Harish-Chandra's Tempered Representations and Geometry III

Classification theory of non-tempered G/H — Combinatorics of convex polyhedra

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo
http://www.ms.u-tokyo.ac.jp/~toshi/

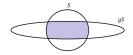
18th Discussion Meeting in Harmonic Analysis (In honour of centenary year of Harish Chandra) Indian Institute of Technology Guwahati, India, 15 December 2023

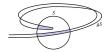
Reminder from Lectures 1 and 2

G: semisimple Lie group $G \sim X \sim G \sim L^2(X)$ Geometry Analysis

Lecture	Theme	Method
1	Merit of spherical case	PDEs
2	Beyond spherical case	Quantifying proper actions

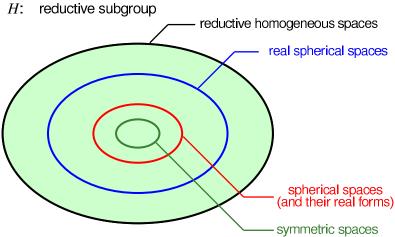
The asymptotic of $vol(gS \cap S)$





Reductive homogeneous space G/H

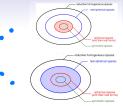
G: real reductive groups



We shall also discuss when G and H are not nesssarily reductive.

Plan of Lectures

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs



Talk 2: Tempered homogeneous spaces
 —Dynamical approach

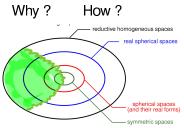
Talk 3: Classification theory of tempered G/H
 —Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
 —Interaction with topology and geometry

Classification theory — theorem

Quite surprisingly, it turns out that a complete description of <u>tempered</u> reductive homogeneous spaces G/H is realistic.

Theorem K^* One can give a complete description of pairs $G \supset H$ of real reductive algebraic groups for which $L^2(G/H)$ is tempered.



^{*} Benoist-Kobayashi, Tempered homogeneous spaces III, J. Lie Theory 31 (2022), 833-869.

Reminder: Tempered spaces and tempered subgroups

$$G \supset H$$
 Lie groups

• Induction $H \uparrow G \cdots L^2(G/H) \ll L^2(G)$.

<u>Definition</u> We say G/H is a <u>tempered homogeneous space</u> if $L^2(G/H)$ is a tempered rep of G.

• Restriction $G \downarrow H \cdots \pi|_H \ll L^2(H)$

<u>Definition</u> We say H is a G-tempered subgroup if $\pi|_H$ is a tempered rep of H for any $\pi \in \widehat{G} \setminus \{1\}$.

cf. Margulis used "G-tempered subgroup" in a different sense.

Reminder $p_V \in \mathbb{R}_{>0}$

Let \mathfrak{h} be a Lie algebra, and \mathfrak{a} its max split abelian subalgebra.

For a finite-dimensional rep $\tau \colon \mathfrak{h} \to \operatorname{End}_{\mathbb{R}}(V)$, we introduced:

$$\frac{\text{Definition}^{**} \text{ (Lecture 2)}}{p_{V}} := \max_{Y \in \mathfrak{a} \setminus \{0\}} \frac{\rho_{\mathfrak{b}}(Y)}{\rho_{V}(Y)} = \max_{Y \in \mathfrak{a} \setminus \{0\}} \frac{\sum |\text{eigenvalues of } Y \cap \mathfrak{b}|}{\sum |\text{eigenvalues of } Y \cap V|}.$$

Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

Y. Benoist-T. Kobayashi, Tempered homogeneous spaces III. J. Lie Theory 31 (2022), 833-869.

Reminder from Lecture 2

Let *H* be a semisimple Lie group.

Consider $H \to SL_{\mathbb{R}}(V)$ and $H \subset G$ (reductive).

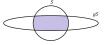
Theorems E and F* (Lecture 2) ($L^2(G/H)$)

 $p_V \le 2 \iff H^{\sim} L^2(V) \text{ is tempered.}$

 $p_{g/h} \le 1$ \iff G/H is a tempered homogeneous space.

easier

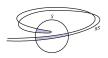
(local estimate)



 \Rightarrow

more difficult

(global estimate)



Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

Reminder from Lecture 2

Theorem I^{**} ($G \downarrow H$) Let $G := SL(n, \mathbb{R})$ and H a reductive subgroup.

Let $H \cap V := \mathbb{R}^n$ be the natural rep.

Then one has the equivalence:

- (1) $p_V < 1 \iff H \text{ is a Margulis } \underline{G\text{-tempered subgroup}}^{***}$
- (2) $p_V \le 2 \iff H \text{ is a tempered subgroup.}$

Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015–3036.

^{**} K-, (to appear),

^{***} G. Margulis, Bull. Soc. Math. France 125 (1997), 447-456.

Reminder from Lecture 2

Pr (combinatorics) (Analytic Rep Theory

Theorems E and F* (Lecture 2) ($L^2(G/H)$)

 $p_V \le 2 \iff H^{\sim} L^2(V)$ is tempered.

 $\frac{p_{a/b}}{\log 1} \leq 1 \iff G/H$ is a tempered homogeneous space.

Theorem I** $(G \downarrow H)$ Let $G := SL(n, \mathbb{R})$ and H a reductive subgroup. Let $H \cap V := \mathbb{R}^n$ be the natural rep.

