# Harish-Chandra's Tempered Representations and Geometry II

# Tempered homogeneous spaces and tempered subgroups — Dynamical approach

#### Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo
http://www.ms.u-tokyo.ac.jp/~toshi/

18th Discussion Meeting in Harmonic Analysis (In honour of centenary year of Harish Chandra) Indian Institute of Technology Guwahati, India, 13 December 2023

### Reductive homogeneous space G/H

G: real reductive groups



We shall also discuss when G and H are not nesssarily reductive.

## Reductive homogeneous space G/H

*G*: real reductive groups



We shall also discuss when G and H are not nesssarily reductive.

#### **Plan of Lectures**

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs





## **Topic of Yesterday (Lecture 1)**

$$G \curvearrowright X = G/H \rightsquigarrow G \curvearrowright C^{\infty}(X), L^2(X)$$
Geometry
Functions

What is a geometric condition for  $G \cap X$  that assures a "strong grip" of G on  $C^{\infty}(X)$  in the sense of "multiplicities"?

Multiplicity

Geometry

Thm A: "finite"  $\cdots G/H$  is real spherical.

Thm B: "uniformly bounded"  $\cdots G_{\mathbb{C}}/H_{\mathbb{C}}$  is spherical.



Thms C and D  $\cdots$  counterpart for the restriction  $G \downarrow H$ .

## Reductive homogeneous space G/H

G: real reductive groups



We shall also discuss when G and H are not nesssarily reductive.

#### Plan of Lectures

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs



Talk 2: Tempered homogeneous spaces
 —Dynamical approach

Talk 3: Classification theory of tempered G/H
 —Combinatorics of convex polyhedra



Talk 4: Tempered homogeneous spaces
 —Interaction with topology and geometry

## **Plan for Today**

Beyond spherical cases and "coarse information".

Basic Problem (Today) Find a geometric criterion for  $G \curvearrowright X$  that assures  $L^2(X)$  to be almost  $L^p$ .

Change of approach

PDE → Dynamical approach

#### Plan of Today (Lecture 2)

- Methods and elementary examples
  - − Optimal constant q(G;X) for  $L^q$ -estimate  $vol(gS \cap S)$ .
  - Almost  $L^p$ -representation.
- Tempered homogeneous spaces
- Tempered subgroups

### **Learn from Dynamical System**

G: locally compact group

X: locally compact space

<u>Definition</u> A continuous action  $G^{\sim}X$  is called <u>proper</u> if the subset

$$G_S := \{ g \in G : S \cap gS \neq \emptyset \}$$

is compact for any compact subset  $S \subset X$ .



<u>Definition</u> The action is <u>free</u>  $\iff$   $G_{\{x\}} = \{e\}$   $\forall x \in X$ .

## Criterion for proper actions — topology

<u>Basic problem</u> (topology) Given a geometry X. Find a criterion for a group L ( $\subset$  Aut(X)) to act properly on X.

#### Group theoretic approach:

- Properness criterion was established for a homogeneous space X of a reductive group G (1989\*–1996).
  - · · · Applications include a solution (1989\*) to the Calabi-Markus phenomenon (Ann. Math., 1962).
- Properness criterion for nilpotent Lie groups *G* up to 3-step (1995–\*\*).
- Open problems in general.\*\*\*

<sup>\*</sup> T. Kobayashi (Math. Ann., '89 and JLT '96), Benoist (Ann. Math., '96);

<sup>\*\*</sup> R. Lipsman (JLT '95), S. Nasrin ('01), T. Yoshino (IJM, '07), Baklouti-Khlif (IMM, '05) et al;

<sup>\*\*\*</sup> T. Kobayashi, Conjectures on reductive homogeneous spaces, Lect. Notes in Math., (2023).

# Non-proper action — delicate example $\mathbb{R}^{n} \mathbb{R}^2 \setminus \{(0,0)\}$

## Example Let $\mathbb{R} \ni t$ act on $\mathbb{R}^2$ by

$$(x,y)\mapsto (e^tx,e^{-t}y).$$

- This action is neither free nor proper because the origin (0,0) is a fixed point.
   The removal of the origin makes the situation slightly better.
- 2) The action on  $X := \mathbb{R}^2 \setminus \{(0,0)\}$  is free, but is not proper.



