad \text { for } \pi \in \operatorname{Irr}(G) .
$$

infinite, finite, bounded, 0 or 1

control better

Basic Questions in Group-Theoretic Analysis on Manifolds

Basic Question 1 (Lecture 1)
Does the group G "control well" $C^{\infty}(X)$? Use a system of PDEs.

Lecture 1

Theorem B *The following conditions are all equivalent:
(i) (Analysis \& rep theory) There exists $C>0$ s.t.
$\operatorname{dim} \operatorname{Hom}_{G}\left(\pi, C^{\infty}(X)\right) \leq C$ for all $\pi \in \operatorname{Irr}(G)$.
(ii) (Complex geometry) $X_{\mathbb{C}}$ is $G_{\mathbb{C}}$-spherical.
(ii)' (Algebra) The ring $\mathbb{D}_{G}(X)$ is commutative.
(ii)" (Algebra) The ring $\mathbb{D}_{G}(X)$ is a polynomial ring.

Basic Questions in Group-Theoretic Analysis on Manifolds

$$
\begin{gathered}
G^{\curvearrowright} X \\
\text { Geometry }
\end{gathered} \leadsto \leadsto G^{\curvearrowright} C^{\infty}(X), L^{2}(X), \cdots
$$

Basic Question 1 (Lecture 1)

Does the group G "control well" $C^{\infty}(X)$? Use a system of PDEs.

Basic Question 2 (Lectures 2-4)

What is the spectrum of $L^{2}(X)$?

Can we decompose $L^{2}(X)$ by irreducible tempered reps?
Use ideas of dynamical system, combinatorics, and deformation.

Thank you very much!

Main References

Lecture 1.

T. Kobayashi-T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. (2013).
T. Kobayashi, Conjectures on Reductive Homogeneous Spaces, Lecture Notes in Mathematics 2313, Springer, (2023).

Lectures 2-4.
Y. Benoist-T. Kobayashi, Tempered homogeneous spaces I, J. Eur. Math. Soc. (2015); II, Univ. Chicago Press (2022); III, J. Lie Theory (2021); IV, J. Inst. Math. Jussieu (2023).

Short Expository Articles for Lectures 1-4.
T. Kobayashi, Topics on global analysis of manifolds and representation theory of reductive groups, PROMS, Springer (2020).

[^0]: * Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

[^1]: * Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.