Then one has the equivalence:

- (1) $p_V < 1 \iff H$ is a Margulis G-tempered subgroup***.
- $p_V \le 2 \iff H$ is a tempered subgroup.

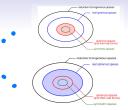
Y. Benoist-T. Kobayashi. Tempered reductive homogeneous spaces. J. Eur. Math. Soc. 17 (2015), 3015–3036.

^{**} K-, (to appear).

G. Margulis, Bull. Soc. Math. France 125 (1997), 447-456.

Plan of Lectures

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs



- Talk 2: Tempered homogeneous spaces
 —Dynamical approach
- Talk 3: Classification theory of tempered G/H
 Combinatorics of convex polyhedra

<u>Definition</u>** (Lecture 2)

$$p_V := \max_{Y \in \mathfrak{a}} \frac{\rho_{\mathfrak{h}}(Y)}{\rho_V(Y)}.$$

Main theme of Lecture 3

<u>Basic Problem</u> Classify all non-tempered homogeneous spaces.

3

Combinatorics

Understand the number p_V associated to $\tau: H \to GL_{\mathbb{R}}(V)$.

- - optimal constant for L^q -estimate of $L^2(G/H)$,
 - restriction $G \downarrow H$.

Combinatorics for p_V

Very special cases of combinatorics for p_V have already interactions with

- Kazhdan's estimate $(SL(3,\mathbb{R})\downarrow SL(2,\mathbb{R})\ltimes\mathbb{R}^2)$,
- Tempered subgroup a la Margulis,
- Minimal K-type theory of Vogan,
 (G, H) symemtric pair, H split
- Plancherel formula for G/H (T. Oshima et al),
 (G, H) semisimple symemtric pair
- Vanishing condition of gen. Borel–Weil–Bott theorem, Zuckerman's module $A_q(\lambda)$ with singular parameter λ ,

and more.

Want to understand PV ER20

Reminder
$$p_V \in \mathbb{R}_{>0}$$

Let \mathfrak{h} be a Lie algebra, and \mathfrak{a} its max split abelian subalgebra.

For a finite-dimensional rep $\tau \colon \mathfrak{h} \to \operatorname{End}_{\mathbb{R}}(V)$, we introduced:

Definition* (Lecture 2: piecewise linear function
$$\rho_V$$
)
$$\rho_V: \mathfrak{a} \to \mathbb{R}_{\geq 0}, \quad Y \mapsto \frac{1}{2} \sum |\text{eigenvalues of } Y \cap V|.$$

$$p_{V} := \max_{Y \in \mathfrak{a} \setminus \{0\}} \frac{\rho_{\mathfrak{h}}(Y)}{\rho_{V}(Y)} = \max_{Y \in \mathfrak{a} \setminus \{0\}} \frac{\sum |\mathsf{eigenvalues of} \ Y \cap \mathfrak{h}|}{\sum |\mathsf{eigenvalues of} \ Y \cap V|}.$$

^{*} Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

^{**} Y. Benoist-T. Kobayashi, Tempered homogeneous spaces III, J. Lie Theory 31 (2022), 833-869.

Basic properties of ρ_V

• For an exact sequence $0 \to W \to V \to V/W \to 0$ of \mathfrak{h} -modules, one has

$$\rho_V = \rho_W + \rho_{V/W}.$$

• (contragredient rep) $\rho_V = \rho_{V^*}$

$$\underline{\text{Example}} \; (\underline{\mathfrak{h}} \; \text{is a subalgebra of} \; \mathfrak{g})$$

For
$$0 \to \mathfrak{h} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{h} \to 0$$
 as \mathfrak{h} -modules, one sees $p_{\mathfrak{g}/\mathfrak{h}} \leq 1 \iff p_{\mathfrak{h}} \leq p_{\mathfrak{g}/\mathfrak{h}} \iff 2 p_{\mathfrak{h}} \leq p_{\mathfrak{g}}$

$$\frac{p_{\mathfrak{g}/\mathfrak{h}}}{2} \le 1 \iff \rho_{\mathfrak{h}} \le \rho_{\mathfrak{g}/\mathfrak{h}} \iff 2 \rho_{\mathfrak{h}} \le \rho_{\mathfrak{h}}$$

$$(\underset{\mathsf{Theorem F}}{\longleftrightarrow} G^{\frown}L^2(G/H) \text{ is tempered rep})$$

Definition** (Lecture 2)

$$p_{V} := \max_{Y \in \Omega} \frac{\rho_{\mathfrak{h}}(Y)}{\rho_{V}(Y)}.$$

Elementary eample: computation of ρ_V

<u>Definition</u> * (Lecture 2: piecewise linear function ρ_V)

 $\rho_V : \mathfrak{a} \to \mathbb{R}_{>0}, \quad Y \mapsto \frac{1}{2} \sum |\text{ eigenvalues of } Y \cap V|$

$$\mathfrak{h} := \mathfrak{sl}(p,\mathbb{R}) \to \operatorname{End}_{\mathbb{R}}(V)$$

$$\mathfrak{a} := \{X = \operatorname{diag}(x_1,\ldots,x_p) : \sum x_i = 0\}$$

Example 1)
$$V = \mathbb{R}^p$$
 {Eigenvalues of $X \cap \mathbb{R}^p$ } = $\{x_i : 1 \le i \le p\}$ $\rho_V = \frac{1}{2} \sum_{i=1}^p |x_i|$