# Non-proper action — delicate example $\mathbb{R}^{n} \mathbb{R}^2 \setminus \{(0,0)\}$

## Example Let $\mathbb{R} \ni t$ act on $\mathbb{R}^2$ by

$$(x,y) \mapsto (e^t x, e^{-t} y).$$

- This action is neither free nor proper because the origin (0,0) is a fixed point.
   The removal of the origin makes the situation slightly better.
- 2) The action on  $X := \mathbb{R}^2 \setminus \{(0,0)\}$  is free, but is not proper.



## Non-proper action — delicate example $\mathbb{R}^{n} \mathbb{R}^{2} \setminus \{(0,0)\}$

## Example Let $\mathbb{R} \ni t$ act on $\mathbb{R}^2$ by

$$(x,y) \mapsto (e^t x, e^{-t} y).$$

- This action is neither free nor proper because the origin (0,0) is a fixed point.
   The removal of the origin makes the situation slightly better.
- 2) The action on  $X := \mathbb{R}^2 \setminus \{(0,0)\}$  is free, but is not proper.



## Idea: Quantify proper actions

Locally compact group  $G \curvearrowright X$  locally compact space

$$G \curvearrowright X$$
 proper  $\stackrel{\text{def}}{\Leftrightarrow} \{g \in G : S \cap gS \neq \emptyset\}$  is compact  $\forall S \subset X$  compact,  $\Leftrightarrow \operatorname{vol}(S \cap gS) \in C_c(G)$ 

where we fix an appropriate Radon measure on X.

Idea: Quantitative estimate for non-proper actions.

Look at asymptotic behavior of  $vol(S \cap gS)$  as g goes to infinity.



## **Volume estimate** $vol(t \cdot S \cap S)$ : **example** $\mathbb{R}^{n} \mathbb{R}^{2} \setminus \{(0,0)\}$

Example Let 
$$\mathbb{R} \ni t$$
 act on  $X = \mathbb{R}^2 \setminus \{(0,0)\}$  by  $(x,y) \mapsto (e^t x, e^{-t} y)$ 

- This action is free, but is not proper.
- Asymptotic behavior of vol( $S \cap t \cdot S$ ).

For any compact neighbourhood S of the origin in  $\mathbb{R}^2$ , one has

$$C_1 e^{-|t|} \le \operatorname{vol}(\underbrace{t \cdot S \cap S}) \le C_2 e^{-|t|}.$$



For instance, if  $S = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$ ,

$$\operatorname{vol}(t \cdot S \cap S) = 4e^{-|t|}.$$



#### Almost $L^p$ function

Z: locally compact space equipped with a Radon measure. Eg. a locally compact group G with (left) Haar measure.

<u>Definition</u> A measurable function f on Z is almost  $L^p$  if  $f \in \bigcap_{\varepsilon > 0} L^{p+\varepsilon}(Z).$ 

Remark For 
$$p \le p'$$
, one has  $f$  is almost  $L^p \Longrightarrow f$  is almost  $L^{p'}$ .

We are interested in the best possible p for which f is almost  $L^p$ , in particular, when Z is a semisimple Lie group G.

(e.g., 
$$G = SL(n, \mathbb{R})$$
,  $SU(p,q)$ ,  $SO(p,q)$ ,  $Sp(n,\mathbb{R})$ . · · · ).

