Harish-Chandra’s Tempered Representations
and Geometry I

Tempered homogeneous spaces and tempered subgroups
— Dynamical approach

Toshiyuki Kobayashi

The Graduate School of Mathematical Sciences
The University of Tokyo

http://www.ms.u-tokyo.ac.jp/“toshi/

18th Discussion Meeting in Harmonic Analysis
(In honour of centenary year of Harish Chandra)
Indian Institute of Technology Guwahati, India, 13 December 2023



Reductive homogeneous space G/H

real reductive groups
reductive subgroup

T Q

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

We shall also discuss when G and H are not nesssarily reductive.
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Topic of Yesterday (Lecture 1)

G™YX=G/H ~ GYCX), L*(X)
Geometry Functions

What is a geometric condition for G X that assures a
“strong grip ” of G on C*(X) in the sense of “multiplicities”?

Multiplicity Geometry e
Thm A : “finite” ---G/H is real spherical. @
Thm B :  “uniformly bounded” - -- G¢/Hc is §pherical: <@

(Thms Cand D --- counterpart for the restriction G | H)
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Plan of Lectures

Talk 1: Is rep theory useful for global analysis? ‘

—Multiplicity: Approach from PDEs

Talk 2: Tempered homogeneous spaces
—Dynamical approach

Talk 3: Classification theory of tempered G/H
—Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
—Interaction with topology and geometry




Plan for Today
Beyond spherical cases and “coarse information”.

Basic Problem (Today) Find a geometric criterion
for G X that assures L%(X) to be almost L”.

— Change of approach

PDE ~» Dynamical approach

Plan of Today (Lecture 2)
Methods and elementary examples
— Optimal constant ¢(G; X) for L?-estimate vol(gS N §).
— Almost L?-representation.
Tempered homogeneous spaces
Tempered subgroups




Learn from Dynamical System

G :locally compact group
X :locally compact space

Definition A continuous action G "*X is called proper if the subset

Gs ={geG:5NngS + 2}
is compact for any compact subset S C X.

g& — gliGS
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| Definition The action is free «— Gy = {e} 'x € X.
b




Criterion for proper actions — topology

Basic problem (topology) Given a geometry X.
Find a criterion for a group L (C Aut(X)) to act properly on X.

Group theoretic approach:

e Properness criterion was established for a homogeneous space
X of a reductive group G (1989*—1996).

-+ Applications include a solution (1989%) to the
Calabi-Markus phenomenon (Ann. Math., 1962).

e Properness criterion for nilpotent Lie groups G up to 3-step
(1995—").

e Open problems in general.™*

* T. Kobayashi (Math. Ann., '89 and JLT '96), Benoist (Ann. Math., '96);
** R. Lipsman (JLT '95), S. Nasrin ('01), T. Yoshino (UM, '07), Baklouti—Khlif (IMM, '05) et al;

*** T. Kobayashi, Conjectures on reductive homogeneous spaces, Lect. Notes in Math., (2023).



Non-proper action — delicate example R7YR2\ {(0,0)}

Example LetR >t acton R? by
(x,y) > (e'x,e7"y).
1) This action is neither free nor proper
because the origin (0, 0) is a fixed point.
The removal of the origin makes the situation slightly better.
2) The action on X := R?\ {(0,0)} is free, but is not proper.

/
A\
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Idea: Quantify proper actions
Locally compact group G~ X locally compact space

G" "X proper ©{geG: SNgS #0}iscompact 'S c X compact,
e vol(S NgsS ) e C.(G) S ¢ X compact,

where we fix an appropriate Radon measure on X.

Idea: Quantitative estimate for non-proper actions.

Look at asymptotic behavior of vol((S N gS ) as g goes to infinity.
—

gs

N
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Volume estimate vol(r- S N S): example R7YR2\ {(0,0)}

Example LetR 37 acton X = R?\{(0,0)} by
(x,y) = (e'x,e™'y)

e This action is free, but is not proper.

e Asymptotic behavior of vol(S Nz-S ).

For any compact neighbourhood S of the origin in R?, one has

S

Cle—ltl <vol(t-SNS)< CZe_lll. i ; s

For instance, if § = {(x,y) e RZ: [x| < 1, [y| < 1},

vol(£-S NS ) = 4eM.




Almost L? function
Z: locally compact space equipped with a Radon measure.
Eg. alocally compact group G with (left) Haar measure.

Definition A measurable function f on Z is almost L? if

fe NLP(2).

>0

Remark For p < p’, one has

fis almost L? = fis almost L”".