Example 2)
$$V = \mathfrak{h}$$
 (adjoint representation) {Eigenvalues of $ad(X)$ } = $\{x_i - x_j : 1 \le i \ne j \le p\}$ $\rho_{\mathfrak{h}} = \sum_{1 \le i < j \le p} |x_i - x_j|$

Example
$$G = SL(3, \mathbb{R}) \supset H = SL(2, \mathbb{R})$$

$$\mathfrak{a} = \{ \operatorname{diag}(x_1, x_2, 0) : x_1 + x_2 = 0 \}$$

$$\mathfrak{h} \stackrel{\text{ad}}{\frown} \mathfrak{h} \qquad \rho_{\mathfrak{h}} = |x_1 - x_2| = 2|x_1|$$

Example 1
$$(G/H)$$
 is a tempered space.)

Proof
$$\mathfrak{h} \overset{\text{ad}}{\curvearrowright} \mathfrak{g}/\mathfrak{h}$$
 $\rho_{\mathfrak{g}/\mathfrak{h}} = |x_1| + |x_2| = 2|x_1|$ \therefore $p_{\mathfrak{g}/\mathfrak{h}} = 1$

$$L^2(G/H) \text{ is tempered} \overset{\text{Theorem F}}{\Longleftrightarrow} p_{\mathfrak{g}/\mathfrak{h}} \leq 1 \quad \text{Yes!}$$

Example 2 (*H* is a tempered subgroup of *G*)

Proof
$$\mathfrak{h} \curvearrowright V = \mathbb{R}^3$$

$$\rho_V = \frac{1}{2}(|x_1| + |x_2|) = |x_1| \quad \therefore \quad p_V = 2.$$

$$\pi|_H \text{ is tempered } \forall \pi \in \widehat{G} \setminus \{\mathbf{1}\} \stackrel{\text{Theorem I}}{\Longleftrightarrow} p_V \leq 2 \quad \text{Yes!}$$

Alternatively, Kazhdan's theorem implies Example 2, too.

$$(G,H) = (SL(p+q,\mathbb{R}), SL(p,\mathbb{R}))$$

 $L^2(G/H)$ is tempered (i.e., G/H is a tempered space)

$$\iff$$
 $\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}/\mathfrak{h}}$

$$\iff \sum_{1 \le i \le p} |x_i - x_j| \le q \sum_{i=1}^p |x_i|$$
 whenever $\sum_{i=1}^p x_i = 0$.

For which does (p, q) this happen?

Combinatorial problem $p_{g/b} \leq 1$

<u>Question</u> Find a necessary and sufficient condition on (p,q) such that

$$\sum_{1 \le i < j \le p} |x_i - x_j| \le q \sum_{i=1}^p |x_i| \tag{*}$$
 for all $(x_1, \dots, x_p) \in \mathbb{R}^p$ with $x_1 + \dots + x_p = 0$.

This is an inequality for piecewise linear functions.

··· Enough to check finitely many inequalities at the edges of convex polyhedral cones.

Answer
$$p \le q + 1$$

Necessity Let x = (1, 0, ..., 0, -1) (witness vector).

Then
$$(*) \iff 2 + 2(p-2) \le 2q \iff p-1 \le q$$
.

Main theme of Lecture 3

<u>Basic Problem</u> Classify all non-tempered homogeneous spaces.

3

Combinatorics

Understand the number p_V associated to $\tau: H \to GL_{\mathbb{R}}(V)$.

- - optimal constant for L^q -estimate of $L^2(G/H)$,
 - restriction $G \downarrow H$.

Plan of Lecture 3

- 1. Reminder from Lecture 2:
 - Criterion for $L^2(X)$ to be almost L^p representation
- 2. (Margulis) tempered subgroups and p_V
- 3. Example $SL(p+q+r)/SL(p) \times SL(q) \times SL(r)$
- 4. Classification theory of reductive tempered homogeneous spaces
- 5. Classification: non-reductive cases (if time permits)

When is the unitary rep $L^2(G/H)$ tempered (\Leftrightarrow almost L^2)?

Consider an example with 2 parameters:

$$G/H = SL(p+q,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}).$$

Find a condition on (p,q) such that $G \cap L^2(G/H)$ is tempered

$$G/H = SL(p+q,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}).$$

p q

Our temperedness criterion $\rho_h \le \rho_{a/h}$ amounts to the following:

$$\sum_{1 \le i < j \le p} \left| \begin{array}{c|c} x_i & - x_j \end{array} \right| + \sum_{1 \le i < j \le q} \left| \begin{array}{c|c} y_i & - y_j \end{array} \right| \le \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \left| \begin{array}{c|c} x_i & - y_j \end{array} \right|$$

for all $(x_1, \dots, x_p, y_1, \dots, y_q) \in \mathbb{R}^{p+q}$ with $\sum x_i = 0, \sum y_j = 0$.