## Example 1. $L^p$ -estimate of K-finite eigenfunctions

$$D = \{ z \in \mathbb{C} : |z| < 1 \} \quad ds^2 = \frac{4(dx^2 + dy^2)}{(1 - |z|^2)^2} \quad \text{(Poincaré disc)}$$

Any *K*-finite function *f* satisfying  $\Delta f = \lambda f$  is almost  $L^{\frac{p(\lambda)}{2}}$ 

 $(\lambda > 0)$ , where  $p(\lambda) := \frac{2}{1 - \sqrt{1 - 4\lambda}}$   $(0 \le \lambda \le \frac{1}{4})$ ; = 2  $(\frac{1}{4} \le \lambda)$ . In fact, one has

$$f(\tanh t(\cos \varphi, \sin \varphi)) \sim Ae^{-\mu_+ t} + Be^{-\mu_- t}$$

where  $\mu_{\pm}:=1\pm\sqrt{1-4\lambda}$  and  $\lambda$  is generic (Lecture 1).

Figure in the 
$$\mu$$
-plane with  $\lambda = -\frac{1}{4}(\mu^2 - 2\mu)$ .

$$0 \leq \lambda \leq \frac{1}{4} \Leftrightarrow \begin{cases} \mu \in \mathbb{R} \\ |\mu - 1| \leq 0 \end{cases}$$

$$0 \leq \lambda \leq \frac{1}{4} \Leftrightarrow \begin{cases} \mu \in \mathbb{R} \\ |\mu - 1| \leq 0 \end{cases}$$

$$0 \leq \lambda \leq \frac{1}{4} \Leftrightarrow \frac{1}{4} \Leftrightarrow \frac{1}{4} \leq \lambda \Leftrightarrow \mu \in \mathbb{I} + \sqrt{-1}\mathbb{R}$$

$$0 \leq \lambda \leq \frac{1}{4} \Leftrightarrow \frac{1}{4} \Leftrightarrow \frac{1}{4} \Rightarrow \frac{1}{4}$$

# **Example 2.** $L^p$ -estimate of $vol(gS \cap S)$ for $G \cap G/N$

The example  $\mathbb{R}^{\curvearrowright}\mathbb{R}^2\setminus\{(0,0)\}$ ,  $(x,y)\mapsto(e^tx,e^{-t}y)$  is interpreted as

$$A \hookrightarrow G \curvearrowright G/N \iff \mathbb{R}^{2} \setminus \{(0,0)\}.$$

$$A = \{a_t := \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} : t \in \mathbb{R}\} \subset G = SL(2, \mathbb{R}) \supset N = \{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \}.$$

 $\operatorname{vol}(gS \cap S)$  is almost  $L^2(G)$  for any compact subset  $S \subset G/N$ .

- For any compact  $S \subset G/N$  and  $g = k_1 \frac{a_l}{a_l} k_2$  with  $k_1, k_2 \in SO(2)$ ,  $vol(gS \cap S) \sim \frac{e^{-|t|}}{e^{-|t|}}$  (previous example).
- Haar measure on  $g = k_1 \frac{a_t}{a_t} k_2 \in G = SL(2, \mathbb{R})$ : One has

$$dg = \sinh(2t)dk_1dtdk_2 \sim \frac{e^{2|t|}}{e^{2|t|}}dk_1dtdk_2.$$

Hence

$$\operatorname{vol}(gS \cap S) \in L^{p+\varepsilon}(G) \iff 2-p-\varepsilon < 0.$$

## Optimal constant q(G; X) of volume estimate

$$G^{\sim}X$$

Suppose *X* admits a *G*-invariant Radon measure.

<u>Definition</u> We write q(G;X) for the optimal constant q>0 such that  $\operatorname{vol}(S\cap gS)$  is an almost  $L^q$ -function on G for every compact subset  $S\subset X$ .

Example 
$$q(G;X) = 2$$
 if  $(G,X) = (SL(2,\mathbb{R}),\mathbb{R}^2)$ .

General Problem Find an explicit formula of q(G;X).

## Finding the optimal $L^p$ -estimate of $vol(gS \cap S)$

Let G be a semisimple Lie group acting on X.

q(G;X): the optimal constant for  $L^q$ -estimate of  $vol(gS \cap S)$ .

We shall give an explicit formula of q(G;X) when X = V (linear action) or X = G/H (H: reductive).