We are interested in the best possible p for which f is almost L?,
in particular, when Z is a semisimple Lie group G.
(e.g., G =SL(nR),SU(p,q), SOPp.,q), S p(n,R). ---).



Example 1. L”-estimate of K—fingte eigenfunctions
D=1{zeC:lzd<1} ds*= % (Poincaré disc)
Any K-finite function £ satisfying Af = Af is almost L 7

—_ 2 1y. _»~ (1
(1> 0), where p(Q) := Yy 0<a<3); =2 (3 £4). Infact,

one has
f(tanh #(cos @, sin )) ~ Ae™"+! + Be™H-!
where u. := 1 = V1 — 424 and A is generic (Lecture 1).
Figure in the u-plane with 2 = -3 (u® — 24).

Almost L?
l<le pel+ V-1IR
R
<i1<le €
O<d<j {Iu—1|<0
D o
0 1 2
=1
L
Almost L” (@ 4:3)
ifp:Ri// :—pyifﬁ >2)
O<u<l




Example 2. L’-estimate of vol(gS N S) for G~ G/N
The example R YR2\ {(0,0)}, (x,y) — (¢'x, e”"y) is interpreted

as /\—
A >5G™Y G/IN = R R2\{(0,0)} .
~
A=t = °).iericG=SLAR Sn=it )
—{a,.—oe_l.e}c—(,) =g 1"

I vol(gS N S) is almost L*(G) for any compact subset S ¢ G/N. I

e For any compact S ¢ G/N and g = k; a, ky with k1, k, € SO(2),
vol(gS NS) ~ el (previous example).
e Haar measure on g = k; a, k, € G = SL(2,R): One has

dg = sinhQQt)dk,dtdky ~ ¢! dkdtdk,.

Hence
vol(gS NS) e P (G) = 2-p-e<0.



Optimal constant ¢(G; X) of volume estimate

GVX
Suppose X admits a G-invariant Radon measure.

Definition We write ¢(G;X) for the optimal constant ¢ > 0 such that

vol(§ N gS) is an almost L?-function on G
for every compact subset § C X.

| Example ¢(G:X) = 2if (G,X) = (SL(2,R),R?).

I General Problem Find an explicit formula of ¢(G; X) .




Finding the optimal L”-estimate of vol(gS N S)

Let G be a semisimple Lie group acting on X.
q(G; X) : the optimal constant for L7-estimate of vol(gS N S).

We shall give an explicit formula of ¢(G; X)
when X = V (linear action) or X = G/H (H: reductive).

Method
(TheoremE)  Case 1 G v Dynamical approach
semisimple linear
(TheoremF)  Case 2 G > H Global geometry + Case 1

semisimple  reductive



LP-estimate of vol(gS N S) --- Case 1. H *V linear

Notation: G ¥X ~ H >V (linear)
Let H be a semisimple Lie group,andv: H —» SLg(V) a
representation. Assume 7 has a compact kernel.

The optimal constant g(H; V) for vol(gS N S) to be almost LY is
given as follows.

Theorem E For a linear action H” ¥V, one has

qH;V) = py
analysis combinatorics
Py(Y)
y = max
Yeh\{0} py (YY)
Py, Py -+ next page.

* Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.



Piecewise linear function [py associated to 7: ) — End(V)
For a finite-dimensional rep 7: h — Endgr(V), we introduce:

Definition (non-negative function ' py on the Lie algebra b)

pv|:h— Ry, Y 3 N[ReAY).
gen. eigenvalues of 7(Y) € End(V-)

Let a be a maximal split abelian subspace of the Lie algebra .

e [py is determined by its restriction to q,
e pyl. is a piecewise linear function.

Remark For a reductive b and for (, V) = (ad, b),
Pyla = twice the usual p on the dominant Weyl chamber,
however, our pyl, is not linear whereas the usual p is linear.




A constant p, associated to 7: ) — End(V)
Let a be a maximally split abelian subspace of a Lie algebra §). For
a finite-dimensional rep 7: h — Endgr(V), we introduce:

m Py (V) max 5 leigenvalue of ad (¥) € End(b)|
YEbE\lﬁ)} Py (V) - Yea\{0} 2 leigenvalue of [ (Y) € End(V)|

Definition py :=

Short Summary 7: b — Endr(V)
~> py --- piecewise linear function
py -+ positive number

Example Ho=(!_,),a=RHyCh=sl2,R)"V =R
py(tHo) = (1211 +0+|=21) =2,
pv(tHy) = (Il + | ~t)) = |t
pv =2.