Find a condition on (p,q) such that $G \cap L^2(G/H)$ is tempered

$$G/H = SL(p+q,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}).$$

Our temperedness criterion $\rho_{h} \leq \rho_{g/h}$ amounts to the following:

$$\sum_{1 \leq i < j \leq p} \left| \begin{array}{c|c} x_i & - & x_j \end{array} \right| + \sum_{1 \leq i < j \leq q} \left| \begin{array}{c|c} y_i & - & y_j \end{array} \right| \leq \sum_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \left| \begin{array}{c|c} x_i & - & y_j \end{array} \right|$$

for all
$$(x_1, \dots, x_p, y_1, \dots, y_q) \in \mathbb{R}^{p+q}$$
 with $\sum |x_i| = 0, \sum |y_j| = 0$.

$$\iff |p - q| \le 1.$$

$$\sum_{1 \le i < j \le p} \left| \begin{array}{c|c} x_i & - & x_j \end{array} \right| + \sum_{1 \le i < j \le q} \left| \begin{array}{c|c} y_i & - & y_j \end{array} \right| \le \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \left| \begin{array}{c|c} x_i & - & y_j \end{array} \right|$$

for all $(x_1, \dots, x_p, y_1, \dots, y_q) \in \mathbb{R}^{p+q}$ with $\sum x_i = 0, \sum y_j = 0$.

Evaluations at very special edges:

$$(x_1, \dots, x_p, y_1, \dots, y_q) = (1, 0, \dots, 0, -1; 0, \dots, 0)$$
 yields $p - q \le 1$, $(x_1, \dots, x_p, y_1, \dots, y_q) = (0, \dots, 0; 1, 0, \dots, 0, -1)$ yields $-1 \le p - q$.

Hence $|p-q| \le 1$ is a necessary condition. However, we still need to check finite but "huge number" of edges.

Find a condition on (p,q) such that $G \cap L^2(G/H)$ is tempered

$$G/H = SL(p+q,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}).$$

Our temperedness criterion $\rho_{h} \leq \rho_{g/h}$ amounts to the following:

$$\sum_{1 \le i < j \le p} \left| \begin{array}{c|c} x_i & - & x_j \end{array} \right| + \sum_{1 \le i < j \le q} \left| \begin{array}{c|c} y_i & - & y_j \end{array} \right| \le \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \left| \begin{array}{c|c} x_i & - & y_j \end{array} \right|$$

for all
$$(x_1, \dots, x_p, y_1, \dots, y_q) \in \mathbb{R}^{p+q}$$
 with $\sum x_i = 0, \sum y_j = 0$.

$$\iff |p - q| \le 1.$$

We have two interpretations.

$$\iff$$
 (1) $G_{\mathbb{R}} = SU(p,q)$ is quasi-split \iff (G,H) symmetric pair.

$$\iff$$
 (2) $2 \max(p,q) \le p + q + 1$.

$$(G,H) = (GL(p+q,\mathbb{R}), GL(p,\mathbb{R}) \times GL(q,\mathbb{R}))$$

In this very particular case (i.e., H is split & (G, H) is symmetric pair), the function

$$\rho_{\mathfrak{g}} - 2\rho_{\mathfrak{h}}$$

appeared in a different context, namely,

Harish-Chandra's parameter — Blattener parameter

for discrete series representations, and the combinatorial techniques have been developed by many experts including Parthasarathy, Vogan, among others.

When is $L^2(G/H)$ is tempered (\Leftrightarrow almost L^2)?

Consider a non-symmetric space with three parameters:

$$G/H = SL(p+q+r,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}) \times SL(r,\mathbb{R}).$$

	p	q	r
p			
q			
r			

$$G/H = GL(n, \mathbb{R})/GL(n_1, \mathbb{R}) \times \cdots \times GL(n_r, \mathbb{R})$$
$$n_1 + n_2 + \cdots + n_r = n$$

real reductive groups G: H: reductive subgroup reductive homogeneous spaces real spherical spaces qspherical spaces (and their real forms) qsymmetric spaces pq

$$G/H = SL(p+q+r,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}) \times SL(r,\mathbb{R}).$$

Our temperedness criterion $\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}/\mathfrak{h}}$ amounts to the following:

$$\sum_{1 \leq i < j \leq p} \begin{vmatrix} \mathbf{x}_i & - \mathbf{x}_j \end{vmatrix} + \sum_{1 \leq i < j \leq q} \begin{vmatrix} \mathbf{y}_i & - \mathbf{y}_j \end{vmatrix} + \sum_{1 \leq i < j \leq r} \begin{vmatrix} \mathbf{z}_i & - \mathbf{z}_j \end{vmatrix}$$

$$\leq \sum_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \begin{vmatrix} \mathbf{x}_i & - \mathbf{y}_j \end{vmatrix} + \sum_{\substack{1 \leq j \leq q \\ 1 \leq k \leq r}} \begin{vmatrix} \mathbf{y}_j & - \mathbf{z}_k \end{vmatrix} + \sum_{\substack{1 \leq k \leq r \\ 1 \leq i \leq p}} \begin{vmatrix} \mathbf{z}_k & - \mathbf{x}_i \end{vmatrix}$$

for all
$$(x_1, \dots, x_p]$$
, y_1, \dots, y_q , z_1, \dots, z_r) $\in \mathbb{R}^{p+q+r}$ with $\sum x_i = 0$, $\sum y_j = 0$, $\sum z_k = 0$.

$$G/H = SL(p+q+r,\mathbb{R})/SL(p,\mathbb{R}) \times SL(q,\mathbb{R}) \times SL(r,\mathbb{R}).$$