## $L^p$ -estimate of $vol(gS \cap S) \cdots$ Case 1. $H \cap V$ linear

Notation:  $G \curvearrowright X \leadsto H \curvearrowright V$  (linear)

Let H be a semisimple Lie group, and  $\tau \colon H \to SL_{\mathbb{R}}(V)$  a representation. Assume  $\tau$  has a compact kernel.

The optimal constant q(H; V) for  $vol(gS \cap S)$  to be almost  $L^q$  is given as follows.

Theorem E For a linear action  $H \curvearrowright V$ , one has  $q(H; V) = p_V$ .

analysis combinatorics

$$p_V := \max_{Y \in \mathfrak{h} \setminus \{0\}} \frac{
ho_{\mathfrak{h}}(Y)}{
ho_V(Y)}$$
 $\rho_{\mathfrak{h}}$ ,  $\rho_V$  ... next page.

<sup>\*</sup> Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

### **Piecewise linear function** $\rho_V$ associated to $\tau : \mathfrak{h} \to \operatorname{End}(V)$

For a finite-dimensional rep  $\tau$ :  $\mathfrak{h} \to \operatorname{End}_{\mathbb{R}}(V)$ , we introduce:

<u>Definition</u> (non-negative function  $\rho_V$  on the Lie algebra  $\mathfrak{h}$ )

$$\rho_V$$
:  $\mathfrak{h} \to \mathbb{R}_{\geq 0}$ ,  $Y \mapsto \frac{1}{2} \sum |\operatorname{Re} \lambda(Y)|$ .

gen. eigenvalues of  $\tau(Y) \in \operatorname{End}(V_{\mathbb{C}})$ 

Let a be a maximal split abelian subspace of the Lie algebra b.

#### A constant $p_V$ associated to $\tau \colon \mathfrak{h} \to \operatorname{End}(V)$

Let  $\mathfrak a$  be a maximally split abelian subspace of a Lie algebra  $\mathfrak h$ . For a finite-dimensional rep  $\tau \colon \mathfrak h \to \operatorname{End}_{\mathbb R}(V)$ , we introduce:

Short Summary 
$$\tau \colon \mathfrak{h} \to \operatorname{End}_{\mathbb{R}}(V)$$
 $\leadsto \rho_V \cdots$  piecewise linear function
 $p_V \cdots$  positive number

Example 
$$H_0 = \begin{pmatrix} 1 & 1 \\ -1 \end{pmatrix}$$
,  $\mathfrak{a} = \mathbb{R}H_0 \subset \mathfrak{h} = \mathfrak{sl}(2,\mathbb{R}) \cap V = \mathbb{R}^2$   
 $\rho_{\mathfrak{h}}(tH_0) = \frac{1}{2}(|2t| + 0 + |-2t|) = 2|t|$ .  
 $\rho_V(tH_0) = \frac{1}{2}(|t| + |-t|) = |t|$ .  
 $\rho_V = 2$ .

# Sketch of Proof for Theorem E: $H \cap V$ (linear)

Let H be a semisimple Lie group. Suppose  $\tau \colon H \to GL_{\mathbb{R}}(V)$  has a compact kernel. As in the case  $(H,V) = (SL(2,\mathbb{R}),\mathbb{R}^2)$ , one has

Theorem E For a linear action 
$$H \cap V$$
, one has 
$$\frac{q(H;V)}{\text{analysis}} = \frac{p_V}{\text{combinatorics}}.$$

Proof. • For  $H \ni h = k_1 e^Y k_2$ , one has  $\operatorname{vol}(hS \cap S) \sim e^{-\rho_V(Y)}$ .



• For the Haar measure dh on H, one has

$$dh \sim e^{\frac{\rho_b}{(Y)}} dk_1 dY dk_2$$
 (away from wall).

Therefore the  $L^{q+\varepsilon}$ -estimate of vol $(hS \cap S)$  amounts to

$$\operatorname{vol}(hS \cap S)^{q+\varepsilon} dh \sim e^{\frac{\rho_0}{\rho_0}(Y) - (q+\varepsilon)\frac{\rho_V}{\rho_V}(Y)} dk_1 dY dk_2.$$

## Strategy: finding the optimal $L^p$ -estimate of $vol(gS \cap S)$

Let  $G \curvearrowright X$ .

q(G;X): the optimal constant for  $L^q$ -estimate of  $vol(gS \cap S)$ .