Sketch of Proof for Theorem E: H” ' V (linear)

Let H be a semisimple Lie group. Suppose 7: H — GLr(V) has a
compact kernel. As in the case (H, V) = (SL(2,R), R?), one has

Theorem E For a linear action H” ¥V, one has
qH;V) = py

analysis combinatorics

S
Proof. e For H > h = k;e¥k,, one has hS
vol(hS NS ) ~ e V™.
e For the Haar measure dh on H, one has
dh ~ ™ Vi dydk, (away from wall).
Therefore the L1*¢-estimate of vol((AS NS ) amounts to

vol(hS N §)I*dh ~ ™ 7P i ay dks. O



Strategy: finding the optimal L7-estimate of vol(gS N S)

Let G X.
q(G; X) : the optimal constant for L7-estimate of vol(gS N S).

We discussed when X =V (linear). Now consider X = G/H .

Method
(TheoremE)  Case 1 G v Dynamical approach
semisimple linear
(Theorem F)  Case 2 G > H Global geometry + Case 1

semisimple  reductive



Case 2 G O H

semisimple  reductive

Recall ¢(G;X) is the optimal constant ¢ for which vol(gS NS ) is
almost L9 for all compact subset § ¢ X.

Theorem F* Let G be a semisimple Lie group, and H a reductive
subgroup. Then one has
49(G;G/H) = pyy +1L

analysis combinatorics

Py(Y)
Recall py = max
40 gy (Y)

is defined for a linear action ﬂm V.

Point It turns out that one can control vol(gS N S) forg e G
only by “p-function” for the subgroup H acting on g/ .

* Y. Benoist—T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.



Case2 G D> H Global geometry + Case 1

semisimple  reductive

Asymptotic estimate of volume
For any compact S ¢ G/H, we want to find m(g) and M(g):
m(g) Sf vol(gS NS ) <M(g) forallgeG.

forgeH (
Ad
HYg/h = G/H.

locally
Some difficulties to overcome:
e Need a lower bound m(g) for ¢ € G, not only for g € H.



Case2 G D> H Global geometry + Case 1

semisimple  reductive

Asymptotic estimate of volume
For any compact S ¢ G/H, we want to find m(g) and M(g):
m(g) Sf vol(gS NS ) <M(g) forallgeG.

forgeH (
Ad
HYg/h = G/H.

locally
Some difficulties to overcome:
e Need a lower bound m(g) for ¢ € G, not only for g € H.
e An upper bound M(g) is more involved.



Case2 G D> H Global geometry + Case 1

semisimple  reductive

Theorem F* Let G be a semisimple Lie group, and H a reductive
subgroup. Then one has

q9(G;G/H) = Pa/y + 1.
analysis combinatorics
9

Key idea: Quantify the proof of the properness criterion ** for
subgroups L of G acting on G/H.

* Y. Benoist—T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.
** T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., 285 (1989), 249-263.



Plan

e Methods and elementary examples
- Optimal constant ¢(G; X) for L7-estimate vol(gS N §).

- Almost L?-representation, tempered representations.
e Tempered homogeneous spaces.

e Tempered subgroups.



Almost [” representations

Almost L? functions

$

Almost L? representations

Let 7 be a unitary representation of G on a Hilbert space H.

Definition For p > 1, (n,H) is called almost L? if there is
a dense subspace D c ‘H such that matrix coefficients
for x,y € D are almost L?, namely,

@(@x, ) € NLP*4G) x,'yeD
>0




Harish-Chandra’s tempered representation — Definition
Let G be a locally compact group.

I Def A unitary rep 7 of G is called tempered if & << L*(G) .

<< --- weakly contained

i.e., every matrix coefficient of x is a uniform limit on every
compacta of G by a sequence of sum of coefficients of L2(G).



Almost L? representation vs tempered representations

I Definition A unitary representation r of G is called tempered if 'z << L2(G) .

e For a semisimple Lie group G, one has

Fact G (Cowling—Haagerup—Howe)* One has the equivalence:
nis tempered <= nis almost L.

* M. Cowling—M. Haagerup—R. Howe, Almost L2 matrix coefficients, J. Reine Angew. Math. 387, (1988), 97-110.



Almost L? representation vs tempered representations

Definition A unitary representation z of G is called tempered if 7 << LZ(G) .

e For a solvable Lie group G,

all unitary reps  are tempered (Hulanicki-Reiter), but are not always
almost L.

E.g. the trivial one-dimensional rep is not almost L? (1 < p < o) if
G is non-compact.

e For a semisimple Lie group G, one has

Fact G (Cowling—Haagerup—Howe)* One has the equivalence:
nis tempered <= nis almost L.

* M. Cowling—M. Haagerup—R. Howe, Almost L2 matrix coefficients, J. Reine Angew. Math. 387, (1988), 97-110.