Our temperedness criterion $\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}/\mathfrak{h}}$ amounts to the following:

$$\sum_{1 \le i < j \le p} \begin{vmatrix} x_i - x_j \end{vmatrix} + \sum_{1 \le i < j \le q} \begin{vmatrix} y_i - y_j \end{vmatrix} + \sum_{1 \le i < j \le r} \begin{vmatrix} z_i - z_j \end{vmatrix}$$

$$\le \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \begin{vmatrix} x_i - y_j \end{vmatrix} + \sum_{\substack{1 \le j \le q \\ 1 \le k \le r}} \begin{vmatrix} y_j - z_k \end{vmatrix} + \sum_{\substack{1 \le k \le r \\ 1 \le i \le p}} \begin{vmatrix} z_k - x_i \end{vmatrix}$$

for all
$$(x_1, \dots, x_p, y_1, \dots, y_q, z_1, \dots, z_r) \in \mathbb{R}^{p+q+r}$$
 with $\sum x_i = 0, \sum y_j = 0, \sum z_k = 0$.

$$\iff$$
 2 max $(p,q,r) \le p + q + r + 1$.

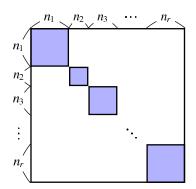
· · · combinatorics on convex polyhedral cones

Non-tempered reductive homogeneous space

What is the best p for which $L^2(G/H)$ is almost L^p ?

$$G/H = GL(n,\mathbb{R})/GL(n_1,\mathbb{R}) \times \cdots \times GL(n_r,\mathbb{R})$$

 $n_1 + n_2 + \cdots + n_r = n$



Reductive homogeneous space G/H

G: real reductive groups

H: reductive subgroup reductive homogeneous spaces real spherical spaces n_1 n_2 n_3 ... n_r spherical spaces (and their real forms) symmetric spaces

We shall also discuss when G and H are not nesssarily reductive.

almost L^p criterion (recall from Lecture 2)

Let G be a semisimple Lie group, H a reductive subgroup, and X = G/H.

Theorem F (Lecture 2) The optimal constant q(G;X) such that $vol(gS \cap S)$ is almost L^q for any compact subset S in X is given by

$$q(G;X) = 1 + p_{g/h}.$$

Concerning the regular rep $G \curvearrowright L^2(X)$ for p even,

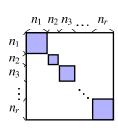
$$\begin{split} L^2(X) \text{ is almost } L^p &\iff 1 + \boxed{p_{\mathfrak{g}/\mathfrak{h}}} \leq p \iff \rho_{\mathfrak{h}} \leq (p-1)\rho_{\mathfrak{g}/\mathfrak{h}}. \\ L^2(X) \text{ is tempered } &\iff \boxed{p_{\mathfrak{g}/\mathfrak{h}}} \leq 1 \iff \rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}/\mathfrak{h}}. \end{split}$$

The temperedness criterion holds also for a non-reductive subgroup H.

Almost L^p representation

Example $G/H = GL(n,\mathbb{R})/GL(n_1,\mathbb{R}) \times \cdots \times GL(n_r,\mathbb{R})$ The smallest even integer p for which $L^2(G/H)$ is almost L^p amounts to $p = 2[\frac{n-1}{2(n-m)}]$ with $m = \max(n_1, \cdots, n_r)$.





* Y. Benoist-Y. Inoue-T. Kobayashi, J. Algebra (2023).

Plan of Lecture 3

- 1. Reminder from Lecture 2:
 - Criterion for $L^2(X)$ to be almost L^p representation
- 2. (Margulis) tempered subgroups and p_V
- 3. Example $SL(p + q + r)/SL(p) \times SL(q) \times SL(r)$
- 4. Classification of reductive tempered homogeneous spaces
- 5. Classification: non-reductive cases (if time permits)

Classification theory — theorem

Quite surprisingly, it turns out that a complete description of non-tempered reductive homogeneous spaces G/H is realistic.

<u>Theorem K*</u> One can give a complete description of pairs $G \supset H$ of real reductive algebraic groups for which $L^2(G/H)$ is <u>not tempered</u>.

Example For
$$p_1 + \cdots + p_r \le p$$
 and $q_1 + \cdots + q_r \le q$, we consider $G/H := SO(p,q)/(SO(p_1,q_1) \times SO(p_2,q_2) \times \cdots \times SO(p_r,q_r))$. $L^2(G/H)$ is non-tempered $\iff \max_{p_i q_i \ne 0} (p_i + q_i) > \frac{1}{2}(p + q + 2)$.

[:] Benoist-Kobayashi, Tempered homogeneous spaces III, J. Lie Theory **31** (2022), 833–869.

Classification theory of non-tempered G/H — Strategy

Setting: $G \supset H$ both real reductive.

Step 1. Reduction

- 1.A. G reductive $\Longrightarrow G$ simple (perfect)
- 1.B. (G,H) real $\Longrightarrow (G_{\mathbb{C}},H_{\mathbb{C}})$ (useful)
- Step 2. Classify non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ when $G_{\mathbb{C}}$ is complex simple.
 - 2.A. Combinatorics for p_V for simple $H \cap V$ (irreducible)
 - 2.B. Combinatorics for p_V for reductive $H^{\sim}V$ (reducible)
- Step 3. Understand non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ for complex simple $G_{\mathbb{C}}$.
- Step 4. Determine which real forms of $G_{\mathbb{C}}/H_{\mathbb{C}}$ are non-tempered.