We discussed when X = V (linear). Now consider X = G/H.



Recall q(G;X) is the optimal constant q for which  $\operatorname{vol}(gS \cap S)$  is almost  $L^q$  for all compact subset  $S \subset X$ .

<u>Theorem F</u>\* Let G be a semisimple Lie group, and H a reductive subgroup. Then one has

$$q(G; G/H) = p_{g/h} + 1.$$
analysis combinatorics

Recall 
$$p_V = \max_{\substack{1 \ni Y \neq 0}} \frac{\rho_{1}(Y)}{\rho_{0/1}(Y)}$$
 is defined for a linear action  $\underline{H} \curvearrowright V$ .

<u>Point</u> It turns out that one can control  $vol(gS \cap S)$  for  $g \in G$  only by " $\rho$ -function" for the subgroup H acting on g/h.

Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015–3036.

#### Asymptotic estimate of volume

For any compact  $S \subset G/H$ , we want to find m(g) and M(g):  $m(g) \le \operatorname{vol}(gS \cap S) \le M(g)$  for all  $g \in G$ .

for 
$$g \in H$$

$$H \stackrel{\text{Ad}}{\longrightarrow} g/\mathfrak{h} \stackrel{\stackrel{\text{g.s.}}{\rightleftharpoons}}{\Longrightarrow} G/H.$$

Some difficulties to overcome:

• Need a lower bound  $\underline{m}(g)$  for  $g \in G$ , not only for  $g \in H$ .

•

#### Asymptotic estimate of volume

For any compact  $S \subset G/H$ , we want to find m(g) and M(g):

$$m(g) \le \operatorname{vol}(gS \cap S) \le M(g)$$
 for all  $g \in G$ .

for 
$$g \in H$$

$$H \stackrel{S}{\curvearrowright} g/h \stackrel{=}{\rightleftharpoons} G/H.$$

Some difficulties to overcome:

- Need a lower bound  $\underline{m}(g)$  for  $g \in G$ , not only for  $g \in H$ .
- An upper bound M(g) is more involved.

<u>Theorem F</u>\* Let G be a semisimple Lie group, and H a reductive subgroup. Then one has

$$q(G;G/H) = p_{g/h} + 1.$$
analysis combinatorics



<u>Key idea</u>: Quantify the proof of the properness criterion \*\* for subgroups L of G acting on G/H.

<sup>\*</sup> Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

<sup>\*\*</sup> T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., 285 (1989), 249-263.

#### Plan

- Methods and elementary examples
  - Optimal constant q(G; X) for  $L^q$ -estimate  $vol(gS \cap S)$ .
  - Almost  $L^p$ -representation, tempered representations.
- Tempered homogeneous spaces.
- Tempered subgroups.

## Almost $L^p$ representations

Almost 
$$L^p$$
 functions  $\mathbr{\del{\del{\del}}}$  Almost  $L^p$  representations

Let  $\pi$  be a unitary representation of G on a Hilbert space  $\mathcal{H}$ .

Definition For  $p \ge 1$ ,  $(\pi, \mathcal{H})$  is called almost  $L^p$  if there is a dense subspace  $D \subset \mathcal{H}$  such that matrix coefficients for  $x, y \in D$  are almost  $L^p$ , namely,

$$(\pi(g)x, y)_{\mathcal{H}} \in \bigcap_{\varepsilon > 0} L^{p+\varepsilon}(G) \quad {}^{\forall}x, {}^{\forall}y \in D$$

# Harish-Chandra's tempered representation — Definition

Let G be a locally compact group.

<u>Def</u> A unitary rep  $\pi$  of G is called tempered if  $\pi \ll L^2(G)$ .

weakly contained

*i.e.*, every matrix coefficient of  $\pi$  is a uniform limit on every compacta of G by a sequence of sum of coefficients of  $L^2(G)$ .