Temperedness under disintegration
Mautner: Any unitary rep I1 can be decomposed into irreducibles:

D
II :fA My 7 du(m) (direct integral).
G

Fact II is tempered < irreducible reps m are tempered for u-a.e.

—_

G = {irreducible unitary reps}
U
aemp := {irreducible tempered reps}.
That is,
ITis tempered ]2 myrdu(rm).

temp



Classification theory of the unitary dual o

Fact (Kirillov, Duflo) Classification of the unitary dual G
for real algebraic groups G is reduced to that
for real reductive Lie groups .

Suppose G is a real reductive Lie group (e.g., GL(n,R), O(p, q)).

irred. admissible irred. unitary irred. tempered
IH(G) ) G o Gtemp
classified (still mysterious) classified
Langlands over 70 years Knapp-Zuckerman

reduce



Tempered representations (warming up)

V. Bargmann (1947): Irreducible unitary reps of S L(2,R)
= {1} U { principal series } LI { complementary series }
LI{ discrete series } 11 { limit of discrete series }




Tempered representations (warming up)

V. Bargmann (1947): Irreducible unitary reps of S L(2,R)
= {1} U { principal series } LI { complementary series }
LI{ discrete series } 11 { limit of discrete series }

—% Casimir operator acts on them as scalars
{0}, [%,00) ; O, %) ; {%(n2 -1):neN,}, {0}

I': congruence subgroup of G = SL(2,R)

Selberg’s i eigenvalue conjecture *:
All eigenvalues of A on Maas wave forms for I" > %.
& Theunitaryrepof G" ¥ L2, (I\G) is tempered .

cusp

Just one irred non-tempered rep would deny the conjecture.

S
A. Selberg, On the estimate of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 1965.



Irreducible tempered reps — semisimple Lie groups

Def A unitary representation 7 of G is called tempered if 7 << LZ(G) .

e For a semisimple Lie group G and irreducible r € G,
tempered representations 7 have been studied extensively.

Known results on tempered reps and beyond ...

e Many equivalent definitions, e.g., L**4(G),

e Harish-Chandra’s theory towards Plancherel formula,
Knapp—Zuckerman’s classification *,

A cornerstone of Langlands’ classification,

Selberg % eigenvalue conjecture (1965-),
Gan-Gross—Prasad conjecture, - -

*
A. W. Knapp-G. Zuckerman, Classification of irreducible tempered representations of semisimple Lie groups, Ann.

Math., (1980), 389-455; 457-501.



Tempered homogeneous spaces and tempered subgroups

GOH Lie groups
e Induction

Definition We say G/H is a tempered homogeneous space
if L>(G/H) is a tempered rep of G.

e Restriction

Definition We say H is a G-tempered subgroup
if |y is tempered for any 7 € 5\ {1}.

cf. Margulis used the terminology “G-tempered subgroup” in a
stronger sense by using an L' -estimate rather than an
L**¢ -estimate.



Basic questions on Harish-Chandra’s tempered representations

GDH Lie groups

Problem 2 (induction) Find a criterion for (G, H) such that
L*(G/H) is a tempered rep of G.

Problem 3 (restriction) Find a criterion for (G, H) such that
the restriction 7|y is atemperedrepof H Yne G\ {1}.

We shall see that Problem 3 is related to the existence problem of
cocompact discontinuous groups I for G/H.



Tempered homogeneous space X = G/H, i.e., L>(X) << L*(G)

Problem 2 When is the unitary rep on L*(X) tempered? I

H
cf. L*(X) can be disintegrated by irred X-tempered reps (this is
almost ‘tautology’). (Harish-Chandra, Oshima, Bernstein ~ 80s). |




Towards a temperedness criterion

Problem 2 For which pair G > H, is the unitary rep
of G on L*(G/H) temBered?

For semisimple Lie groups G, we have already discussed a
refinement of Problem 2 as below:

Problem 1 Find the optional constant ¢(G; G/H)
for which vol(gS N §) is almost L? for all compact subset S ¢ G/H.

¢(G;G/H) < 2 & L*(G/H) is tempered.



Temperedness criterion in the reductive case

G semisimple Lie group,
H any reductive subgroup.

Since we know from Theorem F that

q(G.G/H) = pgy +1

analysis combinatorics

Py(Y)
where py = max
haY#0 pv(Y)

obtains from the volume estimate:

is defined for a linear action Em V, one

Theorem F’* For a pair of real reductive Lie groups, one has
L*(G/H) is G-tempered <> py < .

Remark. pyp <1 & 2p, <pgonh.

S
Y. Benoist—T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.
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Thank you for your attention!