Classifying non-tempered G/H — Step 1. Reduction

Setting: $G \supset H$ both real reductive.

Step 1.A.
$$G$$
 reductive $\Rightarrow G$ simple

For
$$H \subset G = G_1 \times \cdots \times G_n$$
, we set $H_i := H \cap G_i$.

$$L^2(G/H)$$
 is tempered $L^2(G_i/H_i)$ is tempered $\forall i$.

$$2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}$$

$$2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}} \qquad \iff 2\rho_{\mathfrak{h}_i} \leq \rho_{\mathfrak{g}_i} \quad \forall i.$$

Example If $\mathfrak{h} \cap \mathfrak{g}_i = \{0\}^{\forall i}$, then $L^2(G/H)$ is tempered.

Classifying non-tempered G/H — Step 1. Reduction

Setting: $G \supset H$ both real reductive.

Step 1.A.
$$G$$
 reductive $\Rightarrow G$ simple

Step 1.B.
$$(G, H)$$
 real $\Longrightarrow (G_{\mathbb{C}}, H_{\mathbb{C}})$

$$L^2(G_{\mathbb{C}}/H_{\mathbb{C}})$$
 is tempered $\Longrightarrow L^2(G/H)$ is tempered.

Classification theory of non-tempered G/H — Strategy

Setting: $G \supset H$ both real reductive.

Step 1. Reduction

- 1.A. G reductive $\Longrightarrow G$ simple (perfect)
- 1.B. (G,H) real $\Longrightarrow (G_{\mathbb{C}},H_{\mathbb{C}})$ (useful)

Step 2. Classify non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ when $G_{\mathbb{C}}$ is complex simple.

- 2.A. Combinatorics for p_V for simple $H \curvearrowright V$ (irreducible)
- 2.B. Combinatorics for p_V for reductive $H \curvearrowright V$ (reducible)
- Step 3. Understand non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ for complex simple $G_{\mathbb{C}}$.
- Step 4. Determine which real forms of $G_{\mathbb{C}}/H_{\mathbb{C}}$ are non-tempered.

Classification — feature : "huge factors" in $H_{\mathbb{C}}$

Point $L^2(G_{\mathbb{C}}/H_{\mathbb{C}})$ is non-tempered only if $H_{\mathbb{C}}$ has a "huge factor".

Theorem L ("huge factor") * Let $G_{\mathbb{C}}$ be a simple Lie group, and $H_{\mathbb{C}}$ a reductive subgroup. If $L^2(G_{\mathbb{C}}/H_{\mathbb{C}})$ is non-tempered, then $H_{\mathbb{C}}$ is "huge" in the following sense.

n-m

(Type A) If $g_{\mathbb{C}} = \mathfrak{sl}(n,\mathbb{C})$, then $\mathfrak{h}_{\mathbb{C}}$ contains

- $\mathfrak{sl}(m,\mathbb{C})$ with $m > \frac{1}{2}(n+1)$ or
- $\mathfrak{sp}(m,\mathbb{C})$ with 2p=m.

(Type
$$E_7$$
) If $\mathfrak{g}_{\mathbb{C}}=\mathfrak{e}_7^{\mathbb{C}}$, then $\mathfrak{h}_{\mathbb{C}}$ contains $\mathfrak{d}_6^{\mathbb{C}}$ or $\mathfrak{e}_6^{\mathbb{C}}$. (Type E_8) If $\mathfrak{g}_{\mathbb{C}}=\mathfrak{e}_8^{\mathbb{C}}$, then $\mathfrak{h}_{\mathbb{C}}$ contains $\mathfrak{e}_7^{\mathbb{C}}$.

Benoist-Kobayashi, Tempered homogeneous spaces III. J. Lie Theory 31 (2022), 833-869.

Tool

Let $\mathfrak g$ be a complex simple Lie algebra.

Want to find a subalgebra \mathfrak{h} s.t. $p_{\mathfrak{g}/\mathfrak{h}} \leq 1$ (temperedness criterion).

For a representation
$$\tau\colon \mathfrak{h}\to \mathrm{End}_{\mathbb{R}}(V)$$
, we defined
$$\frac{p_V}{p_V(Y)}=\max_{Y\in \mathfrak{h}}\frac{\rho_{\mathfrak{h}}(Y)}{\rho_V(Y)} \quad (\geq 0).$$

Preparation in a more general setting:

- Analyze when $p_V > 1$ for a representation (τ, V) .
 - ··· Finite inequalities on generators of covex polyhedral cones.

("exponential time" ⇒ "polynomial time")

Case 1 $\frac{1}{10}$ simple, (τ, V) irreducible.

Case 2
$$\mathfrak{h}^{\frown}V_1 \oplus V_2$$
.

Case 3
$$\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2 V = V_1 \otimes V_2, \cdots$$

Example of p_V with $p_V > 1$

$$H \curvearrowright V$$
 (linear) $\leadsto p_V \in \mathbb{R}_{>0}$.