## Almost $L^2$ representation vs tempered representations

<u>Definition</u> A unitary representation  $\pi$  of G is called <u>tempered</u> if  $\pi \ll L^2(G)$ .

• For a semisimple Lie group *G*, one has

Fact G (Cowling–Haagerup–Howe)\* One has the equivalence:  $\pi$  is tempered  $\iff \pi$  is almost  $L^2$ .

<sup>\*</sup> M. Cowling-M. Haagerup-R. Howe, Almost L<sup>2</sup> matrix coefficients, J. Reine Angew. Math. **387**, (1988), 97–110.

## Almost $L^2$ representation vs tempered representations

• For a solvable Lie group G, all unitary reps  $\pi$  are tempered (Hulanicki–Reiter), but are not always almost  $L^2$ .

E.g. the trivial one-dimensional rep is not almost  $L^p$  ( $1 \le p < \infty$ ) if G is non-compact.

• For a semisimple Lie group G, one has

Fact G (Cowling-Haagerup-Howe)\* One has the equivalence:  $\pi$  is tempered  $\iff \pi$  is almost  $L^2$ .

<sup>\*</sup> M. Cowling-M. Haagerup-R. Howe, Almost  $L^2$  matrix coefficients, J. Reine Angew. Math. **387**, (1988), 97–110.

### **Temperedness under disintegration**

Mautner: Any unitary rep II can be decomposed into irreducibles:

$$\Pi \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \, \pi \, d\mu(\pi) \qquad \text{(direct integral)}.$$

<u>Fact</u> Π is tempered  $\Leftrightarrow$  <u>irreducible</u> reps  $\pi$  are tempered for  $\mu$ -a.e.

$$\widehat{G} = \{\text{irreducible unitary reps}\}$$

$$\widehat{G}_{\text{temp}} := \{ \text{irreducible tempered reps} \}.$$

That is,

$$\Pi$$
 is tempered  $\iff \int_{\widehat{G}_{\mathrm{temp}}}^{\oplus} m_{\pi} \pi d\mu(\pi).$ 

# Classification theory of the unitary dual $\widehat{G}$

 $\underline{Fact}$  (Kirillov, Duflo) Classification of the unitary dual  $\widehat{G}$  for real algebraic groups G is reduced to that for real reductive Lie groups .

Suppose *G* is a real reductive Lie group (e.g.,  $GL(n, \mathbb{R})$ , O(p, q)).



## **Tempered representations** (warming up)

```
V. Bargmann (1947): Irreducible unitary reps of SL(2,\mathbb{R})
= { 1 } \coprod { principal series } \coprod { complementary series } \coprod { discrete series } \coprod { limit of discrete series }
```

## **Tempered representations** (warming up)

```
V. Bargmann (1947): Irreducible unitary reps of SL(2,\mathbb{R})
= { 1 } \coprod { principal series } \coprod { complementary series } \coprod { discrete series } \coprod { limit of discrete series }
```

 $-\frac{1}{2}$  Casimir operator acts on them as scalars

$$\{0\}$$
,  $\left[\frac{1}{4},\infty\right)$ ,  $\left(0,\frac{1}{4}\right)$ ,  $\left\{\frac{1}{4}(n^2-1):n\in\mathbb{N}_+\right\}$ ,  $\{0\}$ 

 $\Gamma$ : congruence subgroup of  $G = SL(2, \mathbb{R})$ 

Selberg's  $\frac{1}{4}$  eigenvalue conjecture \*:

All eigenvalues of  $\Delta$  on Maas wave forms for  $\Gamma \geq \frac{1}{4}$ .

 $\iff$  The unitary rep of  $G \cap L^2_{\text{cusp}}(\Gamma \backslash G)$  is tempered.

Just one irred non-tempered rep would deny the conjecture.

<sup>\*</sup> A. Selberg, On the estimate of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 1965.

## Irreducible tempered reps — semisimple Lie groups

<u>Def</u> A unitary representation  $\pi$  of G is called <u>tempered</u> if  $\pi \ll L^2(G)$ .