Example Consider $H = SL(4,\mathbb{R}) \cap V$ irreducible

$$(1) V = \mathbb{C}^4 \qquad \Rightarrow p_V = 6.$$

(2)
$$V = S^2(\mathbb{C}^4) \implies p_V = \frac{3}{2}$$
.

(3)
$$V = \Lambda^2(\mathbb{C}^4) \Rightarrow p_V = 3$$

(4)
$$V = \Lambda^3(\mathbb{C}^4) \Rightarrow p_V = 6$$
.

 $(1) \ V = \mathbb{C}^4 \qquad \Rightarrow p_V = 6.$ $(2) \ V = S^2(\mathbb{C}^4) \qquad \Rightarrow p_V = \frac{3}{2}.$ $(3) \ V = \Lambda^2(\mathbb{C}^4) \qquad \Rightarrow p_V = 3.$ $(4) \ V = \Lambda^3(\mathbb{C}^4) \qquad \Rightarrow p_V = 6.$ If V or V^* is not in (1)–(4), then $p_V \leq 1$.

Classification theory of non-tempered G/H — Strategy

Setting: $G \supset H$ both real reductive.

Step 1. Reduction

- 1.A. G reductive $\Longrightarrow G$ simple (perfect)
- 1.B. (G,H) real $\Longrightarrow (G_{\mathbb{C}},H_{\mathbb{C}})$ (useful)
- Step 2. Classify non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ when $G_{\mathbb{C}}$ is complex simple.
 - 2.A. Combinatorics for p_V for simple $H \cap V$ (irreducible)
 - 2.B. Combinatorics for p_V for reductive $H \curvearrowright V$ (reducible)
- Step 3. Understand non-tempered $G_{\mathbb{C}}/H_{\mathbb{C}}$ for complex simple $G_{\mathbb{C}}$.
- Step 4. Determine which real forms of $G_{\mathbb{C}}/H_{\mathbb{C}}$ are non-tempered.

Classification theory: generic stabilizers of $H^{\frown} \mathfrak{g}/\mathfrak{h}$

For a representation $\tau \colon H \to GL(V)$, we set $(V)_{Ab} \subset (V)_{Am}$ by

 $(V)_{Ab} := \{x \in V : \text{the stabilizer } H_x \text{ is abelian}\},$ $(V)_{Am} := \{x \in V : \text{the stabilizer } H_x \text{ is amenable}\}.$

Classification theory includes:

<u>Theorem M</u>* $G \supset H$ be pairs of real reductive algebraic groups.

One has the implication (i) \Rightarrow (ii) \Rightarrow (iii).

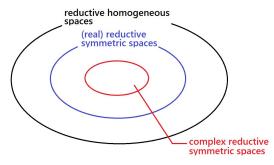
- (i) $(g/h)_{Ab}$ is dense in g/h.
- (ii) $L^2(G/H)$ is a tempered unitary representation of G.
- (iii) $(g/h)_{Am}$ is dense in g/h.

<u>Corollary N.</u> $L^2(G_{\mathbb{C}}/H_{\mathbb{C}})$ is tempered iff $(\mathfrak{g}_{\mathbb{C}}/\mathfrak{h}_{\mathbb{C}})_{Ab}$ is dense in $\mathfrak{h}_{\mathbb{C}}$.

Benoist-Kobayashi, Tempered homogeneous spaces III, J. Lie Theory 31 (2022), 833-869.

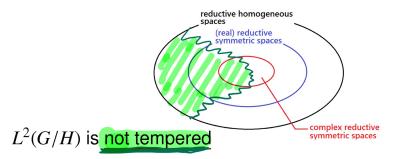
<u>Theorem K</u>* One can give a complete description of pairs $G \supset H$ of real reductive algebraic groups for which $L^2(G/H)$ is <u>not tempered</u>.

Special cases are already non-trivial



<u>Theorem K*</u> One can give a complete description of pairs $G \supset H$ of real reductive algebraic groups for which $L^2(G/H)$ is <u>not tempered</u>.

• Special cases are already non-trivial



Benoist-Kobayashi, Tempered homogeneous spaces III, J. Lie Theory 31 (2022), 833-869.

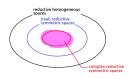
Combinatorics for p_V

Very special cases of combinatorics for p_V have already interactions with

- Kazhdan's estimate $(SL(3,\mathbb{R})\downarrow SL(2,\mathbb{R})\ltimes\mathbb{R}^2)$,
- Tempered subgroup a la Margulis,
- Minimal K-type theory of Vogan,
 (G, H) symemtric pair, H split
- Plancherel formula for G/H (T. Oshima et al),
 (G, H) semisimple symemtric pair
- Vanishing condition of gen. Borel–Weil–Bott theorem, Zuckerman's module $A_{\mathfrak{q}}(\lambda)$ with singular parameter λ ,

and more.

• Special cases are already non-trivial.



(a) Let $G_{\mathbb{C}}/H_{\mathbb{C}}$ be a complex reductive symmetric space.

Take a real form $G_{\mathbb{R}}$ of $G_{\mathbb{C}}$ such that $G_{\mathbb{R}} \cap H$ is a maximal compact subgroup of $G_{\mathbb{R}}$. Corollary N in this special case implies that

$$L^2(G_{\mathbb C}/H_{\mathbb C})$$
 is $G_{\mathbb C}$ -tempered $\iff G_{\mathbb R}$ is quasi-split.

Vogan's minimal K-type theory tells us that

$$2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}} \iff \mathfrak{g}_{\mathbb{R}} \text{ is quasi-split.}$$

Since $L^2(G_{\mathbb{C}}/H_{\mathbb{C}})$ is G-tempered $\iff 2\rho_{\mathfrak{g}} \le \rho_{\mathfrak{g}}$ (Lecture 2), this gives an alternative proof of Corollary N in this special case.

Special cases are already non-trivial.

act

(a) Let $G_{\mathbb{C}}/H_{\mathbb{C}}$ be a complex reductive symmetric space. Take a real form $G_{\mathbb{R}}$ of $G_{\mathbb{C}}$ such that $G_{\mathbb{R}} \cap H$ is a maximal compact subgroup of $G_{\mathbb{R}}$. Corollary N in this special case implies that

 $L^2(G_{\mathbb C}/H_{\mathbb C})$ is $G_{\mathbb C}$ -tempered $\iff G_{\mathbb R}$ is quasi-split.

<u>Vogan's theory</u> on minimal *K*-types gives an alternative proof:

$$2\rho_{\mathfrak{t}_{\mathbb{C}}} \leq \rho_{\mathfrak{g}_{\mathbb{C}}} \qquad \qquad \Longleftrightarrow_{\operatorname{Vogan}} \qquad G_{\mathbb{R}} \text{ is quasi-split}$$
 Lecture 2 Dynamics
$$C_{Or_{O/Q}} = C_{Or_{O/Q}} \qquad \qquad \text{definition}$$

 $L^2(G_{\mathbb{C}}/K_{\mathbb{C}})$ is tempered

 $(\mathfrak{p}_{\mathbb{C}})_{Ab}$ is dense in $\mathfrak{p}_{\mathbb{C}}$.

- Special cases are already non-trivial.
- (b) Let G/H be a reductive symmetric space.

The Plancherel theorem* for G/H:

$$L^2(G/H)\simeq\bigoplus_{i=1}^N\int_{\nu}^{\oplus}\sum_{\lambda}^{\oplus}\operatorname{Ind}_{L_jN_j}^G(\tau_{\lambda}^{(j)}\otimes\mathbb{C}_{\nu}^{(j)})d\nu.$$

 $\tau_{\lambda}^{(j)} \otimes \mathbb{C}_{\nu}^{(j)} \cdots$ relative discrete series for $L_j/(L_j \cap H)$.

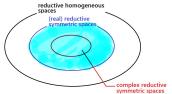
• Delicate issues arise from $\tau_{\lambda}^{(j)}$ with "singular" λ .

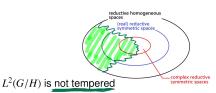
$$L^2(G/H) \text{ is tempered} & \overset{\text{Plancherel}}{\Longleftrightarrow} & \tau_{\lambda}^{(j)} \otimes \mathbb{C}_{\nu}^{(j)} \text{ is a tempered rep} \\ & \text{of } L_j \text{ for all } \lambda, \text{ a.e. } \nu \\ & & & & \downarrow \text{ obvious} \\ (\mathfrak{g}/\mathfrak{h})_{\text{Am}} \text{ is dense in } \mathfrak{g}/\mathfrak{h} & \overset{\text{Quantization}}{\Longleftrightarrow} & \tau_{\lambda}^{(j)} \otimes \mathbb{C}_{\nu}^{(j)} \text{ is a tempered rep} \\ & \text{of } L_j, \ ^{\forall} \lambda \gg 0, \text{ a.e. } \nu \\ \end{cases}$$

^{*} T. Oshima (1980s); Delorme, Ann. Math. 1998; van den Ban-Schlichtkrull, Invent. Math. 2005.

Y. Benoist-T. Kobayashi, Tempered homogeneous spaces III, J. Lie Theory (2021).

Special cases are already non-trivial.





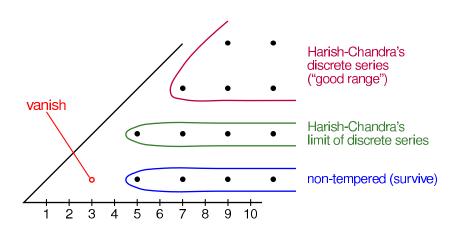
(b) Let G/H be a (real) reductive symmetric space.

Our classification in this special setting (b) singles out a small number of reductive symmetric spaces such that a "large part" of the spectra in $L^2(G/H)$ (e.g., induced from discrete series of Flensted-Jensen type) are tempered but $L^2(G/H)$ itself is not tempered.

<u>E.g.</u> For $p_1 \ge 1$, $q_1 \ge 1$, $p_1 + q_1 = p_2 + q_2 + 1$, $Sp(p_1 + p_2, q_1 + q_2)/(Sp(p_1, q_1) \times Sp(p_2, q_2))$ is NOT tempered, although "most of" the spectra are tempered.

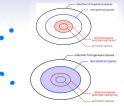
- parameter of discrete series for GH good range or may not vanish

Discrete series for $Sp(4, 1)/Sp(1) \times Sp(3, 1)$



Plan of Lectures

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs



Talk 2: Tempered homogeneous spaces
 —Dynamical approach

Talk 3: Classification theory of tempered G/H
 Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
 —Interaction with topology and geometry

Thank you for your attention!