• For a semisimple Lie group G and irreducible  $\pi \in \widehat{G}$ , tempered representations  $\pi$  have been studied extensively.

Known results on tempered reps and beyond ...

- Many equivalent definitions, *e.g.*,  $L^{2+\varepsilon}(G)$ ,
- Harish-Chandra's theory towards Plancherel formula,
- Knapp–Zuckerman's classification \*,
- A cornerstone of Langlands' classification,
- Selberg <sup>1</sup>/<sub>4</sub> eigenvalue conjecture (1965-),
- Gan-Gross-Prasad conjecture, · · ·

<sup>\*</sup> A. W. Knapp-G. Zuckerman, Classification of irreducible tempered representations of semisimple Lie groups, Ann. Math.. (1980), 389-455; 457-501.

## Tempered homogeneous spaces and tempered subgroups

$$G \supset H$$
 Lie groups

Induction

<u>Definition</u> We say G/H is a <u>tempered homogeneous space</u> if  $L^2(G/H)$  is a tempered rep of G.

Restriction

<u>Definition</u> We say H is a G-tempered subgroup if  $\pi|_H$  is tempered for any  $\pi \in \widehat{G} \setminus \{1\}$ .

cf. Margulis used the terminology "G-tempered subgroup" in a stronger sense by using an  $L^1$ -estimate rather than an  $L^{2+\varepsilon}$ -estimate.

## Basic questions on Harish-Chandra's tempered representations

 $G \supset H$  Lie groups

<u>Problem 2</u> (induction) Find a criterion for (G, H) such that  $L^2(G/H)$  is a tempered rep of G.

Problem 3 (restriction) Find a criterion for (G, H) such that the restriction  $\pi|_H$  is a tempered rep of H  $\forall \pi \in \widehat{G} \setminus \{1\}$ .

We shall see that Problem 3 is related to the existence problem of cocompact discontinuous groups  $\Gamma$  for G/H.

# Tempered homogeneous space X = G/H, i.e., $L^2(X) \ll L^2(G)$

<u>Problem 2</u> When is the unitary rep on  $L^2(X)$  <u>tempered</u>?

#

<u>cf.</u>  $L^2(X)$  can be disintegrated by irred <u>X-tempered reps</u> (this is almost 'tautology'). (Harish-Chandra, Oshima, Bernstein ~ 80s).

## Towards a temperedness criterion

<u>Problem 2</u> For which pair  $G \supset H$ , is the unitary rep of G on  $L^2(G/H)$  tempered?

For semisimple Lie groups G, we have already discussed a refinement of Problem 2 as below:

<u>Problem 1</u> Find the optional constant q(G; G/H) for which  $vol(gS \cap S)$  is almost  $L^q$  for all compact subset  $S \subset G/H$ .

 $q(G;G/H) \le 2 \iff L^2(G/H)$  is tempered.

## Temperedness criterion in the reductive case

G semisimple Lie group,H any reductive subgroup.

Since we know from Theorem F that

$$q(G; G/H) = p_{g/lb} + 1$$
analysis combinatorics

where  $p_V = \max_{\mathfrak{h}\ni Y\neq 0} \frac{\rho_{\mathfrak{h}}(Y)}{\rho_V(Y)}$  is defined for a linear action  $\underline{H}^{\curvearrowright}V$ , one

obtains from the volume estimate:

Theorem  $F'^*$  For a pair of real reductive Lie groups, one has  $L^2(G/H)$  is G-tempered  $\iff p_{\mathfrak{g}/\mathfrak{h}} \leq 1$ .

Remark.  $p_{g/h} \le 1 \iff 2p_h \le p_g$  on h.

<sup>\*</sup> Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

#### Plan of Lectures

Talk 1: Is rep theory useful for global analysis?
 —Multiplicity: Approach from PDEs



Talk 2: Tempered homogeneous spaces
 —Dynamical approach

Talk 3: Classification theory of tempered G/H
 —Combinatorics of convex polyhedra



Talk 4: Tempered homogeneous spaces
 —Interaction with topology and geometry

Thank you for your attention!